
Apache Solr Reference Guide

Covering Apache Solr 4.4

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.

http://www.apache.org/licenses/LICENSE-2.0

2Apache Solr Reference Guide 4.4

Apache Solr Reference Guide
This reference guide describes Apache Solr, the open source solution for search. You can download Apache Solr from the Solr website at

.http://lucene.apache.org/solr/

This Guide contains the following sections:

Getting Started: This section guides you through the installation and setup of Solr.

Using the Solr Administration User Interface: This section introduces the Solr Web-based user interface. From your browser you can view
configuration files, submit queries, view logfile settings and Java environment settings, and monitor and control distributed configurations.

Documents, Fields, and Schema Design: This section describes how Solr organizes its data for indexing. It explains how a Solr schema defines
the fields and field types which Solr uses to organize data within the document files it indexes.

Understanding Analyzers, Tokenizers, and Filters: This section explains how Solr prepares text for indexing and searching. Analyzers parse
text and produce a stream of tokens, lexical units used for indexing and searching. Tokenizers break field data down into tokens. Filters perform
other transformational or selective work on token streams.

Indexing and Basic Data Operations: This section describes the indexing process and basic index operations, such as commit, optimize, and
rollback.

Searching: This section presents an overview of the search process in Solr. It describes the main components used in searches, including
request handlers, query parsers, and response writers. It lists the query parameters that can be passed to Solr, and it describes features such as
boosting and faceting, which can be used to fine-tune search results.

The Well-Configured Solr Instance: This section discusses performance tuning for Solr. It begins with an overview of the solrconfig.xml
file, then tells you how to configure cores with , how to configure the Lucene index writer, and more.solr.xml

Managing Solr: This section discusses important topics for running and monitoring Solr. It describes running Solr in the Apache Tomcat servlet
runner and Web server. Other topics include how to back up a Solr instance, and how to run Solr with Java Management Extensions (JMX).

SolrCloud: This section describes the newest and most exciting of Solr's new features, SolrCloud, which provides comprehensive distributed
capabilities.

Legacy Scaling and Distribution: This section tells you how to grow a Solr distribution by dividing a large index into sections called shards,
which are then distributed across multiple servers, or by replicating a single index across multiple services.

Client APIs: This section tells you how to access Solr through various client APIs, including JavaScript, JSON, and Ruby.

http://lucene.apache.org/solr/

3Apache Solr Reference Guide 4.4

About This Guide
This guide describes all of the important features and functions of Apache Solr. It is free to download from .http://lucene.apache.org/solr/

Designed to provide high-level documentation, this guide is intended to be more encyclopedic and less of a cookbook. It is structured to address a
broad spectrum of needs, ranging from new developers getting started to well-experienced developers extending their application or
troubleshooting. It will be of use at any point in the application life cycle, for whenever you need authoritative information about Solr.

The material as presented assumes that you are familiar with some basic search concepts and that you can read XML. It does not assume that
you are a Java programmer, although knowledge of Java is helpful when working directly with Lucene or when developing custom extensions to a
Lucene/Solr installation.

Special notes are included throughout these pages.

Note Type Look & Description

Information

Notes with a blue background are used for information that is important for you to know.

Notes

Yellow notes are further clarifications of important points to keep in mind while using Solr.

Tip

Notes with a green background are Helpful Tips.

Warning

Notes with a red background are warning messages.

The default port configured for Solr during the install process is 8983. The samples, URLs and screenshots in this guide may
show different ports, because the port number that Solr uses is configurable. If you have not customized your installation of Solr,
please make sure that you use port 8983 when following the examples, or configure your own installation to use the port
numbers shown in the examples. For information about configuring port numbers used by Tomcat or Jetty, see .Managing Solr

http://lucene.apache.org/solr/

4Apache Solr Reference Guide 4.4

1.

2.

3.

4.

5.

Getting Started
Solr makes it easy for programmers to develop sophisticated, high-performance search applications with advanced features such as faceting
(arranging search results in columns with numerical counts of key terms). Solr builds on another open source search technology: Lucene, a Java
library that provides indexing and search technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities.
Both Solr and Lucene are managed by the Apache Software Foundation (.www.apache.org)

The Lucene search library currently ranks among the top 15 open source projects and is one of the top 5 Apache projects, with installations at
over 4,000 companies. Lucene/Solr downloads have grown nearly ten times over the past three years, with a current run-rate of over 6,000
downloads a day. The Solr search server, which provides application builders a ready-to-use search platform on top of the Lucene search library,
is the fastest growing Lucene sub-project. Apache Lucene/Solr offers an attractive alternative to the proprietary licensed search and discovery
software vendors.

This section helps you get Solr up and running quickly, and introduces you to the basic Solr architecture and features. It covers the following
topics:

Installing Solr: A walkthrough of the Solr installation process.

Running Solr: An introduction to running Solr. Includes information on starting up the servers, adding documents, and running queries.

A Quick Overview: A high-level overview of how Solr works.

A Step Closer: An introduction to Solr's home directory and configuration options.

Installing Solr

This section describes how to install Solr. You can install Solr anywhere that a suitable Java Runtime Environment (JRE) is available, as detailed
below. Currently this includes Linux, OS X, and Microsoft Windows. The instructions in this section should work for any platform, with a few
exceptions for Windows as noted.

Got Java?

You will need the Java Runtime Environment (JRE) version 1.6 or higher. At a command line, check your Java version like this:

$ *java -version*
java version "1.6.0_0"
IcedTea6 1.3.1 (6b12-0ubuntu6.1) Runtime Environment (build 1.6.0_0-b12)
OpenJDK Client VM (build 1.6.0_0-b12, mixed mode, sharing)

The output will vary, but you need to make sure you have version 1.6 or higher. If you don't have the required version, or if the java command is
not found, download and install the latest version from Sun at .http://java.sun.com/javase/downloads/

Installing Solr

Solr is available from the Solr website at .http://lucene.apache.org/solr/

For Linux/Unix/OSX systems, download the file. For Microsoft Windows systems, download the file..gzip .zip

Solr runs inside a Java servlet container such as Tomcat, Jetty, or Resin. The Solr distribution includes a working demonstration server in the
 directory that runs in Jetty. You can use the example server as a template for your own installation, whether or not you are using JettyExample

as your servlet container. For more information about the demonstration server, see the .Solr Tutorial

To install Solr

Unpack the Solr distribution to your desired location.

Stop your Java servlet container.

Copy the file from the Solr distribution to the directory of your servlet container. Do not change the name of this file:solr.war webapps
it must be named . solr.war

Copy the Solr Home directory from the distribution to your desired Solr Home location. apache-solr-3.x.0/example/solr/

Start your servlet container, passing to it the location of your Solr Home in one of these ways:

http://www.apache.org/
http://java.sun.com/javase/downloads/
http://lucene.apache.org/solr/
https://lucene.apache.org/solr/tutorial.html

5Apache Solr Reference Guide 4.4

5.
Set the Java system property to your Solr Home. (for example, using the example jetty setup: solr.solr.home java

).-Dsolr.solr.home=/some/dir -jar start.jar
Configure the servlet container so that a JNDI lookup of by the Solr webapp will point to your Solrjava:comp/env/solr/home
Home.
Start the servlet container in the directory containing : the default Solr Home is under the JVM's current working./solr solr
directory ().$CWD/solr

To confirm your installation, go to the at . Note that your servlet container maySolr Admin page http://_hostname_:8983/solr/admin/
have started on a different port: check the documentation for your servlet container to troubleshoot that issue. Also note that if that port is already
in use, Solr will not start. In that case, shut down the servlet container running on that port, or change your Solr port.

For more information about installing and running Solr on different Java servlet containers, see the page on the .SolrInstall Solr Wiki

Related Topics

SolrInstall

Running Solr

This section describes how to run Solr with an example schema, how to add documents, and how to run queries.

Start the Server

If you didn't start Solr after installing it, you can start it by running from the Solr directory.start.jar example

$ java -jar start.jar

If you are running Windows, you can start the Web server by running instead.start.bat

C:\Applications\Solr\example > start.bat

That's it! Solr is running. If you need convincing, use a Web browser to see the Admin Console.

http://localhost:8983/solr/admin

The Solr Admin interface.

If Solr is not running, your browser will complain that it cannot connect to the server. Check your port number and try again.

Add Documents

http://_hostname_:8983/solr/admin/
https://wiki.apache.org/solr/SolrInstall
https://wiki.apache.org/solr/FrontPage
http://wiki.apache.org/solr/SolrInstall
http://localhost:8983/solr/admin

6Apache Solr Reference Guide 4.4

Solr is built to find documents that match queries. Solr's schema provides an idea of how content is structured (more on the schema), butlater
without documents there is nothing to find. Solr needs input before it can do anything.

You may want to add a few sample documents before trying to index your own content. The Solr installation comes with example documents
located in the directory of your installation.example/exampledocs

In the directory is the SimplePostTool, a Java-based command line tool, , which can be used to index the documents.exampledocs post.jar
Do not worry too much about the details for now. The section has all the details on indexing.Indexing and Basic Data Operations

To see some information about the usage of , use the option.post.jar -help

$ java -jar post.jar -help

The SimplePostTool is a simple command line tool for POSTing raw XML to a Solr port. XML data can be read from files specified as command
line arguments, as raw command line strings, or via STDIN.arg

Examples:

java -Ddata=files -jar post.jar *.xml
java -Ddata=args -jar post.jar '<delete><id>42</id></delete>'
java -Ddata=stdin -jar post.jar < hd.xml

Other options controlled by System Properties include the Solr URL to POST to, and whether a commit should be executed. These are the
defaults for all System Properties:

-Ddata=files
-Durl=http://localhost:8983/solr/update
-Dcommit=yes

Go ahead and add all the documents in the directory as follows:

$ java -Durl=http://localhost:8983/solr/update -jar post.jar *.xml
SimplePostTool: version 1.2
SimplePostTool: WARNING: Make sure your XML documents are encoded in UTF-8, other
encodings are not currently supported
SimplePostTool: POSTing files to http://10.211.55.8:8983/solr/update..
SimplePostTool: POSTing file hd.xml
SimplePostTool: POSTing file ipod_other.xml
SimplePostTool: POSTing file ipod_video.xml
SimplePostTool: POSTing file mem.xml
SimplePostTool: POSTing file monitor.xml
SimplePostTool: POSTing file monitor2.xml
SimplePostTool: POSTing file mp500.xml
SimplePostTool: POSTing file sd500.xml
SimplePostTool: POSTing file solr.xml
SimplePostTool: POSTing file spellchecker.xml
SimplePostTool: POSTing file utf8-example.xml
SimplePostTool: POSTing file vidcard.xml
SimplePostTool: COMMITting Solr index changes..
Time spent: 0:00:00.633
$

That's it! Solr has indexed the documents contained in the files.

7Apache Solr Reference Guide 4.4

Ask Questions

Now that you have indexed documents, you can perform queries. The simplest way is by building a URL that includes the query parameters. This
is exactly the same as building any other HTTP URL.

For example, the following query searches all document fields for "video":

http://localhost:8983/solr/select?q=video

Notice how the URL includes the host name (), the port number where the server is listening (), the application name (), thelocalhost 8983 solr
request handler for queries (), and finally, the query itself ().select q=video

The results are contained in an XML document, which you can examine directly by clicking on the link above. The document contains two parts.
The first part is the , which contains information about the response itself. The main part of the reply is in the result tag, whichresponseHeader
contains one or more doc tags, each of which contains fields from documents that match the query. You can use standard XML transformation
techniques to mold Solr's results into a form that is suitable for displaying to users. Alternatively, Solr can output the results in JSON, PHP, Ruby
and even user-defined formats.

Just in case you are not running Solr as you read, the following screen shot shows the result of a query (the next example, actually) as viewed in
Mozilla Firefox. The top-level response contains a named and a result named response. Inside result, you can see thelst responseHeader
three docs that represent the search results.

An XML response to a query.

Once you have mastered the basic idea of a query, it is easy to add enhancements to explore the query syntax. This one is the same as before

http://localhost:8983/solr/select?q=video

8Apache Solr Reference Guide 4.4

but the results only contain the ID, name, and price for each returned document. If you don't specify which fields you want, all of them are
returned.

http://localhost:8983/solr/select?q=video&fl=id,name,price

Here is another example which searches for "black" in the field only. If you do not tell Solr which field to search, it will search default fields,name
as specified in the schema.

http://localhost:8983/solr/select?q=name:black

You can provide ranges for fields. The following query finds every document whose price is between $0 and $400.

http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price

Faceted browsing is one of Solr's key features. It allows users to narrow search results in ways that are meaningful to your application. For
example, a shopping site could provide facets to narrow search results by manufacturer or price.

Faceting information is returned as a third part of Solr's query response. To get a taste of this power, take a look at the following query. It adds
 and .facet=true facet.field=cat

http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price&facet=true&facet.field=cat

In addition to the familiar and response from Solr, a element is also present. Here is a view with the responseHeader facet_counts
 and response collapsed so you can see the faceting information clearly.responseHeader

http://localhost:8983/solr/select?q=video&fl=id,name,price
http://localhost:8983/solr/select?q=name:black
http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price
http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price&facet=true&facet.field=cat

9Apache Solr Reference Guide 4.4

An XML Response with faceting

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
...
</lst>
<result name="response" numFound="9" start="0">
 <doc>
 <str name="id">SOLR1000</str>
 <str name="name">Solr, the Enterprise Search Server</str>
 <float name="price">0.0</float></doc>
...
</result>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="cat">
 <int name="electronics">6</int>
 <int name="memory">3</int>
 <int name="search">2</int>
 <int name="software">2</int>
 <int name="camera">1</int>
 <int name="copier">1</int>
 <int name="multifunction printer">1</int>
 <int name="music">1</int>
 <int name="printer">1</int>
 <int name="scanner">1</int>
 <int name="connector">0</int>
 <int name="currency">0</int>
 <int name="graphics card">0</int>
 <int name="hard drive">0</int>
 <int name="monitor">0</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
</lst>
</response>

The facet information shows how many of the query results have each possible value of the field. You could easily use this information tocat
provide users with a quick way to narrow their query results. You can filter results by adding one or more filter queries to the Solr request. Here is
a request further constraining the request to documents with a category of "software".

http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price&facet=true&facet.field=cat&fq=cat:software

A Quick Overview

Having had some fun with Solr, you will now learn about all the cool things it can do.

Here is a typical configuration:

http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price&facet=true&facet.field=cat&fq=cat:software

10Apache Solr Reference Guide 4.4

1.

2.
3.
4.

In the scenario above, Solr runs alongside another application in a Web server. For example, an online store application would provide a user
interface, a shopping cart, and a way to make purchases. The store items would be kept in some kind of database.

Solr makes it easy to add the capability to search through the online store through the following steps:

Define a . The schema tells Solr about the contents of documents it will be indexing. In the online store example, the schemaschema
would define fields for the product name, description, price, manufacturer, and so on. Solr's schema is powerful and flexible and allows
you to tailor Solr's behavior to your application. See for all the details.Documents, Fields, and Schema Design
Deploy Solr to your application server.
Feed Solr the document for which your users will search.
Expose search functionality in your application.

Because Solr is based on open standards, it is highly extensible. Solr queries are RESTful, which means, in essence, that a query is a simple
HTTP request URL and the response is a structured document: mainly XML, but it could also be JSON, CSV, or some other format. This means
that a wide variety of clients will be able to use Solr, from other web applications to browser clients, rich client applications, and mobile devices.
Any platform capable of HTTP can talk to Solr. See for details on client APIs.Client APIs

Solr is based on the Apache Lucene project, a high-performance, full-featured search engine. Solr offers support for the simplest keyword
searching through to complex queries on multiple fields and faceted search results. has more information about searching and queries.Searching

If Solr's capabilities are not impressive enough, its ability to handle very high-volume applications should do the trick.

A relatively common scenario is that you have so many queries that the server is unable to respond fast enough to each one. In this case, you
can make copies of an index. This is called replication. Then you can distribute incoming queries among the copies in any way you see fit. A
round-robin mechanism is one simple way to do this.

11Apache Solr Reference Guide 4.4

Another useful technique is sharding. If you have so many documents that you simply cannot fit them all on a single box for RAM or index size
reasons, you can split an index into multiple pieces, called . Each shard lives on its own physical server. An incoming query is sent to allshards
the shard servers, which respond with matching results.

If you have huge numbers of documents and users, you might need to combine the techniques of sharding and replication. In this case, Solr's
new SolrCloud functionality may be more effective for your needs. SolrCloud includes a number of features to simplify the process of distributing
the index and the queries, and manage the resulting nodes.

For full details on sharding and replication, see . We've split the SolrCloud information into it's own section, called Legacy Scaling and Distribution
.SolrCloud

Best of all, this talk about high-volume applications is not just hypothetical: some of the famous Internet sites that use Solr today are Macy's,
EBay, and Zappo's.

12Apache Solr Reference Guide 4.4

For more information, take a look at .https://wiki.apache.org/solr/PublicServers

A Step Closer

You already have some idea of Solr's schema. This section describes Solr's home directory and other configuration options.

When Solr runs in an application server, it needs access to a home directory. The home directory contains important configuration information and
is the place where Solr will store its index.

The crucial parts of the Solr home directory are shown here:

<solr-home-directory>/
 solr.xml
 conf/
 solrconfig.xml
 schema.xml
 data/

You supply , , and to tell Solr how to behave. By default, Solr stores its index inside data.solr.xml solrconfig.xml schema.xml

solr.xml specifies configuration options for your Solr core, and also allows you to configure multiple cores. For more information on solr.xml
see .The Well-Configured Solr Instance

solrconfig.xml controls high-level behavior. You can, for example, specify an alternate location for the data directory. For more information on
, see .solrconfig.xml The Well-Configured Solr Instance

schema.xml describes the documents you will ask Solr to index. Inside , you define a document as a collection of fields. You get toschema.xml
define both the field types and the fields themselves. Field type definitions are powerful and include information about how Solr processes
incoming field values and query values. For more information on , see .schema.xml Documents, Fields, and Schema Design

https://wiki.apache.org/solr/PublicServers

13Apache Solr Reference Guide 4.4

Upgrading Solr
If you are already using Solr 4.3 or 4.3.1, Solr 4.4 should not present any major problems. However, you should review the fileCHANGES.txt
found in your Solr package for changes and updates that may effect your existing implementation.

Upgrading from 4.3.x

If you are upgrading directly from Solr 4.3.0 to 4.4, Solr 4.3.1 included several major bug fixes, which are also included in Solr 4.4. Notable fixes:
the new shard splitting feature in particular was made much more stable, with five fixed bugs; didn't work in Solr 4.3.0;solr.xml sharedLib
and SolrCore reloading was broken when the UpdateLog was enabled - this last bug affected both Solr 4.2.1 and 4.3.0.

Solr 4.3.0 introduced a new "discovery" mode and format, which is now the default in Solr 4.4. The pre-4.3.0 "legacy" modesolr.xml solr.xml
and format will no longer be supported in Solr 5.0. For a thorough treatment of these issues, including how to migrate from "legacy" to "discovery"

 configurations, see .solr.xml Solr Cores and solr.xml

The new unloads all replicas of a given shard and then removes it from the cluster state - it will remove only those"deleteshard" collections API
shards which are INACTIVE (e.g. post-shard-split parent shards) or have no range (created for custom sharding).

More shard splitting bugs were fixed: the "splitshard" API wasn't calling commit on new sub shards before switching shard states; and multiple
bugs related to sub shard recovery and replication were fixed.

TieredMergePolicy and the various subtypes of no longer have an explicit " " method. Instead theLogMergePolicy setUseCompoundFile
behavior of new segments is determined by the configuration, and the is only consulted to determine if mergeIndexWriter MergePolicy
segments should use the compound file format (based on the value of " "). If you have explicitly configured one of these classessetNoCFSRatio
using and include an init arg like this...<mergePolicy>

<bool name="useCompoundFile">true</bool>

...this will now be treated as if you specified...

<useCompoundFile>true</useCompoundFile>

...directly on the (overriding any value already set using that syntax) and a warning will be logged to update your configuration.<indexConfig>
Users with an explicitly declared are encouraged to review and review<mergePolicy> the current javadocs for their subclassMergePolicy
their configured options carefully. See , and for more information.SOLR-4941 SOLR-4934 LUCENE-5038

The signature of has changed, from to .LogWatcher.registerListener (ListenerConfig, CoreContainer) (ListenerConfig)
Users implementing their own classes will need to change their code accordingly.LogWatcher

ByteField and have been deprecated and will be removed in Solr 5.0. If you are still using these field types, you should migrateShortField
your fields to .TrieIntField

Finally, the Admin UI now displays the dashboard even if Solr is down.

As with any Solr update, it is recommended that you re-index your content.

Upgrading from Older Versions of Solr

This is a summary of some of the key issues related to upgrading in previous versions of Solr. Users upgrading from older versions are strongly
encouraged to consult the details of all changes since the version they are upgrading from.CHANGES.txt

As of Solr 4.3 the slf4j/logging jars are no longer included in the Solr webapp to allow for more flexibility in logging.
Minor changes were made to the Schema API response format in Solr 4.3
In Solr 4.1 the method Solr uses to identify node names for SolrCloud was changed. If you are using SolrCloud and upgrading from Solr
4.0, you may have issues with unknown or lost nodes. If this occurs, you can manually set the parameter either in or ashost solr.xml
a system variable. More information can be found in the section on .SolrCloud
If you are upgrading from Solr 3.x, you should familiarize yourself with the .Major Changes from Solr 3 to Solr 4

http://lucene.apache.org/solr/4_4_0/changes/Changes.html
http://lucene.apache.org/core/4_4_0/core/org/apache/lucene/index/MergePolicy.html
https://issues.apache.org/jira/browse/SOLR-4941
https://issues.apache.org/jira/browse/SOLR-4934
https://issues.apache.org/jira/browse/LUCENE-5038

14Apache Solr Reference Guide 4.4

Using the Solr Administration User Interface
This section discusses the Solr Administration User Interface ("Admin UI").

The explains how the features of the user interface that are new with Solr 4, what's on the initial Admin UI page,Overview of the Solr Admin UI
and how to configure the interface. In addition, there are pages describing each screen of the Admin UI:

Getting Assistance shows you how to get more information about the UI.
Logging explains the various logging levels available and how to invoke them.
Cloud Screens display information about nodes when running in SolrCloud mode.
Core Admin explains how to get management information about each core.
Java Properties shows the Java information about each core.
Thread Dump lets you see detailed information about each thread, along with state information.

Core-Specific Tools is a section explaining additional screens available for each named core.
Analysis - lets you analyze the data found in specific fields.
Config - shows the current configuration of the file for the core.solrconfig.xml
Dataimport - shows you information about the current status of the Data Import Handler.
Documents - provides a simple form allowing you to execute various Solr indexing commands directly from the browser.
Ping - lets you ping a named core and determine whether the core is active.
Plugins/Stats - shows statistics for plugins and other installed components.
Query - lets you submit a structured query about various elements of a core.
Replication - shows you the current replication status for the core, and lets you enable/disable replication.
Schema - describes the file for the core.schema.xml
Schema Browser - displays schema data in a browser window.

Overview of the Solr Admin UI

Solr features a Web interface that makes it easy for Solr administrators and programmers to view details, run Solr configuration queries and
 document fields in order to fine-tune a Solr configuration and access and other help.analyze online documentation

With Solr 4, the Solr
Admin has been
completely redesigned.
The redesign was
completed with these
benefits in mind:

load pages
quicker
access and
control
functionality
from the
Dashboard
re-use the
same servlets
that access
Solr-related
data from an
external
interface, and
ignore any
differences
between
working with
one or multiple cores.

Accessing the URL (if running Jetty on the default port of 8983), will show the main dashboard, which is dividedhttp://hostname:8983/solr/admin/
into two parts.

A left-side of the screen is a menu under the Solr logo that provides the navigation through the screens of the UI. The first set of links are for
system-level information and configuration and provide access to Logging, Core Admin and Java Properties, among other things. At the end of
this information is a list of Solr cores configured for this instance. Clicking on a core name shows a secondary menu of information and
configuration options for the core specifically. Items in this list include the Schema, Config, Plugins, and an ability to perform Queries on indexed
data.

The center of the screen shows the detail of the option selected. This may include a sub-navigation for the option or text or graphical
representation of the requested data. See the sections in this guide for each screen for more details.

http://hostname:8983/solr/admin/

15Apache Solr Reference Guide 4.4

Configuring the Admin UI in solrconfig.xml

You can configure the Solr Admin UI by editing the file .solrconfig.xml

The block in the file determines the default query to be displayed in the Query section of the core-specific pages.<admin> solrconfig.xml
The default is , which is to find all documents. In this example, we have changed the default to the term .*:* solr

<admin>
 <defaultQuery>solr</defaultQuery>
</admin>

Related Topics

Configuring solrconfig.xml

Getting Assistance

At the bottom of each screen of the Admin UI is a set of links that can be used to get more assistance with configuring and using Solr.

Assistance icons

These icons include the following links.

Link Description

Documentation Navigates to the Apache Solr documentation hosted on .http://lucene.apache.org/solr/

Issue Tracker Navigates to the JIRA issue tracking server for the Apache Solr project. This server resides at
.http://issues.apache.org/jira/browse/SOLR

IRC Channel Connects you to the web interface for Solr's IRC channel. This channel is found on , Port 7000, #solrIrc.freenode.net
channel.

Community
forum

Connects you to the Solr , which at the current time is a set of mailing lists and their archives.community forum

Solr Query
Syntax

Navigates to the Apache Wiki page describing the Solr query syntax: .http://wiki.apache.org/solr/SolrQuerySyntax

These links cannot be modified without editing the in the that contains the Admin UI files.admin.html solr.war

Logging

The Logging page shows messages from Solr's log files.

When you click the link for "Logging", a page similar to the one below will be displayed:

http://lucene.apache.org/solr/
http://issues.apache.org/jira/browse/SOLR
http://Irc.freenode.net
http://wiki.apache.org/solr/UsingMailingLists
http://wiki.apache.org/solr/SolrQuerySyntax

16Apache Solr Reference Guide 4.4

The Main Logging Screen

While this example shows logged messages for only one core, if you have multiple cores in a single instance, they will each be listed, with the
level for each.

Selecting a Logging Level

When you select the link on the left, you see theLevel
hierarchy of classpaths and classnames for your instance. A
row highlighted in yellow indicates that the class has logging
capabilities. Click on a highlighted row, and a menu will
appear to allow you to change the log level for that class.
Characters in boldface indicate that the class will not be
affected by level changes to root.

For an explanation of the various logging levels, see
.Configuring Logging

Cloud Screens

When running in SolrCloud mode, an option will appear in
the Admin UI between Logging and Core Admin for Cloud.
It's not possible at the current time to manage the nodes of
the SolrCloud cluster, but you can view them and open the Solr Admin UI on each node to view the status and statistics for the node and each
core on each node.

Click on the Cloud option in the left-hand navigation, and a small sub-menu appears with options called "Tree", "Graph", "Graph (Radial)" and
"Dump". The default view (which is "Tree") shows a graph of each core and the addresses of each node. This example shows a very simple
two-node cluster with a single core:

17Apache Solr Reference Guide 4.4

The "Graph (Radial)" option provides a different visual view of each node. Using the same simple two-node cluster, the radial graph view looks
like:

The "Tree" option shows a directory structure of the files in ZooKeeper, including , configuration files, and other status andclusterstate.json
information files. In this example, we show the leader definition files for the core named "collection1":

18Apache Solr Reference Guide 4.4

The final option is "Dump", which allows you to download an XML file with all the ZooKeeper configuration files.

Core Admin

The Core Admin screen lets you manage your cores.

The buttons at the top of the screen let you add a new core, unload the core displayed, rename the currently displayed core, swap the existing
core with one that you specify in a drop-down box, reload the current core, and optimize the current core.

The main display and available actions correspond to the commands used with the , but provide another way of working withCoreAdminHandler
your cores.

Java Properties

The Java Properties screen provides easy access to one of the most essential components of a top-performing Solr systems With the Java
Properties screen, you can see all the properties of the JVM running Solr, including the class paths, file encodings, JVM memory settings,
operating system, and more.

Thread Dump

The Thread Dump screen lets you inspect the currently active threads on your server. Each thread is listed and access to the stacktraces is
available where applicable. Icons to the left indicate the state of the thread: for example, threads with a green check-mark in a green circle are in
a "RUNNABLE" state. On the right of the thread name, a down-arrow means you can expand to see the stacktrace for that thread.

19Apache Solr Reference Guide 4.4

When you move your cursor over a thread name, a box floats over the name with the state for that thread. Thread states can be:

State Meaning

NEW A thread that has not yet started.

RUNNABLE A thread executing in the Java virtual machine.

BLOCKED A thread that is blocked waiting for a monitor lock.

WAITING A thread that is waiting indefinitely for another thread to perform a particular action.

TIMED_WAITING A thread that is waiting for another thread to perform an action for up to a specified waiting time.

TERMINATED A thread that has exited.

When you click on one of the threads that can be expanded, you'll see the stacktrace, as in the example below:

Inspecting a thread

You can also check the button to automatically enable expansion for all threads.Show all Stacktraces

20Apache Solr Reference Guide 4.4

Core-Specific Tools

In the left-hand
navigation bar, you will
see a pull-down menu
titled "Core Selector".
Clicking on the menu
will show a list of Solr
cores, with a search
box that can be used
to find a specific core
(handy if you have a
lot of cores). When you
select a core, such as

 in thecollection1
example, a secondary
menu opens under the
core name with the
administration options
available for that
particular core.

After selecting the
core, the central part of
the screen shows
Statistics and other
information about the
core you chose. You can define a file called that includes links or other information you would like to display in the "Adminadmin-extra.html
Extra" part of this main screen.

On the left side, under the core name, are links to other screens that display information or provide options for the specific core chosen. The
core-specific options are listed below, with a link to the section of this Guide to find out more:

Analysis - lets you analyze the data found in specific fields.
Config - shows the current configuration of the file for the core.solrconfig.xml
Dataimport - shows you information about the current status of the Data Import Handler.
Documents - provides a simple form allowing you to execute various Solr indexing commands directly from the browser.
Ping - lets you ping a named core and determine whether the core is active.
Plugins/Stats - shows statistics for plugins and other installed components.
Query - lets you submit a structured query about various elements of a core.
Replication - shows you the current replication status for the core, and lets you enable/disable replication.
Schema - describes the file for the core.schema.xml
Schema Browser - displays schema data in a browser window.

Analysis Screen

The Analysis screen lets you inspect how data will be handled according to the field, field type and
dynamic rule configurations found in . You can analyze how content would be handledschema.xml
during indexing or during query processing and view the results separately or at the same time. Ideally,
you would want content to be handled consistently, and this screen allows you to validate the settings
in the field type or field analysis chains.

Enter content in one or both boxes at the top of the screen, and then choose the field or field type
definitions to use for analysis.

The standard output (shown if "Verbose Output" is not checked) will display the step of the analysis and the output based on the current settings.
If you click the check box, you see more information, including transformations to the input (such as, convert to lower case, stripVerbose Output
extra characters, etc.) and the bytes, type and detailed position information. The information displayed
will vary depending on the settings of the field or field type. Each step of the process is displayed in a
separate section, with an abbreviation for the tokenizer or filter that is applied in that step. Hover or
click on the abbreviation, and you'll see the name and path of the tokenizer or filter.

In the examples on the right (click either screenshot for a larger image), several transformations are
applied to the text string "Running is a sport." We've used the field "text", which has rules that remove
the "is" and "a" and the word "running" has been changed to its basic form, "run". This is because we
have defined the field type, in this scenario, to remove stop words (small words that usually do not provide a great deal of context) andtext_en
"stem" terms when possible to find more possible matches (this is particularly helpful with plural forms of words). If you click the question mark
next to the pull-down menu, the Schema Browser window will open, showing you the settings for the fieldAnalyze Fieldname/Field Type
specified.

The section describes in detail what each option is and how it may transform your data.Understanding Analyzers, Tokenizers, and Filters

https://cwiki.apache.org/confluence/download/attachments/32604182/analysis_verbose.png
https://cwiki.apache.org/confluence/download/attachments/32604182/analysis_normal.png

21Apache Solr Reference Guide 4.4

Config Screen

The Config screen shows you the current for the core you selected. This screenshot shows the beginning of the Query sectionsolrconfig.xml
of .solrconfig.xml

The file cannot be edited with this screen, so a text editor of some kind must be used. While the defines thesolrconfig.xml schema.xml
structure of your content, defines the behavior of Solr as it indexes content and responds to queries. Many of the optionssolrconfig.xml
defined with are described throughout the rest of this Guide. In particular, you will want to review these sections:solrconfig.xml

Indexing and Basic Data Operations
Searching
The Well-Configured Solr Instance

Dataimport Screen

The Dataimport screen shows the configuration of the DataImportHandler (DIH) and allows you to start
indexing data, as defined by the options selected on the screen and defined in the configuration file.
Click the screenshot on the right to see a larger image of this screen.

The configuration file defines the location of the data and how to perform the SQL queries for the data
you want. The options on the screen control how the data is imported to Solr. For more information
about data importing with DIH, see the section on Uploading Structured Data Store Data with the Data

.Import Handler

Documents Screen

The Documents screen provides a simple form allowing you to execute various Solr indexing commands in a variety of formats directly from the
browser.

The screen allows you
to:

Copy
documents in
JSON, CSV or
XML and
submit them to
the index
Upload
documents (in
JSON, CSV or
XML)
Construct
documents by
selecting fields

https://cwiki.apache.org/confluence/download/attachments/32604184/dataimport.png

22Apache Solr Reference Guide 4.4

and field
values

The first step is to
define the
RequestHandler to use
(aka, 'qt'). By default

 will be/update
defined. To use Solr
Cell, for example,
change the request
handler to

./update/extract

Then choose the
Document Type to
define the type of
document to load. The
remaining parameters
will change depending
on the document type
selected.

JSON

When using the JSON
document type, the
functionality is similar to using a requestHandler on the command line. Instead of putting the documents in a curl command, they can instead be
input into the Document entry box. The document structure should still be in proper JSON format.

Then you can choose when documents should be added to the index (Commit Within), whether existing documents should be overwritten with
incoming documents with the same id (if this is not , then the incoming documents will be dropped), and, finally, if a document boost shouldtrue
be applied.

This option will only add or overwrite documents to the index; for other update tasks, see the option.Solr Command

CSV

When using the CSV document type, the functionality is similar to using a requestHandler on the command line. Instead of putting the documents
in a curl command, they can instead be input into the Document entry box. The document structure should still be in proper CSV format, with
columns delimited and one row per document.

Then you can choose when documents should be added to the index (Commit Within), and whether existing documents should be overwritten
with incoming documents with the same id (if this is not , then the incoming documents will be dropped).true

Document Builder

The Document Builder provides a wizard-like interface to enter fields of a document

File Upload

The File Upload option allows choosing a prepared file and uploading it. If using only for the Request-Handler option, you will be limited/update
to XML, CSV, and JSON.

However, to use the ExtractingRequestHandler (aka Solr Cell), you can modify the Request-Handler to . You must have this/update/extract
defined in your file, with your desired defaults. You should also update the shown in the Extracting Req.solrconfig.xml &literal.id
Handler Params so the file chosen is given a unique id.

Then you can choose when documents should be added to the index (Commit Within), and whether existing documents should be overwritten
with incoming documents with the same id (if this is not , then the incoming documents will be dropped).true

Solr Command

The Solr Command option allows you use XML or JSON to perform specific actions on documents, such as defining documents to be added or
deleted, updating only certain fields of documents, or commit and optimize commands on the index.

The documents should be structured as they would be if using on the command line./update

XML

When using the XML document type, the functionality is similar to using a requestHandler on the command line. Instead of putting the documents

23Apache Solr Reference Guide 4.4

in a curl command, they can instead be input into the Document entry box. The document structure should still be in proper Solr XML format, with
each document separated by tags and each field defined.<doc>

Then you can choose when documents should be added to the index (Commit Within), and whether existing documents should be overwritten
with incoming documents with the same id (if this is not , then the incoming documents will be dropped).true

This option will only add or overwrite documents to the index; for other update tasks, see the option.Solr Command

Related Topics

Uploading Data with Index Handlers
Uploading Data with Solr Cell using Apache Tika

Ping

Choosing Ping under a core name issues a request to check whether a server is up.ping

Ping is configured using a in the file:requestHandler solrconfig.xml

 <!-- ping/healthcheck -->
 <requestHandler name="/admin/ping" class="solr.PingRequestHandler">
 <lst name="invariants">
 <str name="q">solrpingquery</str>
 </lst>
 <lst name="defaults">
 <str name="echoParams">all</str>
 </lst>
 <!-- An optional feature of the PingRequestHandler is to configure the
 handler with a "healthcheckFile" which can be used to enable/disable
 the PingRequestHandler.
 relative paths are resolved against the data dir
 -->
 <!-- <str name="healthcheckFile">server-enabled.txt</str> -->
 </requestHandler>

The Ping option doesn't open a page, but the status of the request can be seen on the core overview page shown when clicking on a collection
name. The length of time the request has taken is displayed next to the Ping option, in milliseconds.

Plugins & Stats Screen

The Plugins screen shows information and statistics about Solr's status and performance. You can find information about the performance of
Solr's caches, the state of Solr's searchers, and the configuration of searchHandlers and requestHandlers.

Choose an area of interest on the right, and then drill down into more specifics by clicking on one of the names that appear in the central part of
the window. In this example, we've chosen to look at the Searcher stats, from the Core area:

24Apache Solr Reference Guide 4.4

Searcher Statistics

The display is a snapshot taken when the page is loaded. You can get updated status by choosing to either or .Watch Changes Refresh Values
Watching the changes will highlight those areas that have changed, while refreshing the values will reload the page with updated information.

Query Screen

You can use , shown under the name of each core, to submit a search query to a Solr server and analyze the results. In the example in theQuery
screenshot, a query has been submitted, and the screen shows the query results sent to the browser as JSON.

The query was sent to
a core named
"collection1". We used
Solr's default query for
this screen (as defined
in),solrconfig.xml
which is . This*:*
query will find all
records in the index for
this core. We kept the
other defaults, but the
table below explains
these options, which
are also covered in
detail in later parts of
this Guide.

The response is shown
to the right of the form.
Requests to Solr are
simply HTTP requests,
and the query
submitted is shown in
light type above the
results; if you click on
this it will open a new
browser window with
just this request and
response (without the
rest of the Solr Admin
UI). The rest of the
response is shown in
JSON, which is part of
the request (see the

 part at thewt=json
end).

The response has at least two sections, but may have several more depending on the options chosen. The two sections it always has are the
 and the . The includes the status of the search (), the processing time (), and theresponseHeader response responseHeader status QTime

parameters () that were used to process the query.params

The includes the documents that matched the query, in sub-sections. The fields return depend on the parameters of the queryresponse doc
(and the defaults of the request handler used). The number of results is also included in this section.

25Apache Solr Reference Guide 4.4

This screen allows you to experiment with different query options, and inspect how your documents were indexed. The query parameters
available on the form are some basic options that most users want to have available, but there are dozens more available which could be simply
added to the basic request by hand (if opened in a browser). The table below explains the parameters available:

Field Description

Request-handler Specifies the query handler for the request. If a query handler is not specified, Solr processes the response with the
standard query handler.

q The query event. See for an explanation of this parameter.Searching

fq The filter queries. See for more information on this parameter.Common Query Parameters

sort Sorts the response to a query in either ascending or descending order based on the response's score or another specified
characteristic.

start, rows is the offset into the query result starting at which documents should be returned. The default value is 0, meaningstart
that the query should return results starting with the first document that matches. This field accepts the same syntax as the
start query parameter, which is described in . is the number of rows to return.Searching rows

fl Defines the fields to return for each document. You can explicitly list the stored fields you want to have returned by
separating them with either a comma or a space. In Solr 4, the results of functions can also be included in the list.fl

wt Specifies the Response Writer to be used to format the query response. Defaults to XML if not specified.

indent Click this button to request that the Response Writer use indentation to make the responses more readable.

debugQuery Click this button to augment the query response with debugging information, including "explain info" for each document
returned. This debugging information is intended to be intelligible to the administrator or programmer.

dismax Click this button to enable the Dismax query parser. See for further information.The DisMax Query Parser

edismax Click this button to enable the Extended query parser. See for further information.The Extended DisMax Query Parser

hl Click this button to enable highlighting in the query response. See for more information.Highlighting

facet Enables faceting, the arrangement of search results into categories based on indexed terms. See for moreFaceting
information.

spatial Click to enable using location data for use in spatial or geospatial searches. See for more information.Spatial Search

spellcheck Click this button to enable the Spellchecker, which provides inline query suggestions based on other, similar, terms. See
 for more information.Spell Checking

Related Topics

Searching

Replication Screen

The Replication screen shows you the current replication state for the named core you have specified. In Solr, replication is for the index only.
SolrCloud has supplanted much of this functionality, but if you are still using index replication, you can see the replication state, as shown below:

26Apache Solr Reference Guide 4.4

In this example, replication is enabled and will be done after each commit. Because this server is the Master, it is showing only the config settings
for the master. On the master, you can disable replication by clicking the button.Disable Replication

In Solr, the replication is initiated by the slave servers so there is more value by looking at the Replication screen on the slave nodes. This
screenshot shows the Replication screen for a slave:

You can click the button to show the most current replication status, or choose to get a new snapshot from the master server.Refresh Status

More details on how to configure replication is available in the section called .Index Replication

Schema Screen

The Schema option displays the file, a configuration file that describes the data to be indexed and searched.schema.xml

27Apache Solr Reference Guide 4.4

The file cannot be edited from this screen, but it provides easy access to view the file if needed. Editing is done by modifying the fileschema.xml
with a text editor. As described in detail in a later section, the allows you to define the types of data in your content (field types), theschema.xml
fields your documents will be broken into, and any dynamic fields that should be generated based on patterns of field names in the incoming
documents. These options are described in the section called .Documents, Fields, and Schema Design

This screen is related to the , in that they both display information from the schema, but the Schema Browser provides aSchema Browser Screen
way to drill into the analysis chain and displays linkages between field types, fields, and dynamic field rules.

Schema Browser Screen

The Schema Browser screen lets you see schema data in a browser window. If you have accessed this window from the Analysis screen, it will
be opened to a specific field, dynamic field rule or field type. If there is nothing chosen, use the pull-down menu to choose the field or field type.

The screen provides a great deal of useful information about each particular field. In the example above, we have chosen the field. On thetext
right side of the center window, we see the field name, and a list of fields that populate this field because they are defined to be copied to the

 field. Click on one of those field names, and you can see the definitions for that field. We can also see the field type, which would allow ustext
to inspect the type definitions as well.

In the left part of the center window, we see the field type again, and the defined properties for the field. We can also see how many documents
have populated this field. Then we see the analyzer used for indexing and query processing. Click the icon to the left of either of those, and you'll

28Apache Solr Reference Guide 4.4

see the definitions for the tokenizers and/or filters that are used. The output of these processes is the information you see when testing how
content is handled for a particular field with the .Analysis Screen

Under the analyzer information is a button to . Clicking that button will show the top terms that are in the index for that field.Load Term Info N
Click on a term, and you will be taken to the to see the results of a query of that term in that field. If you want to always see theQuery Screen
term information for a field, choose and it will always appear when there are terms for a field. A histogram shows the number of termsAutoload
with a given frequency in the field.

29Apache Solr Reference Guide 4.4

Documents, Fields, and Schema Design
This section discusses how Solr organizes its data into documents and fields, as well as how to work with the Solr schema file, . Itschema.xml
includes the following topics:

Overview of Documents, Fields, and Schema Design: An introduction to the concepts covered in this section.

Solr Field Types: Detailed information about field types in Solr, including the field types in the default Solr schema.

Defining Fields: Describes how to define fields in Solr.

Copying Fields: Describes how to populate fields with data copied from another field.

Dynamic Fields: Information about using dynamic fields in order to catch and index fields that do not exactly conform to other field definitions in
your schema.

Schema API: Use curl commands to read various parts of a schema or create new fields and copyField rules.

Other Schema Elements: Describes other important elements in the Solr schema: Unique Key, Default Search Field, and the Query Parser
Operator.

Putting the Pieces Together: A higher-level view of the Solr schema and how its elements work together.

DocValues: Describes how to create a docValues index for faster lookups.

Schemaless Mode: Automatically add previously unknown schema fields using value-based field type guessing.

Overview of Documents, Fields, and Schema Design

The fundamental premise of Solr is simple. You give it a lot of information, then later you can ask it questions and find the piece of information you
want. The part where you feed in all the information is called or . When you ask a question, it's called a .indexing updating query

One way to understand how Solr works is to think of a loose-leaf book of recipes. Every time you add a recipe to the book, you update the index
at the back. You list each ingredient and the page number of the recipe you just added. Suppose you add one hundred recipes. Using the index,
you can very quickly find all the recipes that use garbanzo beans, or artichokes, or coffee, as an ingredient. Using the index is much faster than
looking through each recipe one by one. Imagine a book of one thousand recipes, or one million.

Solr allows you to build an index with many different fields, or types of entries. The example above shows how to build an index with just one field,
. You could have other fields in the index for the recipe's cooking style, like , , or , and you could have an indexingredients Asian Cajun vegan

field for preparation times. Solr can answer questions like "What Cajun-style recipes that have blood oranges as an ingredient can be prepared in
fewer than 30 minutes?"

The schema is the place where you tell Solr how it should build indexes from input documents.

How Solr Sees the World

Solr's basic unit of information is a , which is a set of data that describes something. A recipe document would contain the ingredients,document
the instructions, the preparation time, the cooking time, the tools needed, and so on. A document about a person, for example, might contain the
person's name, biography, favorite color, and shoe size. A document about a book could contain the title, author, year of publication, number of
pages, and so on.

In the Solr universe, documents are composed of , which are more specific pieces of information. Shoe size could be a field. First name andfields
last name could be fields.

Fields can contain different kinds of data. A name field, for example, is text (character data). A shoe size field might be a floating point number so
that it could contain values like 6 and 9.5. Obviously, the definition of fields is flexible (you could define a shoe size field as a text field rather than
a floating point number, for example), but if you define your fields correctly, Solr will be able to interpret them correctly and your users will get
better results when they perform a query.

You can tell Solr about the kind of data a field contains by specifying its . The field type tells Solr how to interpret the field and how it canfield type
be queried.

When you add a document, Solr takes the information in the document's fields and adds that information to an index. When you perform a query,
Solr can quickly consult the index and return the matching documents.

Field Analysis

Field analysis tells Solr what to do with incoming data when building an index. A more accurate name for this process would be orprocessing
even , but the official name is .digestion analysis

30Apache Solr Reference Guide 4.4

Consider, for example, a biography field in a person document. Every word of the biography must be indexed so that you can quickly find people
whose lives have had anything to do with ketchup, or dragonflies, or cryptography.

However, a biography will likely contains lots of words you don't care about and don't want clogging up your index—words like "the", "a", "to", and
so forth. Furthermore, suppose the biography contains the word "Ketchup", capitalized at the beginning of a sentence. If a user makes a query for
"ketchup", you want Solr to tell you about the person even though the biography contains the capitalized word.

The solution to both these problems is field analysis. For the biography field, you can tell Solr how to break apart the biography into words. You
can tell Solr that you want to make all the words lower case, and you can tell Solr to remove accents marks.

Field analysis is an important part of a field type. is a detailed description of field analysis.Understanding Analyzers, Tokenizers, and Filters

Solr Field Types

The field type defines how Solr should interpret data in a field and how the field can be queried. There are many field types included with Solr by
default, and they can also be defined locally.

Topics covered in this section:

Field Type Definitions and Properties

Field Types Included with Solr

Working with Currencies and Exchange Rates

Working with Dates

Working with External Files and Processes

Field Properties by Use Case

Related Topics

SchemaXML-DataTypes
FieldType Javadoc

Field Type Definitions and Properties

A field type includes four types of information:

The name of the field type
An implementation class name
If the field type is , a description of the field analysis for the field typeTextField
Field attributes

Field Type Definitions in schema.xml

Field types are defined in , with the element. Each field type is defined between elements. Here is an exampleschema.xml types fieldType
of a field type definition for a type called :text_general

http://wiki.apache.org/solr/SchemaXml#Data_Types
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/schema/FieldType.html

31Apache Solr Reference Guide 4.4

 <fieldType name="text_general" class="solr.TextField" positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"
enablePositionIncrements="true" />
 <!-- in this example, we will only use synonyms at query time
 <filter class="solr.SynonymFilterFactory" synonyms="index_synonyms.txt"
ignoreCase="true" expand="false"/>
 -->
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"
enablePositionIncrements="true" />
 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"
ignoreCase="true" expand="true"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 </fieldType>

The first line in the example above contains the field type name, , and the name of the implementing class, .text_general solr.TextField
The rest of the definition is about field analysis, described in .Understanding Analyzers, Tokenizers, and Filters

The implementing class is responsible for making sure the field is handled correctly. In the class names in , the string isschema.xml solr
shorthand for or . Therefore, is really org.apache.solr.schema org.apache.solr.analysis solr.TextField

.org.apache.solr.schema.TextField.

Field Type Properties

The field type determines most of the behavior of a field type, but optional properties can also be defined. For example, the followingclass
definition of a date field type defines two properties, and .sortMissingLast omitNorms

<fieldType name="date" class="solr.DateField"
 sortMissingLast="true" omitNorms="true"/>

The properties that can be specified for a given field type fall into three major categories:

Properties specific to the field type's class.
General Properties Solr supports for any field type.
Field Default Properties that can be specified on the field type that will be inherited by fields that use this type instead of the default
behavior.

General Properties

Property Description Values

positionIncrementGap For multivalued fields, specifies a distance between multiple values, which prevents spurious phrase
matches

integer

autoGeneratePhraseQueries For text fields. If true, Solr automatically generates phrase queries for adjacent terms. If false, terms
must be enclosed in double-quotes to be treated as phrases.

true or
false

docValuesFormat Defines a custom to use for fields of this type. This requires that a schema-awareDocValuesFormat
codec, such as the has been configured in solrconfig.xml.SchemaCodecFactory

n/a

postingsFormat Defines a custom to use for fields of this type. This requires that a schema-awarePostingsFormat
codec, such as the has been configured in solrconfig.xml.SchemaCodecFactory

n/a

32Apache Solr Reference Guide 4.4

Lucene index back-compatibility is only supported for the default codec. If you choose to customize the or postingsFormat
 in your schema.xml, upgrading to a future version of Solr may require you to either switch back to thedocValuesFormat

default codec and optimize your index to rewrite it into the default codec before upgrading, or re-build your entire index from
scratch after upgrading.

Field Default Properties

Property Description Values

indexed If true, the value of the field can be used in queries to retrieve matching documents true or
false

stored If true, the actual value of the field can be retrieved by queries true or
false

docValues If true, the value of the field will be put in a column-oriented structureDocValues true or
false

sortMissingFirst
sortMissingLast

Control the placement of documents when a sort field is not present. As of Solr 3.5, these work for all
numeric fields, including Trie and date fields.

true or
false

multiValued If true, indicates that a single document might contain multiple values for this field type true or
false

omitNorms If true, omits the norms associated with this field (this disables length normalization and index-time
boosting for the field, and saves some memory). Defaults to true for all primitive (non-analyzed) field
types, such as int, float, data, bool, and string. Only full-text fields or fields that need an index-time boost
need norms.

true or
false

omitTermFreqAndPositions If true, omits term frequency, positions, and payloads from postings for this field. This can be a
performance boost for fields that don't require that information. It also reduces the storage space
required for the index. Queries that rely on position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all fields that are not text fields.

true or
false

omitPositions Similar to but preserves term frequency informationomitTermFreqAndPositions true or
false

termVectors
termPositions
termOffsets

These options instruct Solr to maintain full term vectors for each document, optionally including the
position and offset information for each term occurrence in those vectors. These can be used to
accelerate highlighting and other ancillary functionality, but impose a substantial cost in terms of index
size. They are not necessary for typical uses of Solr

true or
false

Field Types Included with Solr

The following table lists the field types that are available in Solr. The package includes all the classes listed in thisorg.apache.solr.schema
table.

Class Description

BCDIntField Binary-coded decimal (BCD) integer. BCD is a relatively inefficient encoding that offers the benefits of
quick decimal calculations and quick conversion to a string.

BCDLongField Binary-coded decimal long integer.

BCDStrField Binary-coded decimal string.

BinaryField Binary data.

BoolField Contains either true or false. Values of "1", "t", or "T" in the first character are interpreted as true. Any
other values in the first character are interpreted as false.

ByteField Contains an array of bytes. deprecated, use TrieIntField instead

CurrencyField Supports currencies and exchange rates. See the section Working with Currencies and Exchange
.Rates

DateField Represents a point in time with millisecond precision. See the section .Working with Dates

DoubleField Double (64-bit IEEE floating point).

33Apache Solr Reference Guide 4.4

ExternalFileField Pulls values from a file on disk. See the section .Working with External Files and Processes

FloatField Floating point (32-bit IEEE floating point).

IntField Integer (32-bit signed integer).

LatLonType : a latitude/longitude coordinate pair. The latitude is specified first in the pair. Spatial Search

LongField Long integer (64-bit signed integer).

PointType : An arbitrary n-dimensional point, useful for searching sources such as blueprints orSpatial Search
CAD drawings.

PreAnalyzedField Provides a way to send to Solr serialized token streams, optionally with independent stored values of a
field, and have this information stored and indexed without any additional text processing. Useful if you
want to submit field content that was already processed by some existing external text processing
pipeline (e.g. tokenized, annotated, stemmed, inserted synonyms, etc.), while using all the rich
attributes that Lucene's provides via token attributes.TokenStream

RandomSortField Does not contain a value. Queries that sort on this field type will return results in random order. Use a
dynamic field to use this feature.

ShortField Short integer. deprecated, use TrieIntField instead

SortableDoubleField The Sortable fields provide correct numeric sorting. If you use the plain types (, DoubleField
, and so on) sorting will be lexicographical instead of numeric.IntField

SortableFloatField Numerically sorted floating point.

SortableIntField Numerically sorted integer.

SortableLongField Numerically sorted long integer.

SpatialRecursivePrefixTreeFieldType (RPT for short) : Accepts latitude comma longitude strings or other shapes in WKTSpatial Search
format.

StrField String (UTF-8 encoded string or Unicode).

TextField Text, usually multiple words or tokens.

TrieDateField Date field accessible for Lucene TrieRange processing.

TrieDoubleField Double field accessible Lucene TrieRange processing.

TrieField If this type is used, a "type" attribute must also be specified, with a value of either: integer, long, float,
double, date. Using this field is the same as using any of the Trie fields.

TrieFloatField Floating point field accessible Lucene TrieRange processing.

TrieIntField Int field accessible Lucene TrieRange processing.

TrieLongField Long field accessible Lucene TrieRange processing.

UUIDField Universally Unique Identifier (UUID). Pass in a value of "NEW" and Solr will create a new UUID.

The has been added to relevant entries in (e.g., wildcards, regex, prefix, range,MultiTermAwareComponent solr.TextField schema.xml
etc.) to allow automatic lowercasing for multi-term queries.

Further, you can now optionally specify in ; if you don't, will process the fields accordinganalyzerType="multiterm" schema.xml analyzer
to their specific attributes.

Working with Currencies and Exchange Rates

The FieldType provides support for monetary values to Solr/Lucene with query-time currency conversion and exchange rates. Thecurrency
following features are supported:

Point queries
Range queries
Function range queries (new in Solr 4.2)
Sorting
Currency parsing by either currency code or symbol
Symmetric & asymmetric exchange rates (asymmetric exchange rates are useful if there are fees associated with exchanging the
currency)

34Apache Solr Reference Guide 4.4

Configuring Currencies

The field type is defined in . This is the default configuration of this type:currency schema.xml

 <fieldType name="currency" class="solr.CurrencyField" precisionStep="8"
 defaultCurrency="USD" currencyConfig="currency.xml" />

In this example, we have defined the name and class of the field type, and defined the as "USD", for U.S. Dollars. We havedefaultCurrency
also defined a to use a file called "currency.xml". This is a file of exchange rates between our default currency to othercurrencyConfig
currencies. There is an alternate implementation that would allow regular downloading of currency data. See below for more.Exchange Rates

At indexing time, money fields can be indexed in a native currency. For example, if a product on an e-commerce site is listed in Euros, indexing
the price field as "1000,EUR" will index it appropriately. The price should be separated from the currency by a comma, and the price must be
encoded with a floating point value (a decimal point).

During query processing, range and point queries are both supported.

Exchange Rates

You configure exchange rates by specifying a provider. Natively, two provider types are supported: or FileExchangeRateProvider
.OpenExchangeRatesOrgProvider

FileExchangeRateProvider

This provider requires you to provide a file of exchange rates. It is the default, meaning that to use this provider you only need to specify the file
path and name as a value for in the definition for this type.currencyConfig

There is a sample file included with Solr, found in the same directory as the file. Here is a small snippet from thiscurrency.xml schema.xml
file:

<currencyConfig version="1.0">
 <rates>
 <!-- Updated from http://www.exchangerate.com/ at 2011-09-27 -->
 <rate from="USD" to="ARS" rate="4.333871" comment="ARGENTINA Peso" />
 <rate from="USD" to="AUD" rate="1.025768" comment="AUSTRALIA Dollar" />
 <rate from="USD" to="EUR" rate="0.743676" comment="European Euro" />
 <rate from="USD" to="CAD" rate="1.030815" comment="CANADA Dollar" />

 <!-- Cross-rates for some common currencies -->
 <rate from="EUR" to="GBP" rate="0.869914" />
 <rate from="EUR" to="NOK" rate="7.800095" />
 <rate from="GBP" to="NOK" rate="8.966508" />

 <!-- Asymmetrical rates -->
 <rate from="EUR" to="USD" rate="0.5" />
 </rates>
</currencyConfig>

OpenExchangeRatesOrgProvider

With Solr 4, you can configure Solr to download exchange rates from , with updates rates between USD and 158OpenExchangeRates.Org
currencies hourly. These rates are symmetrical only.

In this case, you need to specify the in the definitions for the field type. Here is an example:providerClass

http://www.OpenExchangeRates.Org

35Apache Solr Reference Guide 4.4

 <fieldType name="currency" class="solr.CurrencyField" precisionStep="8"
 providerClass="solr.OpenExchangeRatesOrgProvider"
 refreshInterval="60"
 ratesFileLocation="http://internal.server/rates.json"/>

The is minutes, so the above example will download the newest rates every 60 minutes.refreshInterval

Working with Dates

DateField represents a point in time with millisecond precision. The format is:

YYYY-MM-DDThh:mm:ssZ

YYYY is the year.
 is the month.MM
 is the day of the month.DD
 is the hour of the day as on a 24-hour clock.hh
 is minutes.mm
 is seconds.ss

Note that no time zone can be specified; the time given should be expressed in Coordinated Universal Time (UTC). Here is an example value:

1972-05-20T17:33:18Z

You can include fractional seconds if you wish, although trailing zeros are not allowed and any precision beyond milliseconds will be ignored.
Here is another example value with milliseconds included:

1972-05-20T17:33:18.772Z

In addition, also supports . This makes it easy to create times relative to the current time. This represents a point in timeDateField date math
two months from now:

+2MONTHS

This is one day ago:

-1DAY

Use a slash to indicate rounding. This represents the beginning of the current hour:

/HOUR

You can combine terms. The following is six months and three days in the future, at the beginning of the day:

+6MONTHS+3DAYS/DAY

Working with External Files and Processes

The TypeExternalFileField

The type makes it possible to specify the values for a field in a file outside the Solr index. For such a field, the file containsExternalFileField
mappings from a key field to the field value. Another way to think of this is that, instead of specifying the field in documents as they are indexed,
Solr finds values for this field in the external file.

External fields are not searchable. They can be used only for function queries or display. For more information on function
queries, see the section on .Function Queries

The type is handy for cases where you want to update a particular field in many documents more often than you want toExternalFileField
update the rest of the documents. For example, suppose you have implemented a document rank based on the number of views. You might want
to update the rank of all the documents daily or hourly, while the rest of the contents of the documents might be updated much less frequently.
Without , you would need to update each document just to change the rank. Using is much moreExternalFileField ExternalFileField
efficient because all document values for a particular field are stored in an external file that can be updated as frequently as you wish.

In , the definition of this field type might look like this:schema.xml

36Apache Solr Reference Guide 4.4

<fieldType name="entryRankFile" keyField="pkId" defVal="0" stored="false"
indexed="false" class="solr.ExternalFileField" valType="pfloat"/>

The attribute defines the key that will be defined in the external file. It is usually the unique key for the index, but it doesn't need to bekeyField
as long as the can be used to identify documents in the index. A defines a default value that will be used if there is no entry inkeyField defVal
the external file for a particular document.

The attribute specifies the actual type of values that will be found in the file. The type specified must be either a float field type, so validvalType
values for this attribute are , or . This attribute can be omitted.pfloat float tfloat

Format of the External File

The file itself is located in Solr's index directory, which by default is . The name of the file should be $SOLR_HOME/data external_fieldname
or . For the example above, then, the file could be named or external_ .*fieldname external_entryRankFile

.external_entryRankFile.txt

If any files using the name pattern (such as) appear, the last (after being sorted by name) will be used and previous.* .txt
versions will be deleted. This behavior supports implementations on systems where one may not be able to overwrite a file (for
example, on Windows, if the file is in use).

The file contains entries that map a key field, on the left of the equals sign, to a value, on the right. Here are a few example entries:

doc33=1.414
doc34=3.14159
doc40=42

The keys listed in this file do not need to be unique. The file does not need to be sorted, but Solr will be able to perform the lookup faster if it is.

Reloading an External File

As of Solr 4.1, it's possible to define an event listener to reload an external file when either a searcher is reloaded or when a new searcher is
started. See the section for more information, but a sample definition in might look like this:Query Related Listeners solrconfig.xml

<listener event="newSearcher"
class="org.apache.solr.schema.ExternalFileFieldReloader"/>
<listener event="firstSearcher"
class="org.apache.solr.schema.ExternalFileFieldReloader"/>

Pre-Analyzing a Field Type

The type provides a way to send to Solr serialized token streams, optionally with independent stored values of a field, andPreAnalyzedField
have this information stored and indexed without any additional text processing applied in Solr. This is useful if user wants to submit field content
that was already processed by some existing external text processing pipeline (e.g., it has been tokenized, annotated, stemmed, synonyms
inserted, etc.), while using all the rich attributes that Lucene's provides (per-token attributes).TokenStream

The serialization format is pluggable using implementations of interface. There are two out-of-the-box implementations: PreAnalyzedParser

JsonPreAnalyzedParser: as the name suggests, it parses content that uses JSON to represent field's content. This is the default parser
to use if the field type is not configured otherwise.
SimplePreAnalyzedParser: uses a simple strict plain text format, which in some situations may be easier to create than JSON.

There is only one configuration parameter, . The value of this parameter should be a fully qualified class name of a class thatparserImpl
implements interface. The default value of this parameter is .PreAnalyzedParser org.apache.solr.schema.JsonPreAnalyzedParser

Field Properties by Use Case

Here is a summary of common use cases, and the attributes the fields or field types should have to support the case. An entry of true or false in
the table indicates that the option must be set to the given value for the use case to function correctly. If no entry is provided, the setting of that
attribute has no impact on the case.

http://wiki.apache.org/solr/TokenStream
http://wiki.apache.org/solr/PreAnalyzedParser
http://wiki.apache.org/solr/JsonPreAnalyzedParser
http://wiki.apache.org/solr/SimplePreAnalyzedParser
http://wiki.apache.org/solr/PreAnalyzedParser

37Apache Solr Reference Guide 4.4

Use Case indexed stored multiValued omitNorms termVectors termPositions

search within field true

retrieve contents true

use as unique key true false

sort on field true false true 1

use field boosts 5 false

document boosts affect searches within field false

highlighting true 4 true 2 true 3

faceting 5 true

add multiple values, maintaining order true

field length affects doc score false

MoreLikeThis 5 true 6

Notes:

1 Recommended but not necessary.
 Will be used if present, but not necessary.2

 (if termVectors=true)3

 A tokenizer must be defined for the field, but it doesn't need to be indexed.4

 Described in .5 Understanding Analyzers, Tokenizers, and Filters
 Term vectors are not mandatory here. If not true, then a stored field is analyzed. So term vectors are recommended, but only required if 6

.stored=false

Defining Fields

Once you have the field types set up, defining the fields themselves is simple. All you do is supply a name and a field type. If you wish, you can
also provide options that will override the options for the field type.

Fields are defined in the fields element of . The following example defines a field named with a type of .schema.xml price sfloat

<field name="price" type="sfloat" indexed="true" stored="true"/>

Fields can have the same options as field types. The field type options serve as defaults which can be overridden by options defined per field.
Included below is the table of field type properties from the section :Field Type Definitions and Properties

Property Description Values

indexed If true, the value of the field can be used in queries to retrieve matching documents true or
false

stored If true, the actual value of the field can be retrieved by queries true or
false

docValues If true, the value of the field will be put in a column-oriented structureDocValues true or
false

sortMissingFirst
sortMissingLast

Control the placement of documents when a sort field is not present. As of Solr 3.5, these work for all
numeric fields, including Trie and date fields.

true or
false

multiValued If true, indicates that a single document might contain multiple values for this field type true or
false

omitNorms If true, omits the norms associated with this field (this disables length normalization and index-time
boosting for the field, and saves some memory). Defaults to true for all primitive (non-analyzed) field
types, such as int, float, data, bool, and string. Only full-text fields or fields that need an index-time boost
need norms.

true or
false

38Apache Solr Reference Guide 4.4

omitTermFreqAndPositions If true, omits term frequency, positions, and payloads from postings for this field. This can be a
performance boost for fields that don't require that information. It also reduces the storage space
required for the index. Queries that rely on position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all fields that are not text fields.

true or
false

omitPositions Similar to but preserves term frequency informationomitTermFreqAndPositions true or
false

termVectors
termPositions
termOffsets

These options instruct Solr to maintain full term vectors for each document, optionally including the
position and offset information for each term occurrence in those vectors. These can be used to
accelerate highlighting and other ancillary functionality, but impose a substantial cost in terms of index
size. They are not necessary for typical uses of Solr

true or
false

Related Topics

SchemaXML-Fields
Field Options by Use Case

Copying Fields

You might want to interpret some document fields in more than one way. Solr has a mechanism for making copies of fields so that you can apply
several distinct field types to a single piece of incoming information.

The name of the field you want to copy is the , and the name of the copy is the . In , it's very simple to make copiessource destination schema.xml
of fields:

<copyField source="cat" dest="text" maxChars="30000" />

If the text field has data of its own in input documents, the contents of will be added to the index for text. The parameter, an cat maxChars int
parameter, establishes an upper limit for the number of characters to be copied. This limit is useful for situations in which you want to control the
size of index files.

Both the source and the destination of can contain asterisks, which will match anything. For example, the following line will copy thecopyField
contents of all incoming fields that match the wildcard pattern to the text field.:*_t

<copyField source="*_t" dest="text" maxChars="25000" />

The command can use a wildcard (*) character in the parameter only if the parameter contains onecopyField dest source
as well. uses the matching glob from the source field for the field name into which the source content iscopyField dest
copied.

Related Topics

SchemaXML-Copy Fields

Dynamic Fields

Dynamic fields allow Solr to index fields that you did not explicitly define in your schema. This is useful if you discover you have forgotten to define
one or more fields. Dynamic fields can make your application less brittle by providing some flexibility in the documents you can add to Solr.

A dynamic field is just like a regular field except it has a name with a wildcard in it. When you are indexing documents, a field that does not match
any explicitly defined fields can be matched with a dynamic field.

For example, suppose your schema includes a dynamic field with a name of . If you attempt to index a document with a field, but no*_i cost_i
explicit field is defined in the schema, then the field will have the field type and analysis defined for .cost_i cost_i *_i

Dynamic fields are also defined in the fields element of . Like fields, they have a name, a field type, and options.schema.xml

http://wiki.apache.org/solr/SchemaXml#Fields
http://wiki.apache.org/solr/FieldOptionsByUseCase
http://wiki.apache.org/solr/SchemaXml#Copy_Fields

39Apache Solr Reference Guide 4.4

<dynamicField name="*_i" type="int" indexed="true" stored="true"/>

It is recommended that you include basic dynamic field mappings (like that shown above) in your . The mappings can be very useful.schema.xml

Related Topics

SchemaXML-Dynamic Fields

Other Schema Elements

This section describes several other important elements of .schema.xml

Unique Key

The element specifies which field is a unique identifier for documents. Although is not required, it is nearly alwaysuniqueKey uniqueKey
warranted by your application design. For example, should be used if you will ever update a document in the index.uniqueKey

You can define the unique key field by naming it:

<uniqueKey>id</uniqueKey>

Starting with Solr 4, schema defaults and cannot be used to populate the field. You also can't use copyFields uniqueKey
 to have values generated automatically.UUIDUpdateProcessorFactory uniqueKey

Further, the operation will fail if the field is used, but is multivalued (or inherits the multivalueness from the). However, uniqueKey fieldtype
 will continue to work, as long as the field is properly used.uniqueKey

Default Search Field

If you are using the Lucene query parser, queries that don't specify a field name will use the . The DisMax and ExtendeddefaultSearchField
DisMax query parsers do not use this value.

Use of the is deprecated in Solr versions 3.6 and higher. Instead, you should use the parameter. AtdefaultSearchKey df
some point, the parameter may be removed.defaultSearchKey

For more information about query parsers, see the section on .Query Syntax and Parsing

Query Parser Default Operator

In queries with multiple terms, Solr can either return results where all conditions are met or where one or more conditions are met. The operator
controls this behavior. An operator of AND means that all conditions must be fulfilled, while an operator of OR means that one or more conditions
must be true.

In , the element controls what operator is used if an operator is not specified in the query. The default operatorschema.xml solrQueryParser
setting only applies to the Lucene query parser, not the DisMax or Extended DisMax query parsers, which internally hard-code their operators to
OR.

The query parser default operator parameter has been deprecated in Solr versions 3.6 and higher. You are instead encouraged
to specify the query parser parameter in your request handler.q.op

Similarity

Similarity is a Lucene class used to score a document in searching. This class can be changed in order to provide a more custom sorting. With
Solr 4, you can configure a different for each field, meaning that scoring a document will differ depending on what's in each field.similarity
However, you can still configure a global is configured in the schema.xml file, where an implicit instance of similarity

 is used.DefaultSimilarityFactory

http://wiki.apache.org/solr/SchemaXml#Dynamic_fields

40Apache Solr Reference Guide 4.4

A global declaration can be used to specify a custom similarity implementation that you want Solr to use when dealing with your<similarity>
index. A similarity can be specified either by referring directly to the name of a class with a no-argument constructor:

<similarity class="solr.DefaultSimilarityFactory"/>

or by referencing a implementation, which may take optional initialization parameters:SimilarityFactory

<similarity class="solr.DFRSimilarityFactory">
 <str name="basicModel">P</str>
 <str name="afterEffect">L</str>
 <str name="normalization">H2</str>
 <float name="c">7</float>
</similarity>

Beginning with Solr 4, similarity factories can be specified on individual field types:

<fieldType name="text_ib">
 <analyzer/>
 <similarity class="solr.IBSimilarityFactory">
 <str name="distribution">SPL</str>
 <str name="lambda">DF</str>
 <str name="normalization">H2</str>
 </similarity>
</fieldType>

This example uses (using the Information-Based model), but there are several similarity implementations that can beIBSimilarityFactory
used. For Solr 4.2, has been added. Other options include , SweetSpotSimilarityFactory BM25SimilarityFactory

, and others. For details, see the Solr Javadocs for the .DFRSimilarityFactory SchemaSimilarityFactory similarity factories

Related Topics

SchemaXML-Miscellaneous Settings
UniqueKey

Schema API

The Solr schema API allows using a REST API to get information about the for each collection (or core for standalone Solr),schema.xml
including defined field types, fields, dynamic fields, and copy field declarations. In Solr 4.2 and 4.3, it only allows GET (read-only) access, but in
Solr 4.4, new fields and copyField directives may be added to the schema. Future Solr releases will extend this functionality to allow more schema
elements to be updated.

To enable schema modification with this API, the schema will need to be managed and mutable. See the section Managed Schema Definition in
 for more information.SolrConfig

The API allows two output modes for all calls: JSON or XML. When requesting the complete schema, there is another output mode which is XML
modeled after the schema.xml file itself.

The base address for the API is , where is usually , though you may havehttp://<host>:<port>/<context-path> <context-path> solr
configured it differently. Example base address: .http://localhost:8983/solr

In the API entry points and example URLs below, you may alternatively specify a Solr name where it says .core collection

API Entry Points
Retrieve schema information

Retrieve the Entire Schema
List Fields
List a Specific Field
List Dynamic Fields
List a Specific Dynamic Field Rule

http://lucene.apache.org/solr/4_2_0/solr-core/org/apache/solr/search/similarities/package-summary.html
http://wiki.apache.org/solr/SchemaXml#Miscellaneous_Settings
http://wiki.apache.org/solr/UniqueKey
http://localhost:8983/solr

41Apache Solr Reference Guide 4.4

List Field Types
List a Specific Field Type
List Copy Fields
Show Schema Name
Show the Schema Version
List UniqueKey
Show Global Similarity
Get the Default Query Operator

Modify the schema
Create new schema fields
Create one new schema field
Create new copyField directives

Related Topics

API Entry Points

/ /schemacollection : the entire schemaretrieve
: about all defined fields, or new fields with optional copyField directives/ /schema/fieldscollection retrieve information create

: about a named field, or a new named field with optional copyField directives/ /schema/fields/collection name retrieve information create
: about dynamic field rules/ /schema/dynamicfieldscollection retrieve information

: about a named dynamic rule/ /schema/dynamicfields/collection name retrieve information
: about field types/ /schema/fieldtypescollection retrieve information

: about a named field type/ /schema/fieldtypes/collection name retrieve information
: about copy fields, or new copyField directives/ /schema/copyfieldscollection retrieve information create

: the schema name/ /schema/namecollection retrieve
: the schema version/ /schema/versioncollection retrieve

: the defined uniqueKey/ /schema/uniquekeycollection retrieve
: the global similarity definition/ /schema/similaritycollection retrieve

: the default operator/ /schema/solrqueryparser/defaultoperatorcollection retrieve

Retrieve schema information

Retrieve the Entire Schema

GET / /schemacollection

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are , or . If not specified, JSON willjson xml schema.xml
be returned by default.

Output

Output Content

The output will include all fields, field types, dynamic rules and copy field rules. The schema name and version are also included.

Examples

Input
Get the entire schema in JSON.

42Apache Solr Reference Guide 4.4

curl http://localhost:8983/solr/collection1/schema?wt=json

Get the entire schema in XML.

curl http://localhost:8983/solr/collection1/schema?wt=xml

Get the entire schema in "schema.xml" format.

curl http://localhost:8983/solr/collection1/schema?wt=schema.xml

Output
The samples below have been truncated to only show a few snippets of the output.

Example output in JSON:

43Apache Solr Reference Guide 4.4

{
 "responseHeader":{
 "status":0,
 "QTime":5},
 "schema":{
 "name":"example",
 "version":1.5,
 "uniqueKey":"id",
 "fieldTypes":[{
 "name":"alphaOnlySort",
 "class":"solr.TextField",
 "sortMissingLast":true,
 "omitNorms":true,
 "analyzer":{
 "tokenizer":{
 "class":"solr.KeywordTokenizerFactory"},
 "filters":[{
 "class":"solr.LowerCaseFilterFactory"},
 {
 "class":"solr.TrimFilterFactory"},
 {
 "class":"solr.PatternReplaceFilterFactory",
 "replace":"all",
 "replacement":"",
 "pattern":"([^a-z])"}]}},
...
 "fields":[{
 "name":"_version_",
 "type":"long",
 "indexed":true,
 "stored":true},
 {
 "name":"author",
 "type":"text_general",
 "indexed":true,
 "stored":true},
 {
 "name":"cat",
 "type":"string",
 "multiValued":true,
 "indexed":true,
 "stored":true},
...
 "copyFields":[{
 "source":"author",
 "dest":"text"},
 {
 "source":"cat",
 "dest":"text"},
 {
 "source":"content",
 "dest":"text"},
...
 {
 "source":"author",
 "dest":"author_s"}]}}

44Apache Solr Reference Guide 4.4

Example output in XML:

<?xml version="1.0" encoding="UTF-8"?>
<response>

<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">5</int>
</lst>
<lst name="schema">
 <str name="name">example</str>
 <float name="version">1.5</float>
 <str name="uniqueKey">id</str>
 <arr name="fieldTypes">
 <lst>
 <str name="name">alphaOnlySort</str>
 <str name="class">solr.TextField</str>
 <bool name="sortMissingLast">true</bool>
 <bool name="omitNorms">true</bool>
 <lst name="analyzer">
 <lst name="tokenizer">
 <str name="class">solr.KeywordTokenizerFactory</str>
 </lst>
 <arr name="filters">
 <lst>
 <str name="class">solr.LowerCaseFilterFactory</str>
 </lst>
 <lst>
 <str name="class">solr.TrimFilterFactory</str>
 </lst>
 <lst>
 <str name="class">solr.PatternReplaceFilterFactory</str>
 <str name="replace">all</str>
 <str name="replacement"/>
 <str name="pattern">([^a-z])</str>
 </lst>
 </arr>
 </lst>
 </lst>
...
 <lst>
 <str name="source">author</str>
 <str name="dest">author_s</str>
 </lst>
 </arr>
</lst>
</response>

Example output in schema.xml format:

45Apache Solr Reference Guide 4.4

<?xml version="1.0" encoding="UTF-8"?>
<schema name="example" version="1.5">
 <uniqueKey>id</uniqueKey>
 <types>
 <fieldType name="alphaOnlySort" class="solr.TextField" sortMissingLast="true"
omitNorms="true">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.TrimFilterFactory"/>
 <filter class="solr.PatternReplaceFilterFactory" replace="all" replacement=""
pattern="([^a-z])"/>
 </analyzer>
 </fieldType>
...
 <copyField source="url" dest="text"/>
 <copyField source="price" dest="price_c"/>
 <copyField source="author" dest="author_s"/>
</schema>

List Fields

GET / /schema/fieldscollection

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will include each field and any defined configuration for each field. The defined configuration can vary for each field, but will minimally
include the field , the , if it is and if it is . If is defined as either true or false (most likely true), that willname type indexed stored multiValued
also be shown. See the section for more information about each parameter.Defining Fields

Examples

Input
Get a list of all fields.

curl http://localhost:8983/solr/collection1/schema/fields?wt=json

Output
The sample output below has been truncated to only show a few fields.

46Apache Solr Reference Guide 4.4

{
 "fields": [
 {
 "indexed": true,
 "name": "_version_",
 "stored": true,
 "type": "long"
 },
 {
 "indexed": true,
 "name": "author",
 "stored": true,
 "type": "text_general"
 },
 {
 "indexed": true,
 "multiValued": true,
 "name": "cat",
 "stored": true,
 "type": "string"
 },
...
],
 "responseHeader": {
 "QTime": 1,
 "status": 0
 }
}

List a Specific Field

GET / /schema/fields/collection fieldname

Input

Path Parameters

Key Description

collection The collection (or core) name.

fieldname The specific field name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will include each field and any defined configuration for the field. The defined configuration can vary for a field, but will minimally
include the field , the , if it is and if it is . If is defined as either true or false (most likely true), that willname type indexed stored multiValued
also be shown. See the section for more information about each parameter.Defining Fields

47Apache Solr Reference Guide 4.4

Examples

Input
Get the 'author' field.

curl http://localhost:8983/solr/collection1/schema/fields/author?wt=json

Output

{
 "field": {
 "indexed": true,
 "name": "author",
 "stored": true,
 "type": "text_general"
 },
 "responseHeader": {
 "QTime": 2,
 "status": 0
 }
}

List Dynamic Fields

GET / /schema/dynamicfieldscollection

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will include each dynamic field rule and the defined configuration for each rule. The defined configuration can vary for each rule, but
will minimally include the dynamic field , the , if it is and if it is . See the section for more informationname type indexed stored Dynamic Fields
about each parameter.

Examples

Input
Get a list of all dynamic field declarations

48Apache Solr Reference Guide 4.4

curl http://localhost:8983/solr/collection1/schema/dynamicfields?wt=json

Output
The sample output below has been truncated.

{
 "dynamicFields": [
 {
 "indexed": true,
 "name": "*_coordinate",
 "stored": false,
 "type": "tdouble"
 },
 {
 "multiValued": true,
 "name": "ignored_*",
 "type": "ignored"
 },
 {
 "name": "random_*",
 "type": "random"
 },
 {
 "indexed": true,
 "multiValued": true,
 "name": "attr_*",
 "stored": true,
 "type": "text_general"
 },
 {
 "indexed": true,
 "multiValued": true,
 "name": "*_txt",
 "stored": true,
 "type": "text_general"
 }
...
],
 "responseHeader": {
 "QTime": 1,
 "status": 0
 }
}

List a Specific Dynamic Field Rule

GET / /schema/dynamicfields/collection name

Input

Path Parameters

Key Description

collection The collection (or core) name.

49Apache Solr Reference Guide 4.4

name The name of the dynamic field rule.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will include the requested dynamic field rule and any defined configuration for the rule. The defined configuration can vary for each
rule, but will minimally include the dynamic field , the , if it is and if it is . See the section for morename type indexed stored Dynamic Fields
information about each parameter.

Examples

Input
Get the details of the "*_s" rule.

curl http://localhost:8983/solr/collection1/schema/dynamicfields/*_s?wt=json

Output

{
 "dynamicfield": {
 "indexed": true,
 "name": "*_s",
 "stored": true,
 "type": "string"
 },
 "responseHeader": {
 "QTime": 1,
 "status": 0
 }
}

List Field Types

GET / /schema/fieldtypescollection

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

50Apache Solr Reference Guide 4.4

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will include each field type and any defined configuration for the type. The defined configuration can vary for each type, but will
minimally include the field type and the . If query or index analyzers, tokenizers, or filters are defined, those will also be shown withname class
other defined parameters. See the section for more information about how to configure various types of fields.Solr Field Types

Examples

Input
Get a list of all field types.

curl http://localhost:8983/solr/collection1/schema/fieldtypes?wt=json

Output
The sample output below has been truncated to show a few different field types from different parts of the list.

51Apache Solr Reference Guide 4.4

{
 "fieldTypes": [
 {
 "analyzer": {
 "class": "solr.TokenizerChain",
 "filters": [
 {
 "class": "solr.LowerCaseFilterFactory"
 },
 {
 "class": "solr.TrimFilterFactory"
 },
 {
 "class": "solr.PatternReplaceFilterFactory",
 "pattern": "([^a-z])",
 "replace": "all",
 "replacement": ""
 }
],
 "tokenizer": {
 "class": "solr.KeywordTokenizerFactory"
 }
 },
 "class": "solr.TextField",
 "dynamicFields": [],
 "fields": [],
 "name": "alphaOnlySort",
 "omitNorms": true,
 "sortMissingLast": true
 },
...
 {
 "class": "solr.TrieFloatField",
 "dynamicFields": [
 "*_fs",
 "*_f"
],
 "fields": [
 "price",
 "weight"
],
 "name": "float",
 "positionIncrementGap": "0",
 "precisionStep": "0"
 },
...
}

List a Specific Field Type

GET / /schema/fieldtypes/collection name

Input

Path Parameters

52Apache Solr Reference Guide 4.4

Key Description

collection The collection (or core) name.

name The name of the field type.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will include each field type and any defined configuration for the type. The defined configuration can vary for each type, but will
minimally include the field type and the . If query and/or index analyzers, tokenizers, or filters are defined, those will be shown withname class
other defined parameters. See the section for more information about how to configure various types of fields.Solr Field Types

Examples

Input
Get details of the "date" field type.

curl http://localhost:8983/solr/collection1/schema/fieldtypes/date?wt=json

Output
The sample output below has been truncated.

{
 "fieldType": {
 "class": "solr.TrieDateField",
 "dynamicFields": [
 "*_dts",
 "*_dt"
],
 "fields": [
 "last_modified"
],
 "name": "date",
 "positionIncrementGap": "0",
 "precisionStep": "0"
 },
 "responseHeader": {
 "QTime": 2,
 "status": 0
 }
}

List Copy Fields

GET / /schema/copyfieldscollection

Input

53Apache Solr Reference Guide 4.4

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will include the and ination of each copy field rule defined in . For more information about copying fields,source dest schema.xml
see the section .Copying Fields

Examples

Input
Get a list of all copyfields.

curl http://localhost:8983/solr/collection1/schema/fields?wt=json

Output
The sample output below has been truncated to the first few copy definitions.

{
 "copyFields": [
 {
 "dest": "text",
 "source": "author"
 },
 {
 "dest": "text",
 "source": "cat"
 },
 {
 "dest": "text",
 "source": "content"
 },
 {
 "dest": "text",
 "source": "content_type"
 },
...
],
 "responseHeader": {
 "QTime": 3,
 "status": 0
 }
}

54Apache Solr Reference Guide 4.4

Show Schema Name

GET / /schema/namecollection

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content
The output will be simply the name given to the schema.

Examples

Input
Get the schema name.

curl http://localhost:8983/solr/collection1/schema/name?wt=json

Output

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "name":"example"}

Show the Schema Version

GET / /schema/versioncollection

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

55Apache Solr Reference Guide 4.4

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will simply be the schema version in use.

Examples

Input
Get the schema version

curl http://localhost:8983/solr/collection1/schema/version?wt=json

Output

{
 "responseHeader":{
 "status":0,
 "QTime":2},
 "version":1.5}

List UniqueKey

GET / /schema/uniquekeycollection

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will include simply the field name that is defined as the uniqueKey for the index.

Examples

Input
List the uniqueKey.

curl http://localhost:8983/solr/collection1/schema/uniquekey?wt=json

56Apache Solr Reference Guide 4.4

Output
The sample output below has been truncated to the first few copy definitions.

{
 "responseHeader":{
 "status":0,
 "QTime":2},
 "uniqueKey":"id"}

Show Global Similarity

GET / /schema/similaritycollection

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will include the class name of the global similarity defined (if any).

Examples

Input
Get the similarity implementation.

curl http://localhost:8983/solr/collection1/schema/similarity?wt=json

Output

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "similarity":{
 "class":"org.apache.solr.search.similarities.DefaultSimilarityFactory"}}

Get the Default Query Operator

GET / /schema/solrqueryparser/defaultoperatorcollection

57Apache Solr Reference Guide 4.4

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, JSON will be returned byjson xml
default.

Output

Output Content

The output will include simply the default operator if none is defined by the user.

Examples

Input
Get a list of all copyfields.

curl
http://localhost:8983/solr/collection1/schema/solrqueryparser/defaultoperator?wt=json

Output

{
 "responseHeader":{
 "status":0,
 "QTime":2},
 "defaultOperator":"OR"}

Modify the schema

Create new schema fields

POST / /schema/fieldscollection

To enable schema modification, the schema will need to be managed and mutable. See the section forManaged Schema Definition in SolrConfig
more information.

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

58Apache Solr Reference Guide 4.4

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, json will be returned byjson xml
default.

Request body

Only JSON format is supported in the request body. The JSON must contain an array of one or more new field specifications, each of which must
include mappings for the new field's and . All attributes specifiable on a schema declaration may bename type <field name="..." ... />
specified here - see .Defining Fields

Additionally, destination(s) may optionally be specified. Note that each specified copyField destination must be an existing schemacopyField
field (and not a dynamic field). In particular, since the new fields specified in a new field creation request are defined all at once, you cannot
specify a that targets another new field in the same request - instead, you have to make two requests, defining the copyField copyField
destination in the first new field creation request, then specifying that field as a destination in the second new field creation request.copyField

The utility can provide the request body via its option.curl --data-binary

Output

Output Content

The output will be the response header, containing a status code, and if there was a problem, an associated error message.

Example output in the default JSON format:

{
 "responseHeader":{
 "status":0,
 "QTime":8}}

Examples

Input

Add two new fields:

curl http://localhost:8983/solr/collection1/schema/fields -X POST -H
'Content-type:application/json' --data-binary '
[
 {
 "name":"sell-by",
 "type":"tdate",
 "stored":true
 },
 {
 "name":"catchall",
 "type":"text_general",
 "stored":false
 }
]'

Add a third new field and copy it to the "catchall" field created above:

59Apache Solr Reference Guide 4.4

curl http://localhost:8983/solr/collection1/schema/fields -X POST -H
'Content-type:application/json' --data-binary '
[
 {
 "name":"department",
 "type":"string",
 "docValues":"true",
 "default":"no department",
 "copyFields": ["catchall"]
 }
]'

Create one new schema field

PUT / /schema/fields/collection name

To enable schema modification, the schema will need to be managed and mutable. See the section forManaged Schema Definition in SolrConfig
more information.

Input

Path Parameters

Key Description

collection The collection (or core) name.

name The new field name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, json will be returned byjson xml
default.

Request body

Only JSON format is supported in the request body. The body must include a set of mappings, minimally for the new field's and . Allname type
attributes specifiable on a schema declaration may be specified here - see .<field name="..." ... /> Defining Fields

Additionally, destination(s) may optionally be specified. Note that each specified copyField destination must be an existing schemacopyField
field (and not a dynamic field).

The utility can provide the request body via its option.curl --data-binary

Output

Output Content

The output will be the response header, containing a status code, and if there was a problem, an associated error message.

Example output in the default JSON format:

{
 "responseHeader":{
 "status":0,
 "QTime":4}}

60Apache Solr Reference Guide 4.4

Examples

Input

Add a new field named "narrative":

curl http://localhost:8983/solr/collection1/schema/fields/narrative -X PUT -H
'Content-type:application/json' --data-binary '
{
 "type":"text_general",
 "stored":true,
 "termVectors":true,
 "termPositions":true,
 "termOffsets":true
}'

Add a new field named "color" and copy it to two fields, named "narrative" and "catchall", which must already exist in the schema:

curl http://localhost:8983/solr/collection1/schema/fields/color -X PUT -H
'Content-type:application/json' --data-binary '
{
 "type":"string",
 "stored":true,
 "copyFields": [
 "narrative",
 "catchall"
]
}'

Create new copyField directives

POST / /schema/copyfieldscollection

To enable schema modification, the schema will need to be managed and mutable. See the section forManaged Schema Definition in SolrConfig
more information.

Input

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If not specified, json will be returned byjson xml
default.

Request body

Only JSON format is supported in the request body. The body must contain an array of zero or more copyField directives, each containing a
mapping from to the source field name, and from to an array of destination field name(s).source dest

source field names must either be an existing field, or be a field name glob (with an asterisk either at the beginning or the end, or consist entirely

61Apache Solr Reference Guide 4.4

of a single asterisk). field names must either be existing fields, or, if is a glob, fields may be globs that match an existingdest source dest
dynamic field.

The utility can provide the request body via its option.curl --data-binary

Output

Output Content

The output will be the response header, containing a status code, and if there was a problem, an associated error message.

Example output in the default JSON format:

{
 "responseHeader":{
 "status":0,
 "QTime":2}}

Examples

Input

Copy the "affiliations" field to the "relations" field, and the "shelf" field to the "location" and "catchall" fields:

curl http://localhost:8983/solr/collection1/schema/copyfields -X POST -H
'Content-type:application/json' --data-binary '
[
 {
 "source":"affiliations",
 "dest": [
 "relations"
]
 },
 {
 "source":"shelf",
 "dest": [
 "location",
 "catchall"
]
 }
]'

Copy all fields names matching "finance_*" to the "*_s" dynamic field:

curl http://localhost:8983/solr/collection1/schema/copyfields -X POST -H
'Content-type:application/json' --data-binary '
[
 {
 "source":"finance_*",
 "dest": [
 "*_s"
]
 }
]'

Related Topics

62Apache Solr Reference Guide 4.4

Managed Schema Definition in SolrConfig

Putting the Pieces Together

At the highest level, is structured as follows. This example is not real XML, but it gives you an idea of the structure of the file.schema.xml

<schema>
 <types>
 <fields>
 <uniqueKey>
 <defaultSearchField>
 <solrQueryParser defaultOperator>
 <copyField>
</schema>

Obviously, most of the excitement is in types and fields, where the field types and the actual field definitions live. These are supplemented by
. Sandwiched between fields and the section are the unique key, default search field, and the default query operator.copyFields copyField

Choosing Appropriate Numeric Types

For general numeric needs, use the sortable field types, , , , and SortableIntField SortableLongField SortableFloatField
. These field types will sort numerically instead of lexicographically, which is the main reason they are preferable overSortableDoubleField

their simpler cousins, , , , and .IntField LongField FloatField DoubleField

If you expect users to make frequent range queries on numeric types, consider using . It offers faster speed for range queries at theTrieField
expense of increasing index size.

Working With Text

Handling text properly will make your users happy by providing them with the best possible results for text searches.

One technique is using a text field as a catch-all for keyword searching. Most users are not sophisticated about their searches and the most
common search is likely to be a simple keyword search. You can use to take a variety of fields and funnel them all into a single textcopyField
field for keyword searches. In the example schema representing a store, is used to dump the contents of , , , copyField cat name manu

, and into a single field, . In addition, it could be a good idea to copy into in case users wanted to search for afeatures includes text ID text
particular product by passing its product number to a keyword search.

Another technique is using to use the same field in different ways. Suppose you have a field that is a list of authors, like this:copyField

Schildt, Herbert; Wolpert, Lewis; Davies, P.

For searching by author, you could tokenize the field, convert to lower case, and strip out punctuation:

schildt / herbert / wolpert / lewis / davies / p

For sorting, just use an untokenized field, converted to lower case, with punctuation stripped:

schildt herbert wolpert lewis davies p

Finally, for faceting, use the primary author only via a :StringField

Schildt, Herbert

Related Topics

SchemaXML

DocValues

An exciting addition to Solr functionality was introduced in Solr 4.2. This functionality has been around in Lucene for a while, but is now available
to Solr users.

DocValues are a way of building the index that is more efficient for some purposes.

http://wiki.apache.org/solr/SchemaXml

63Apache Solr Reference Guide 4.4

Why DocValues?

The standard way that Solr builds the index is with an . This style builds a list of terms found in all the documents in the index andinverted index
next to each term is a list of documents that the term appears in (as well as how many times the term appears in that document). This makes
search very fast - since users search by terms, having a ready list of term-to-document values makes the query process faster.

For other features that we now commonly associate with search, such as sorting, faceting, and highlighting, this approach is not very efficient. The
faceting engine, for example, must look up each term that appears in each document that will make up the result set and pull the document IDs in
order to build the facet list. In Solr, this is maintained in memory, and can be slow to load (depending on the number of documents, terms, etc.).

In Lucene 4.0, a new approach was introduced. DocValue fields are now column-oriented fields with a document-to-value mapping built at index
time. This approach promises to relieve some of the memory requirements of the fieldCache and make lookups for faceting, sorting, and grouping
much faster.

How to Use DocValues

To use docValues, you only need to enable it for a field that you will use it with. As with all schema design, you need to define a field type and
then define fields of that type with docValues enabled. All of these actions are done in .schema.xml

Enabling a field for docValues only requires adding to the field definition, as in this example (from Solr's default docValues="true"
):schema.xml

<field name="manu_exact" type="str" indexed="false" stored="false" docValues="true"
default=""/>

If you have already indexed data into your Solr index, you will need to completely re-index your content after changing your field
definitions in in order to successfully use docValues.schema.xml

DocValues are only available for specific field types. The types chosen determine the underlying Lucene docValue type that will be used. The
available Solr field types are:

String fields of type . If this type is used, the field must be either required or have a default value, meaning every documentStrField
must have a value for this field.

If the field is single-valued (i.e., multi-valued is false), Lucene will use the SORTED type.
If the field is multi-valued, Lucene will use the SORTED_SET type.

Any Trie* fields. If this type is used, the field must be either required or have a default value, meaning every document must have a value
for this field.

If the field is single-valued (i.e., multi-valued is false), Lucene will use the NUMERIC type.
If the field is multi-valued, Lucene will use the SORTED_SET type.

UUID fields

These Lucene types are related to how the values are sorted and stored. For more information, please refer to the Solr Wiki at
.http://wiki.apache.org/solr/DocValues

It's important that the fields be populated (either with values on every document or a default value that is applied if it is missing from the
document) to avoid an error. Because docValue columns are stored in sorted order, with the first value being an ordinal number starting at 0, the
distinction between "empty" and "first" is not possible with docValues.

There is an additional configuration option available, which is to modify the . The default implementationdocValuesFormat used by the field type
loads everything into memory, but in some cases you may wish to keep most data on disk. This option may be less performant, but it tries to
maintain reasonable performance (and it's still better than fieldCache). You can do this by defining on the field type,docValuesFormat="Disk"
as in this example:

<fieldType name="string_ondisk" class="solr.StrField" docValuesFormat="Disk" />

Please note that the option may change in future releases.docValuesFormat

Lucene index back-compatibility is only supported for the default codec. If you choose to customize the indocValuesFormat
your schema.xml, upgrading to a future version of Solr may require you to either switch back to the default codec and optimize
your index to rewrite it into the default codec before upgrading, or re-build your entire index from scratch after upgrading.

http://wiki.apache.org/solr/DocValues

64Apache Solr Reference Guide 4.4

1.

2.

3.

Related Topics

DocValues are quite new to Solr. For more background see:

Introducing Lucene Index Doc Values, by Simon Willnauer, at SearchWorkings.org
Fun with DocValues in Solr 4.2, by David Arthur, at SearchHub.org

Schemaless Mode

Schemaless Mode is a set of Solr features that, when used together, allow users to rapidly construct an effective schema by simply indexing
sample data, without having to manually edit the schema. These Solr features, all specified in , are:solrconfig.xml

Managed schema: Schema modifications are made through Solr APIs rather than manual edits - see Managed Schema Definition in
.SolrConfig

Field value class guessing: Previously unseen fields are run through a cascading set of value-based parsers, which guess the Java class
of field values - parsers for Boolean, Integer, Long, Float, Double, and Date are currently available.
Automatic schema field addition, based on field value class(es): Previously unseen fields are added to the schema, based on field value
Java classes, which are mapped to schema field types - see .Solr Field Types

These three features are pre-configured in the directory in the Solr distribution. To start Solr in thisexample/example-schemaless/solr/
pre-configured schemaless mode, go to the directory and start up Solr, setting the system property to this directoryexample/ solr.solr.home
on the command line:

java -Dsolr.solr.home=example-schemaless/solr -jar start.jar

The schema in is shipped with only two fields, and , as can be seen fromexample-schemaless/solr/collection1/conf/ id _version_
calling the - outputs:/schema/fields Schema API curl http://localhost:8983/solr/schema/fields

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "fields":[{
 "name":"_version_",
 "type":"long",
 "indexed":true,
 "stored":true},
 {
 "name":"id",
 "type":"string",
 "multiValued":false,
 "indexed":true,
 "required":true,
 "stored":true,
 "uniqueKey":true}]}

Adding a CSV document will cause its fields that are not in the schema to be added, with fieldTypes based on values:

curl "http://localhost:8983/solr/update?commit=true" -H "Content-type:application/csv"
-d '
id,Artist,Album,Released,Rating,FromDistributor,Sold
44C,Old Shews,Mead for Walking,1988-08-13,0.01,14,0'

Output indicating success:

http://www.searchworkings.org/blog/-/blogs/introducing-lucene-index-doc-values
http://searchhub.org/2013/04/02/fun-with-docvalues-in-solr-4-2/
http://localhost:8983/solr/schema/fields

65Apache Solr Reference Guide 4.4

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader"><int name="status">0</int><int name="QTime">106</int></lst>
</response>

The fields now in the schema (output from):curl http://localhost:8983/solr/schema/fields

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "fields":[{
 "name":"Album",
 "type":"text_general"}, // Field value guessed as String -> text_general
fieldType
 {
 "name":"Artist",
 "type":"text_general"}, // Field value guessed as String -> text_general
fieldType
 {
 "name":"FromDistributor",
 "type":"tlongs"}, // Field value guessed as Long -> tlongs fieldType
 {
 "name":"Rating",
 "type":"tdoubles"}, // Field value guessed as Double -> tdoubles fieldType
 {
 "name":"Released",
 "type":"tdates"}, // Field value guessed as Date -> tdates fieldType
 {
 "name":"Sold",
 "type":"tlongs"}, // Field value guessed as Long -> tlongs fieldType
 {
 "name":"_version_",
...
 },
 {
 "name":"id",
...
 }]}

Once a field has been added to the schema, its field type is fixed. As a consequence, adding documents with field value(s) that conflict with the
previously guessed field type will fail. For example, after adding the above document, the field has fieldType , but the documentSold tlongs
below has a non-integral decimal value in this field:

curl "http://localhost:8983/solr/update?commit=true" -H "Content-type:application/csv"
-d '
id,Description,Sold
19F,Cassettes by the pound,4.93'

Output indicating failure:

http://localhost:8983/solr/schema/fields

66Apache Solr Reference Guide 4.4

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">400</int>
 <int name="QTime">7</int>
 </lst>
 <lst name="error">
 <str name="msg">ERROR: [doc=19F] Error adding field 'Sold'='4.93' msg=For input
string: "4.93"</str>
 <int name="code">400</int>
 </lst>
</response>

67Apache Solr Reference Guide 4.4

Understanding Analyzers, Tokenizers, and Filters
This sections describes how Solr breaks down and works with textual data. It covers the following topics:

Overview of Analyzers, Tokenizers, and Filters: A conceptual introduction to Solr's analyzers, tokenizers, and filters.

What Is An Analyzer?: Detailed conceptual information about Solr analyzers.

What Is A Tokenizer?: Detailed conceptual information about Solr tokenizers.

What Is a Filter?: Detailed conceptual information about Solr filters.

Tokenizers: Information about configuring tokenizers, and about the tokenizer factory classes included in this distribution of Solr.

Filter Descriptions: Information about configuring filters, and about the filter factory classes included in this distribution of Solr.

CharFilterFactories: Information about filters for pre-processing input characters.

Language Analysis: Information about tokenizers and filters for character set conversion or for use with specific languages.

Running Your Analyzer: Detailed information about testing and running your Solr analyzer.

Overview of Analyzers, Tokenizers, and Filters

Field analyzers are used both during ingestion, when a document is indexed, and at query time. An analyzer examines the text of fields and
generates a token stream. Analyzers may be a single class or they may be composed of a series of tokenizer and filter classes.

Tokenizers break field data into lexical units, or . examine a stream of tokens and keep them, transform or discard them, or createtokens Filters
new ones. Tokenizers and filters may be combined to form pipelines, or , where the output of one is input to the next. Such a sequence ofchains
tokenizers and filters is called an and the resulting output of an analyzer is used to match query results or build indices.analyzer

Although the analysis process is used for both indexing and querying, the same analysis process need not be used for both operations. For
indexing, you often want to simplify, or normalize, words. For example, setting all letters to lowercase, eliminating punctuation and accents,
mapping words to their stems, and so on. Doing so can increase recall because, for example, "ram", "Ram" and "RAM" would all match a query
for "ram". To increase query-time precision, a filter could be employed to narrow the matches by, for example, ignoring all-cap acronyms if you're
interested in male sheep, but not Random Access Memory.

The tokens output by the analysis process define the values, or , of that field and are used either to build an index of those terms when aterms
new document is added, or to identify which documents contain the terms your are querying for.

This section will show you how to configure field analyzers and also serves as a reference for the details of configuring each of the available
tokenizer and filter classes. It also serves as a guide so that you can configure your own analysis classes if you have special needs that cannot be
met with the included filters or tokenizers.

For more information on Solr's analyzers, tokenizers, and filters, see .http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

What Is An Analyzer?

An analyzer examines the text of fields and generates a token stream. Analyzers are specified as a child of the element in the <fieldType>
 configuration file that can be found in the directory, or wherever is located.schema.xml solr/conf solrconfig.xml

In normal usage, only fields of type will specify an analyzer. The simplest way to configure an analyzer is with a single solr.TextField
 element whose class attribute is a fully qualified Java class name. The named class must derive from <analyzer>

. For example:org.apache.lucene.analysis.Analyzer

<fieldType name="nametext" class="solr.TextField">
 <analyzer class="org.apache.lucene.analysis.WhitespaceAnalyzer"/>
</fieldType>

In this case a single class, , is responsible for analyzing the content of the named text field and emitting theWhitespaceAnalyzer
corresponding tokens. For simple cases, such as plain English prose, a single analyzer class like this may be sufficient. But it's often necessary to
do more complex analysis of the field content.

Even the most complex analysis requirements can usually be decomposed into a series of discrete, relatively simple processing steps. As you will

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

68Apache Solr Reference Guide 4.4

soon discover, the Solr distribution comes with a large selection of tokenizers and filters that covers most scenarios you are likely to encounter.
Setting up an analyzer chain is very straightforward; you specify a simple element (no class attribute) with child elements that name<analyzer>
factory classes for the tokenizer and filters to use, in the order you want them to run.

For example:

<fieldType name="nametext" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StopFilterFactory"/>
 <filter class="solr.EnglishPorterFilterFactory"/>
 </analyzer>
</fieldType>

Note that classes in the package may be referred to here with the shorthand prefix.org.apache.solr.analysis solr.

In this case, no Analyzer class was specified on the element. Rather, a sequence of more specialized classes are wired together<analyzer>
and collectively act as the Analyzer for the field. The text of the field is passed to the first item in the list (),solr.StandardTokenizerFactory
and the tokens that emerge from the last one () are the terms that are used for indexing or querying anysolr.EnglishPorterFilterFactory
fields that use the "nametext" .fieldType

Analysis Phases

Analysis takes place in two contexts. At index time, when a field is being created, the token stream that results from analysis is added to an index
and defines the set of terms (including positions, sizes, and so on) for the field. At query time, the values being searched for are analyzed and the
terms that result are matched against those that are stored in the field's index.

In many cases, the same analysis should be applied to both phases. This is desirable when you want to query for exact string matches, possibly
with case-insensitivity, for example. In other cases, you may want to apply slightly different analysis steps during indexing than those used at
query time.

If you provide a simple definition for a field type, as in the examples above, then it will be used for both indexing and queries. If you<analyzer>
want distinct analyzers for each phase, you may include two definitions distinguished with a type attribute. For example:<analyzer>

<fieldType name="nametext" class="solr.TextField">
 <analyzer *type="index"{*}>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>
 <filter class="solr.SynonymFilterFactory" synonyms="syns.txt"/>
 </analyzer>
 <analyzer *type="query"{*}>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

In this theoretical example, at index time the text is tokenized, the tokens are set to lowercase, any that are not listed in arekeepwords.txt
discarded and those that remain are mapped to alternate values as defined by the synonym rules in the file . This essentially builds ansyns.txt
index from a restricted set of possible values and then normalizes them to values that may not even occur in the original text.

At query time, the only normalization that happens is to convert the query terms to lowercase. The filtering and mapping steps that occur at index
time are not applied to the query terms. Queries must then, in this example, be very precise, using only the normalized terms that were stored at
index time.

What Is A Tokenizer?

The job of a is to break up a stream of text into tokens, where each token is (usually) a sub-sequence of the characters in the text. Antokenizer
analyzer is aware of the field it is configured for, but a tokenizer is not. Tokenizers read from a character stream (a Reader) and produce a

69Apache Solr Reference Guide 4.4

sequence of Token objects (a TokenStream).

Characters in the input stream may be discarded, such as whitespace or other delimiters. They may also be added to or replaced, such as
mapping aliases or abbreviations to normalized forms. A token contains various metadata in addition to its text value, such as the location at
which the token occurs in the field. Because a tokenizer may produce tokens that diverge from the input text, you should not assume that the text
of the token is the same text that occurs in the field, or that its length is the same as the original text. It's also possible for more than one token to
have the same position or refer to the same offset in the original text. Keep this in mind if you use token metadata for things like highlighting
search results in the field text.

<fieldType name="text" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 </analyzer>
</fieldType>

The class named in the tokenizer element is not the actual tokenizer, but rather a class that implements the
 interface. This factory class will be called upon to create new tokenizer instances asorg.apache.solr.analysis.TokenizerFactory

needed. Objects created by the factory must derive from , which indicates that they produceorg.apache.lucene.analysis.TokenStream
sequences of tokens. If the tokenizer produces tokens that are usable as is, it may be the only component of the analyzer. Otherwise, the
tokenizer's output tokens will serve as input to the first filter stage in the pipeline.

A is available that creates a that filters tokens based on their TypeAttribute, which is set in TypeTokenFilterFactory TypeTokenFilter
.factory.getStopTypes

When To use a CharFilter vs. a TokenFilter

There are several pairs of CharFilters and TokenFilters that have related (ie: and) or nearlyMappingCharFilter ASCIIFoldingFilter
identical (ie: and) functionality and it may not always be obviousPatternReplaceCharFilterFactory PatternReplaceFilterFactory
which is the best choice.

The decision about which to use depends largely on which Tokenizer you are using, and whether you need to preprocess the stream of
characters.

For example, suppose you have a tokenizer such as and although you are pretty happy with how it works overall, youStandardTokenizer
want to customize how some specific characters behave. You could modify the rules and re-build your own tokenizer with , but it might bejavacc
easier to simply map some of the characters before tokenization with a .CharFilter

TokenizerFactories

Solr provides the following (Tokenizers and TokenFilters):TokenizerFactories

solr.KeywordTokenizerFactory

Creates .org.apache.lucene.analysis.core.KeywordTokenizer

Treats the entire field as a single token, regardless of its content. For example:

http://example.com/I-am+example?Text=-Hello" ==>
"http://example.com/I-am+example?Text=-Hello

solr.LetterTokenizerFactory

Creates .org.apache.lucene.analysis.LetterTokenizer

Creates tokens consisting of strings of contiguous letters. Any non-letter characters will be discarded. For example:

"I can't"==>"I","can","t"

solr.WhitespaceTokenizerFactory

70Apache Solr Reference Guide 4.4

Creates .org.apache.lucene.analysis.WhitespaceTokenizer

Creates tokens of characters separated by splitting on white space.

solr.LowerCaseTokenizerFactory

Creates .org.apache.lucene.analysis.LowerCaseTokenizer

Creates tokens by lowercasing all letters and dropping non-letters. For example:

"I can't"==>"i","can","t"

solr.StandardTokenizerFactory

Creates .org.apache.lucene.analysis.standard.StandardTokenizer

A good general purpose tokenizer that strips many extraneous characters and sets token types to meaningful values. Token types are only useful
for subsequent token filters that are type-aware of the same token types. There aren't any filters that use 's types.StandardTokenizer

What Is a Filter?

Like , consume input and produce a stream of tokens. Filters also derive from tokenizers filters org.apache.lucene.analysis.TokenStream
. Unlike tokenizers, a filter's input is another TokenStream. The job of a filter is usually easier than that of a tokenizer since in most cases a filter
looks at each token in the stream sequentially and decides whether to pass it along, replace it or discard it.

A filter may also do more complex analysis by looking ahead to consider multiple tokens at once, although this is less common. One hypothetical
use for such a filter might be to normalize state names that would be tokenized as two words. For example, the single token "california" would be
replaced with "CA", while the token pair "rhode" followed by "island" would become the single token "RI".

Because filters consume one and produce a new , they can be chained one after another indefinitely. Each filter inTokenStream TokenStream
the chain in turn processes the tokens produced by its predecessor. The order in which you specify the filters is therefore significant. Typically, the
most general filtering is done first, and later filtering stages are more specialized.

<fieldType name="text" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EnglishPorterFilterFactory"/>
 </analyzer>
</fieldType>

This example starts with Solr's standard tokenizer, which breaks the field's text into tokens. Those tokens then pass through Solr's standard filter,
which removes dots from acronyms, and performs a few other common operations. All the tokens are then set to lowercase, which will facilitate
case-insensitive matching at query time.

The last filter in the above example is a stemmer filter that uses the Porter stemming algorithm. A stemmer is basically a set of mapping rules that
maps the various forms of a word back to the base, or , word from which they derive. For example, in English the words "hugs", "hugging"stem
and "hugged" are all forms of the stem word "hug". The stemmer will replace all of these terms with "hug", which is what will be indexed. This
means that a query for "hug" will match the term "hugged", but not "huge".

Conversely, applying a stemmer to your query terms will allow queries containing non stem terms, like "hugging", to match documents with
different variations of the same stem word, such as "hugged". This works because both the indexer and the query will map to the same stem
("hug").

Word stemming is, obviously, very language specific. Solr includes several language-specific stemmers created by the generator thatSnowball
are based on the Porter stemming algorithm. The generic Snowball Porter Stemmer Filter can be used to configure any of these language
stemmers. Solr also includes a convenience wrapper for the English Snowball stemmer. There are also several purpose-built stemmers for
non-English languages. These stemmers are described in .Language Analysis

Tokenizers

http://wiki.apache.org/solr/StandardTokenizer
http://snowball.tartarus.org/

71Apache Solr Reference Guide 4.4

You configure the tokenizer for a text field type in with a element, as a child of :schema.xml <tokenizer> <analyzer>

<fieldType name="text" class="solr.TextField">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StandardFilterFactory"/>
 </analyzer>
</fieldType>

The class attribute names a factory class that will instantiate a tokenizer object when needed. Tokenizer factory classes implement the
. A TokenizerFactory's method accepts a Reader and returns a TokenStream.org.apache.solr.analysis.TokenizerFactory create()

When Solr creates the tokenizer it passes a Reader object that provides the content of the text field.

Arguments may be passed to tokenizer factories by setting attributes on the element.<tokenizer>

<fieldType name="semicolonDelimited" class="solr.TextField">
 <analyzer type="query">
 <tokenizer class="solr.PatternTokenizerFactory" pattern="; "/>
 <analyzer>
</fieldType>

The following sections describe the tokenizer factory classes included in this release of Solr.

For more information about Solr's tokenizers, see .http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Tokenizers discussed in this section:

Standard Tokenizer
Classic Tokenizer
Keyword Tokenizer
Letter Tokenizer
Lower Case Tokenizer
N-Gram Tokenizer
Edge N-Gram Tokenizer
ICU Tokenizer
Path Hierarchy Tokenizer
Regular Expression Pattern Tokenizer
Type Tokenizer
UAX29 URL Email Tokenizer
White Space Tokenizer
Related Topics

Standard Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter characters are discarded, with the
following exceptions:

Periods (dots) that are not followed by whitespace are kept as part of the token.

Words are split at hyphens, unless there is a number in the word, in which case the token is not split and the numbers and hyphen(s) are
preserved.

Recognizes Internet domain names and email addresses and preserves them as a single token.

The Standard Tokenizer supports word boundaries with the following token types: , , Unicode standard annex UAX#29 <ALPHANUM> <NUM>
, , and .<SOUTHEAST_ASIAN> <IDEOGRAPHIC> <HIRAGANA>

Factory class: solr.StandardTokenizerFactory

Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by .maxTokenLength

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://unicode.org/reports/tr29/#Word_Boundaries

72Apache Solr Reference Guide 4.4

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
</analyzer>

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please", "email", "john.doe@foo.com", "by", "03-09", "re", "m37-xq"

Classic Tokenizer

The Classic Tokenizer preserves the same behavior as the Standard Tokenizer of Solr versions 3.1 and previous. It does not use the Unicode
 word boundary rules that the Standard Tokenizer uses. This tokenizer splits the text field into tokens, treating whitespacestandard annex UAX#29

and punctuation as delimiters. Delimiter characters are discarded, with the following exceptions:

Periods (dots) that are not followed by whitespace are kept as part of the token.

Words are split at hyphens, unless there is a number in the word, in which case the token is not split and the numbers and hyphen(s) are
preserved.

Recognizes Internet domain names and email addresses and preserves them as a single token.

Factory class: solr.ClassicTokenizerFactory

Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by .maxTokenLength

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
</analyzer>

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please", "email", "john.doe@foo.com", "by", "03-09", "re", "m37-xq"

Keyword Tokenizer

This tokenizer treats the entire text field as a single token.

Factory class: solr.KeywordTokenizerFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
</analyzer>

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Letter Tokenizer

This tokenizer creates tokens from strings of contiguous letters, discarding all non-letter characters.

http://unicode.org/reports/tr29/#Word_Boundaries
http://unicode.org/reports/tr29/#Word_Boundaries

73Apache Solr Reference Guide 4.4

Factory class: solr.LetterTokenizerFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.LetterTokenizerFactory"/>
</analyzer>

In: "I can't."

Out: "I", "can", "t"

Lower Case Tokenizer

Tokenizes the input stream by delimiting at non-letters and then converting all letters to lowercase. Whitespace and non-letters are discarded.

Factory class: solr.LowerCaseTokenizerFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.LowerCaseTokenizerFactory"/>
</analyzer>

In: "I just my iPhone!"LOVE

Out: "i", "just", "love", "my", "iphone"

N-Gram Tokenizer

Reads the field text and generates n-gram tokens of sizes in the given range.

Factory class: solr.NGramTokenizerFactory

Arguments:

minGramSize: (integer, default 1) The minimum n-gram size, must be > 0.

maxGramSize: (integer, default 2) The maximum n-gram size, must be >= minGramSize.

Example:

Default behavior. Note that this tokenizer operates over the whole field. It does not break the field at whitespace. As a result, the space character
is included in the encoding.

<analyzer>
 <tokenizer class="solr.NGramTokenizerFactory"/>
</analyzer>

In: "hey man"

Out: "h", "e", "y", " ", "m", "a", "n", "he", "ey", "y ", " m", "ma", "an"

Example:

With an n-gram size range of 4 to 5:

74Apache Solr Reference Guide 4.4

<analyzer>
 <tokenizer class="solr.NGramTokenizerFactory" minGramSize="4" maxGramSize="5"/>
</analyzer>

In: "bicycle"

Out: "bicy", "icyc", "cycl", "ycle", "bicyc", "icycl", "cycle"

Edge N-Gram Tokenizer

Reads the field text and generates edge n-gram tokens of sizes in the given range.

Factory class: solr.EdgeNGramTokenizerFactory

Arguments:

minGramSize: (integer, default 1) The minimum n-gram size, must be > 0.

maxGramSize: (integer, default 1) The maximum n-gram size, must be >= minGramSize.

side: ("front" or "back", default "front") Whether to compute the n-grams from the beginning (front) of the text or from the end (back).

Example:

Default behavior (min and max default to 1):

<analyzer>
 <tokenizer class="solr.EdgeNGramTokenizerFactory"/>
</analyzer>

In: "babaloo"

Out: "b"

Example:

Edge n-gram range of 2 to 5

<analyzer>
 <tokenizer class="solr.EdgeNGramTokenizerFactory" minGramSize="2" maxGramSize="5"/>
</analyzer>

In: "babaloo"

Out:"ba", "bab", "baba", "babal"

Example:

Edge n-gram range of 2 to 5, from the back side:

<analyzer>
 <tokenizer class="solr.EdgeNGramTokenizerFactory" minGramSize="2" maxGramSize="5"
side="back"/>
</analyzer>

In: "babaloo"

Out: "oo", "loo", "aloo", "baloo"

75Apache Solr Reference Guide 4.4

ICU Tokenizer

This tokenizer processes multilingual text and tokenizes it appropriately based on its script attribute.

Factory class: solr.ICUTokenizerFactory

Arguments: None

Example:

 <analyzer>
 <tokenizer class="solr.ICUTokenizerFactory"/>
 </analyzer>

In: "Testing ""

Out: "Testing", "", "", "" "

Path Hierarchy Tokenizer

This tokenizer creates synonyms from file path hierarchies.

Factory class: solr.PathHierarchyTokenizerFactory

Arguments:

delimiter: (character, no default) You can specify the file path delimiter and replace it with a delimiter you provide. This can be useful for
working with backslash delimiters.

replace: (character, no default) Specifies the delimiter character Solr uses in the tokenized output.

Example:

<fieldType name="text_path" class="solr.TextField" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.PathHierarchyTokenizerFactory" delimiter="\" replace="/"/>
 </analyzer>
</fieldType>

In: "c:\usr\local\apache"

Out: "c:", "c:/usr", "c:/usr/local", "c:/usr/local/apache"

Regular Expression Pattern Tokenizer

This tokenizer uses a Java regular expression to break the input text stream into tokens. The expression provided by the pattern argument can be
interpreted either as a delimiter that separates tokens, or to match patterns that should be extracted from the text as tokens.

See the Javadocs for for more information on Java regular expression syntax.java.util.regex.Pattern

Factory class: solr.PatternTokenizerFactory

Arguments:

pattern: (Required) The regular expression, as defined by in .java.util.regex.Pattern

group: (Optional, default -1) Specifies which regex group to extract as the token(s).The value -1 means the regex should be treated as a delimiter
that separates tokens.Non-negative group numbers (>= 0) indicate that character sequences matching that regex group should be converted to
tokens. Group zero refers to the entire regex, groups greater than zero refer to parenthesized sub-expressions of the regex, counted from left to
right.

Example:

A comma separated list. Tokens are separated by a sequence of zero or more spaces, a comma, and zero or more spaces.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

76Apache Solr Reference Guide 4.4

<analyzer>
 <tokenizer class="solr.PatternTokenizerFactory" pattern="\s*,\s*"/>
</analyzer>

In: "fee,fie, foe , fum, foo"

Out: "fee", "fie", "foe", "fum", "foo"

Example:

Extract simple, capitalized words. A sequence of at least one capital letter followed by zero or more letters of either case is extracted as a token.

<analyzer>
 <tokenizer class="solr.PatternTokenizerFactory" pattern="\[A-Z\]\[A-Za-z\]"
group="0"/>
</analyzer>

In: "Hello. My name is Inigo Montoya. You killed my father. Prepare to die."

Out: "Hello", "My", "Inigo", "Montoya". "You", "Prepare"

Example:

Extract part numbers which are preceded by "SKU", "Part" or "Part Number", case sensitive, with an optional semi-colon separator. Part numbers
must be all numeric digits, with an optional hyphen. Regex capture groups are numbered by counting left parenthesis from left to right. Group 3 is
the subexpression "[0-9-]+", which matches one or more digits or hyphens.

<analyzer>
 <tokenizer class="solr.PatternTokenizerFactory"
pattern="(SKU|Part(\sNumber)?):?\s(\[0-9-\]+)" group="3"/>
</analyzer>

In: "SKU: 1234, Part Number 5678, Part: 126-987"

Out: "1234", "5678", "126-987"

Type Tokenizer

This tokenizer filters tokens by its type, with either an exclude or include list.

Factory class: solr.TypeTokenFilterFactory

Arguments:

types: Defines the location of a file of types to filter.

enablePositionIncrements: If , the token will be incremented by position.true

useWhiteList: If , the file defined in should be used as include list.true types

Example:

<analyzer>
 <filter class="solr.TypeTokenFilterFactory" types="stoptypes.txt"
 enablePositionIncrements="true" useWhiteList="false"/>
</analyzer>

77Apache Solr Reference Guide 4.4

UAX29 URL Email Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter characters are discarded, with the
following exceptions:

Periods (dots) that are not followed by whitespace are kept as part of the token.

Words are split at hyphens, unless there is a number in the word, in which case the token is not split and the numbers and hyphen(s) are
preserved.

Recognizes top-level (.com) Internet domain names; email addresses; , , and addresses; IPv4 and IPv6file::// http(s):// ftp://
addresses; and preserves them as a single token.

The UAX29 URL Email Tokenizer supports word boundaries with the following token types: , Unicode standard annex UAX#29 <ALPHANUM>
, , , , , and .<NUM> URL EMAIL <SOUTHEAST_ASIAN> <IDEOGRAPHIC> <HIRAGANA>

Factory class: solr.UAX29URLEmailTokenizerFactory

Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by .maxTokenLength

Example:

<analyzer>
 <tokenizer class="solr.UAX29URLEmailTokenizerFactory"/>
</analyzer>

In: "Visit or e-mail bob.cratchet@accarol.com"http://accarol.com/contact.htm?from=external&a=10

Out: "Visit", "http://accarol.com/contact.htm?from=external&a=10", "or", "email", "bob.cratchet@accarol.com"

White Space Tokenizer

Simple tokenizer that splits the text stream on whitespace and returns sequences of non-whitespace characters as tokens. Note that any
punctuation be included in the tokenization.will

Factory class: solr.WhitespaceTokenizerFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
</analyzer>

In: "To be, or what?"

Out: "To", "be,", "or", "what?"

Related Topics

TokenizerFactories

Filter Descriptions

You configure each filter with a element in as a child of , following the element. Filter<filter> schema.xml <analyzer> <tokenizer>
definitions should follow a tokenizer or another filter definition because they take a as input. For example.TokenStream

file:://
http://unicode.org/reports/tr29/#Word_Boundaries
http://accarol.com/contact.htm?from=external&a=10
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenizerFactories

78Apache Solr Reference Guide 4.4

<fieldType name="text" class="solr.TextField">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>...
 </analyzer>
</fieldType>

The class attribute names a factory class that will instantiate a filter object as needed. Filter factory classes must implement the
 interface. Like tokenizers, filters are also instances of TokenStream and thus areorg.apache.solr.analysis.TokenFilterFactory

producers of tokens. Unlike tokenizers, filters also consume tokens from a TokenStream. This allows you to mix and match filters, in any order
you prefer, downstream of a tokenizer.

Arguments may be passed to tokenizer factories to modify their behavior by setting attributes on the element. For example:<filter>

<fieldType name="semicolonDelimited" class="solr.TextField">
 <analyzer type="query">
 <tokenizer class="solr.PatternTokenizerFactory" pattern="; " />
 <filter class="solr.LengthFilterFactory" *min="2" max="7"/>
 </analyzer>
</fieldType>

The following sections describe the filter factories that are included in this release of Solr.

For more information about Solr's filters, see .http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Filters discussed in this section:

ASCII Folding Filter
Beider-Morse Filter
Classic Filter
Common Grams Filter
Collation Key Filter
Edge N-Gram Filter
English Minimal Stem Filter
Hunspell Stem Filter
Hyphenated Words Filter
ICU Folding Filter
ICU Normalizer 2 Filter
ICU Transform Filter
Keep Words Filter
KStem Filter
Length Filter
Lower Case Filter
N-Gram Filter
Numeric Payload Token Filter
Pattern Replace Filter
Phonetic Filter
Porter Stem Filter
Position Filter Factory
Remove Duplicates Token Filter
Reversed Wildcard Filter
Shingle Filter
Snowball Porter Stemmer Filter
Standard Filter
Stop Filter
Synonym Filter
Token Offset Payload Filter
Trim Filter
Type As Payload Filter
Word Delimiter Filter
Related Topics

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

79Apache Solr Reference Guide 4.4

ASCII Folding Filter

This filter converts alphabetic, numeric, and symbolic Unicode characters which are not in the Basic Latin Unicode block (the first 127 ASCII
characters) to their ASCII equivalents, if one exists. This filter converts characters from the following Unicode blocks:

C1 Controls and Latin-1 Supplement (PDF)
Latin Extended-A (PDF)
Latin Extended-B (PDF)
Latin Extended Additional (PDF)
Latin Extended-C (PDF)
Latin Extended-D (PDF)
IPA Extensions (PDF)
Phonetic Extensions (PDF)
Phonetic Extensions Supplement (PDF)
General Punctuation (PDF)
Superscripts and Subscripts (PDF)
Enclosed Alphanumerics (PDF)
Dingbats (PDF)
Supplemental Punctuation (PDF)
Alphabetic Presentation Forms (PDF)
Halfwidth and Fullwidth Forms (PDF)

Factory class: solr.ASCIIFilterFactory

Arguments: None

Example:

<analyzer>
 <filter class="solr.ASCIIFilterFactory"/>
</analyzer>

In: "á" (Unicode character 00E1)

Out: "á" (ASCII character 160)

Beider-Morse Filter

Implements the Beider-Morse Phonetic Matching (BMPM) algorithm, which allows identification of similar names, even if they are spelled
differently or in different languages. More information about how this works is available in the section on .Phonetic Matching

Factory class: solr.BeiderMorseFilterFactory

Arguments:

nameType: Types of names. Valid values are GENERIC, ASHKENAZI, or SEPHARDIC. If not processing Ashkenazi or Sephardic names, use
GENERIC.

ruleType: Types of rules to apply. Valid values are APPROX or EXACT.

concat: Defines if multiple possible matches should be combined with a pipe ("|").

languageSet: The language set to use. The value "auto" will allow the Filter to identify the language, or a comma-separated list can be supplied.

Example:

<analyzer>
 <filter class="solr.BeiderMorseFilterFactory" nameType="GENERIC" ruleType="APPROX"
 concat="true" languageSet="auto"
 </filter>
</analyzer>

Classic Filter

This filter takes the output of the and strips periods from acronyms and "'s" from possessives.Classic Tokenizer

http://www.unicode.org/charts/PDF/U0080.pdf
http://www.unicode.org/charts/PDF/U0100.pdf
http://www.unicode.org/charts/PDF/U0180.pdf
http://www.unicode.org/charts/PDF/U1E00.pdf
http://www.unicode.org/charts/PDF/U2C60.pdf
http://www.unicode.org/charts/PDF/UA720.pdf
http://www.unicode.org/charts/PDF/U0250.pdf
http://www.unicode.org/charts/PDF/U1D00.pdf
http://www.unicode.org/charts/PDF/U1D80.pdf
http://www.unicode.org/charts/PDF/U2000.pdf
http://www.unicode.org/charts/PDF/U2070.pdf
http://www.unicode.org/charts/PDF/U2460.pdf
http://www.unicode.org/charts/PDF/U2700.pdf
http://www.unicode.org/charts/PDF/U2E00.pdf
http://www.unicode.org/charts/PDF/UFB00.pdf
http://www.unicode.org/charts/PDF/UFF00.pdf

80Apache Solr Reference Guide 4.4

Factory class: solr.ClassicFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.ClassicTokenizerFactory"/>
 <filter class="solr.ClassicFilterFactory"/>
</analyzer>

In: "I.B.M. cat's can't"

Tokenizer to Filter: "I.B.M", "cat's", "can't"

Out: "IBM", "cat", "can't"

Common Grams Filter

This filter creates word shingles by combining common tokens such as stop words with regular tokens. This is useful for creating phrase queries
containing common words, such as "the cat." Solr normally ignores stop words in queried phrases, so searching for "the cat" would return all
matches for the word "cat."

Factory class: solr.CommonGramsFilterFactory

Arguments:

words: (a common word file in .txt format) Provide the name of a common word file, such as .stopwords.txt

format: (optional) If the stopwords list has been formatted for Snowball, you can specify so Solr can read the stopwordsformat="snowball"
file.

ignoreCase: (boolean) If true, the filter ignores the case of words when comparing them to the common word file.

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.CommonGramsFilterFactory" words="stopwords.txt"
ignoreCase="true"/>
</analyzer>

In: "the Cat"

Tokenizer to Filter: "the", "Cat"

Out: "the_cat"

Collation Key Filter

Collation allows sorting of text in a language-sensitive way. It is usually used for sorting, but can also be used with advanced searches. We've
covered this in much more detail in the section on .Unicode Collation

Edge N-Gram Filter

This filter generates edge n-gram tokens of sizes within the given range.

Factory class: solr.EdgeNGramFilterFactory

Arguments:

minGramSize: (integer, default 1) The minimum gram size.

81Apache Solr Reference Guide 4.4

maxGramSize: (integer, default 1) The maximum gram size.

Example:

Default behavior.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.EdgeNGramFilterFactory"/>
</analyzer>

In: "four score and twenty"

Tokenizer to Filter: "four", "score", "and", "twenty"

Out: "f", "s", "a", "t"

Example:

A range of 1 to 4.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.EdgeNGramFilterFactory" minGramSize="1" maxGramSize="4"/>
</analyzer>

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "f", "fo", "fou", "four", "s", "sc", "sco", "scor"

Example:

A range of 4 to 6.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.EdgeNGramFilterFactory" minGramSize="4" maxGramSize="6"/>
</analyzer>

In: "four score and twenty"

Tokenizer to Filter: "four", "score", "and", "twenty"

Out: "four", "sco", "scor"

English Minimal Stem Filter

This filter stems plural English words to their singular form.

Factory class: solr.EnglishMinimalStemFilterFactory

Arguments: None

Example:

82Apache Solr Reference Guide 4.4

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.EnglishMinimalStemFilterFactory"/>
</analyzer>

In: "dogs cats"

Tokenizer to Filter: "dogs", "cats"

Out: "dog", "cat"

Hunspell Stem Filter

The provides support for several languages. You must provide the dictionary () and rules () files for each languageHunspell Stem Filter .dic .aff
you wish to use with the Hunspell Stem Filter. You can download those language files . Be aware that your results will vary widely based onhere
the quality of the provided dictionary and rules files. For example, some languages have only a minimal word list with no morphological
information. On the other hand, for languages that have no stemmer but do have an extensive dictionary file, the Hunspell stemmer may be a
good choice.

Factory class: solr.HunspellStemFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.HunspellStemFilterFactory"
 dictionary="en_GB.dic"
 affix="en_GB.aff"
 ignoreCase="true" />
</analyzer>

In: "jump jumping jumped"

Tokenizer to Filter: "jump", "jumping", "jumped"

Out: "jump", "jump", "jump"

Hyphenated Words Filter

This filter reconstructs hyphenated words that have been tokenized as two tokens because of a line break or other intervening whitespace in the
field test. If a token ends with a hyphen, it is joined with the following token and the hyphen is discarded. Note that for this filter to work properly,
the upstream tokenizer must not remove trailing hyphen characters. This filter is generally only useful at index time.

Factory class: solr.HyphenatedWordsFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.HyphenatedWordsFilterFactory"/>
</analyzer>

In: "A hyphen- ated word"

Tokenizer to Filter: "A", "hyphen-", "ated", "word"

http://wiki.apache.org/solr/Hunspell
http://wiki.services.openoffice.org/wiki/Dictionaries

83Apache Solr Reference Guide 4.4

Out: "A", "hyphenated", "word"

ICU Folding Filter

This filter is a custom Unicode normalization form that applies the foldings specified in in addition to the Unicode Technical Report 30
 normalization form as described in . This filter is a better substitute for the combined behavior of the NFKC_Casefold ICU Normalizer 2 Filter

, , and .ASCII Folding Filter Lower Case Filter ICU Normalizer 2 Filter

To use this filter, see for instructions on which jars you need to add to your solr/contrib/analysis-extras/README.txt
.solr_home/lib

Factory class: solr.ICUFoldingFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ICUFoldingFilterFactory"/>
</analyzer>

For detailed information on this normalization form, see .http://www.unicode.org/reports/tr30/tr30-4.html

ICU Normalizer 2 Filter

This filter factory normalizes text according to one of five Unicode Normalization Forms as described in :Unicode Standard Annex #15

NFC: (name="nfc" mode="compose") Normalization Form C, canonical decomposition
NFD: (name="nfc" mode="decompose") Normalization Form D, canonical decomposition, followed by canonical composition
NFKC: (name="nfkc" mode="compose") Normalization Form KC, compatibility decomposition
NFKD: (name="nfkc" mode="decompose") Normalization Form KD, compatibility decomposition, followed by canonical composition
NFKC_Casefold: (name="nfkc_cf" mode="compose") Normalization Form KC, with additional Unicode case folding. Using the ICU
Normalizer 2 Filter is a better-performing substitution for the and NFKC normalization.Lower Case Filter

Factory class: solr.ICUNormalizer2FilterFactory

Arguments:

name: (string) The name of the normalization form; , , , , nfc nfd nfkc nfkd nfkc_cf

mode: (string) The mode of Unicode character composition and decomposition; or compose decompose

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ICUNormalizer2FilterFactory"/>
</analyzer>

For detailed information about these Unicode Normalization Forms, see .http://unicode.org/reports/tr15/

To use this filter, see for instructions on which jars you need to add to your solr/contrib/analysis-extras/README.txt
.solr_home/lib

ICU Transform Filter

This filter applies to text. This filter supports only ICU System Transforms. Custom rule sets are not supported.ICU Tranforms

Factory class: solr.ICUTransformFilterFactory

Arguments:

id: (string) The identifier for the ICU System Transform you wish to apply with this filter. For a full list of ICU System Transforms, see

http://www.unicode.org/reports/tr30/tr30-4.html
http://www.unicode.org/reports/tr30/tr30-4.html
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/
http://userguide.icu-project.org/transforms/general

84Apache Solr Reference Guide 4.4

.http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ICUTransformFilterFactory" id="Traditional-Simplified"/>
</analyzer>

For detailed information about ICU Transforms, see .http://userguide.icu-project.org/transforms/general

To use this filter, see for instructions on which jars you need to add to your solr/contrib/analysis-extras/README.txt
.solr_home/lib

Keep Words Filter

This filter discards all tokens except those that are listed in the given word list. This is the inverse of the Stop Words Filter. This filter can be useful
for building specialized indices for a constrained set of terms.

Factory class: solr.KeepWordFilterFactory

Arguments:

words: (required) Path of a text file containing the list of keep words, one per line. Blank lines and lines that begin with "#" are ignored. This may
be an absolute path, or a simple filename in the Solr config directory.

ignoreCase: (true/false) If then comparisons are done case-insensitively. If this argument is true, then the words file is assumed to containtrue
only lowercase words. The default is .false

Example:

Where contains:keepwords.txt

happy

funny

silly

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>
</analyzer>

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"

Out: "funny"

Example:

Same , case insensitive:keepwords.txt

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt" ignoreCase="true"/>
</analyzer>

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"

http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html
http://userguide.icu-project.org/transforms/general

85Apache Solr Reference Guide 4.4

Out: "Happy", "funny"

Example:

Using LowerCaseFilterFactory before filtering for keep words, no flag.ignoreCase

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>
</analyzer>

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"

Filter to Filter: "happy", "sad", "or", "funny"

Out: "happy", "funny"

KStem Filter

KStem is an alternative to the Porter Stem Filter for developers looking for a less aggressive stemmer. KStem was written by Bob Krovetz, ported
to Lucene by Sergio Guzman-Lara (UMASS Amherst). This stemmer is only appropriate for English language text.

Factory class: solr.KStemFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.KStemFilterFactory"/>
</analyzer>

In: "jump jumping jumped"

Tokenizer to Filter: "jump", "jumping", "jumped"

Out: "jump", "jump", "jump"

Length Filter

This filter passes tokens whose length falls within the min/max limit specified. All other tokens are discarded.

Factory class: solr.LengthFilterFactory

Arguments:

min: (integer, required) Minimum token length. Tokens shorter than this are discarded.

max: (integer, required, must be >= min) Maximum token length. Tokens longer than this are discarded.

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LengthFilterFactory" min="3" max="7"/>
</analyzer>

86Apache Solr Reference Guide 4.4

In: "turn right at Albuquerque"

Tokenizer to Filter: "turn", "right", "at", "Albuquerque"

Out: "turn", "right"

Lower Case Filter

Converts any uppercase letters in a token to the equivalent lowercase token. All other characters are left unchanged.

Factory class: solr.LowerCaseFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
</analyzer>

In: "Down With CamelCase"

Tokenizer to Filter: "Down", "With", "CamelCase"

Out: "down", "with", "camelcase"

N-Gram Filter

Generates n-gram tokens of sizes in the given range.

Factory class: solr.NGramFilterFactory

Arguments:

minGramSize: (integer, default 1) The minimum gram size.

maxGramSize: (integer, default 2) The maximum gram size.

Example:

Default behavior.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.NGramFilterFactory"/>
</analyzer>

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "f", "o", "u", "r", "fo", "ou", "ur", "s", "c", "o", "r", "e", "sc", "co", "or", "re"

Example:

A range of 1 to 4.

87Apache Solr Reference Guide 4.4

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.NGramFilterFactory" *minGramSize="1" maxGramSize="4"/>
</analyzer>

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "f", "fo", "fou", "four", "s", "sc", "sco", "scor"

Example:

A range of 3 to 5.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.NGramFilterFactory" *minGramSize="3" maxGramSize="5"/>
</analyzer>

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "fou", "our", "four", "sco", "cor", "ore", "scor", "core", "score"

Numeric Payload Token Filter

This filter adds a numeric floating point payload value to tokens that match a given type. Refer to the Javadoc for the
 class for more information about token types and payloads.org.apache.lucene.analysis.Token

Factory class: solr.NumericPayloadTokenFilterFactory

Arguments:

payload: (required) A floating point value that will be added to all matching tokens.

typeMatch: (required) A token type name string. Tokens with a matching type name will have their payload set to the above floating point value.

Example:

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.NumericPayloadTokenFilterFactory" payload="0.75"
typeMatch="word"/>
</analyzer>

In: "bing bang boom"

Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0.75], "bang"[0.75], "boom"[0.75]

Pattern Replace Filter

This filter applies a regular expression to each token and, for those that match, substitutes the given replacement string in place of the matched
pattern. Tokens which do not match are passed though unchanged.

Factory class: solr.PatternReplaceFilter

88Apache Solr Reference Guide 4.4

Arguments:

pattern: (required) The regular expression to test against each token, as per .java.util.regex.Pattern

replacement: (required) A string to substitute in place of the matched pattern. This string may contain references to capture groups in the regex
pattern. See the Javadoc for java.util.regex.Matcher.

replace: ("all" or "first", default "all") Indicates whether all occurrences of the pattern in the token should be replaced, or only the first.

Example:

Simple string replace:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PatternReplaceFilter" pattern="cat" replacement="dog"/>
</analyzer>

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat"

Out: "dog", "condogenate", "dogydog"

Example:

String replacement, first occurrence only:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PatternReplaceFilter" pattern="cat" replacement="dog"
*replace="first"/>
</analyzer>

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat"

Out: "dog", "condogenate", "dogycat"

Example:

More complex pattern with capture group reference in the replacement. Tokens that start with non-numeric characters and end with digits will
have an underscore inserted before the numbers. Otherwise the token is passed through.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PatternReplaceFilter" pattern="(\D+)(\d+)$"
replacement="$1_$2"/>
</analyzer>

In: "cat foo1234 9987 blah1234foo"

Tokenizer to Filter: "cat", "foo1234", "9987", "blah1234foo"

Out: "cat", "foo_1234", "9987", "blah1234foo"

Phonetic Filter

This filter creates tokens using one of the phonetic encoding algorithms in the .language package.org.apache.commons.codec

89Apache Solr Reference Guide 4.4

Factory class: solr.PhoneticFilterFactory

Arguments:

{{ }}: (required) The name of the encoder to use. The encoder name must be one of the following (case insensitive): " ",encoder DoubleMetaphone
" ", " ", " ", " ", or " "Metaphone Soundex RefinedSoundex Caverphone ColognePhonetic

inject: (true/false) If true (the default), then new phonetic tokens are added to the stream. Otherwise, tokens are replaced with the phonetic
equivalent. Setting this to false will enable phonetic matching, but the exact spelling of the target word may not match.

maxCodeLength: (integer) The maximum length of the code to be generated by the Metaphone or Double Metaphone encoders.

Example:

Default behavior for DoubleMetaphone encoding.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PhoneticFilterFactory" encoder="DoubleMetaphone"/>
</analyzer>

In: "four score and twenty"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)

Out: "four"(1), "FR"(1), "score"(2), "SKR"(2), "and"(3), "ANT"(3), "twenty"(4), "TNT"(4)

The phonetic tokens have a position increment of 0, which indicates that they are at the same position as the token they were derived from
(immediately preceding).

Example:

Discard original token.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PhoneticFilterFactory" encoder="DoubleMetaphone"
inject="false"/>
</analyzer>

In: "four score and twenty"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)

Out: "FR"(1), "SKR"(2), "ANT"(3), "TWNT"(4)

Example:

Default Soundex encoder.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PhoneticFilterFactory" encoder="Soundex"/>
</analyzer>

In: "four score and twenty"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)

Out: "four"(1), "F600"(1), "score"(2), "S600"(2), "and"(3), "A530"(3), "twenty"(4), "T530"(4)

Porter Stem Filter

http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Metaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Soundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/RefinedSoundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Caverphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/ColognePhonetic.html

90Apache Solr Reference Guide 4.4

This filter applies the Porter Stemming Algorithm for English. The results are similar to using the Snowball Porter Stemmer with the
 argument. But this stemmer is coded directly in Java and is not based on Snowball. Nor does it accept a list of protectedlanguage="English"

words. This stemmer is only appropriate for English language text.

Factory class: solr.PorterStemFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.PorterStemFilterFactory"/>
</analyzer>

In: "jump jumping jumped"

Tokenizer to Filter: "jump", "jumping", "jumped"

Out: "jump", "jump", "jump"

Position Filter Factory

This filter sets the position increment values of all tokens in a token stream except the first, which retains its original position increment value.

Factory class: solr.PositionIncrementFilterFactory

Arguments:

positionIncrement: (integer, default = 0) The position increment value to apply to all tokens in a token stream except the first.

Example:

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.PositionFilterFactory" positionIncrement="1"/>
</analyzer>

In: "hello world"

Tokenizer to Filter: "hello", "world"

Out: "hello" (token position 1), "world" (token position 3)

Remove Duplicates Token Filter

The filter removes duplicate tokens in the stream. Tokens are considered to be duplicates if they have the same text and position values.

Factory class: solr.RemoveDuplicatesTokenFilterFactory

Arguments: None

Example:

This is an artificial example that uses the to generate duplicate symbols, which are then removed. The file Synonym Filter testsyns.txt
contains the following:

91Apache Solr Reference Guide 4.4

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.SynonymFilterFactory" synonyms="testsyns.txt"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
</analyzer>

In: "blurt blort"

Tokenizer to Filter: "blurt"(1), "blurt"(2)

Tokenizer to Filter: "foo"(1), "foo"(1), "bar"(2), "bar"(2)

Out: "foo"(1), "bar"(2)

Reversed Wildcard Filter

This filter reverses tokens to provide faster leading wildcard and prefix queries. Tokens without wildcards are not reversed.

Factory class: solr.ReveresedWildcardFilterFactory

Arguments:

withOriginal (boolean) If true, the filter produces both original and reversed tokens at the same positions. If false, produces only reversed
tokens.

maxPosAsterisk (integer, default = 2) The maximum position of the asterisk wildcard ('*') that triggers the reversal of the query term. Terms with
asterisks at positions above this value are not reversed.

maxPosQuestion (integer, default = 1) The maximum position of the question mark wildcard ('?') that triggers the reversal of query term. To
reverse only pure suffix queries (queries with a single leading asterisk), set this to 0 and to 1.maxPosAsterisk

maxFractionAsterisk (float, default = 0.0) An additional parameter that triggers the reversal if asterisk ('*') position is less than this fraction of
the query token length.

minTrailing (integer, default = 2) The minimum number of trailing characters in a query token after the last wildcard character. For good
performance this should be set to a value larger than 1.

Example:

<analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.ReversedWildcardFilterFactory" withOriginal="true"
 maxPosAsterisk="2" maxPosQuestion="1" minTrailing="2" maxFractionAsterisk="0"/>
</analyzer>

In: "*foo *bar"

Tokenizer to Filter: "*foo", "*bar"

Out: "oof*", "rab*"

Shingle Filter

This filter constructs shingles, which are token n-grams, from the token stream. It combines runs of tokens into a single token.

Factory class: solr.ShingleFilterFactory

Arguments:

maxShingleSize: (integer, must be >= 2, default 2) The maximum number of tokens per shingle.

outputUnigrams: (true/false) If true (the default), then each individual token is also included at its original position.

Example:

92Apache Solr Reference Guide 4.4

Default behavior.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ShingleFilterFactory"/>
</analyzer>

In: "To be, or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "To"(1), "To be"(1), "be"(2), "be or"(2), "or"(3), "or what"(3), "what"(4)

Example:

A shingle size of four, do not include original token.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ShingleFilterFactory" maxShingleSize="4"
outputUnigrams="false"/>
</analyzer>

In: "To be, or not to be."

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "not"(4), "to"(5), "be"(6)

Out: "To be"(1), "To be or"(1), "To be or not"(1), "be or"(2), "be or not"(2), "be or not to"(2), "or not"(3), "or not to"(3), "or not to be"(3), "not to"(4),
"not to be"(4), "to be"(5)

Snowball Porter Stemmer Filter

This filter factory instantiates a language-specific stemmer generated by Snowball. Snowball is a software package that generates pattern-based
word stemmers. This type of stemmer is not as accurate as a table-based stemmer, but is faster and less complex. Table-driven stemmers are
labor intensive to create and maintain and so are typically commercial products.

Solr contains Snowball stemmers for Armenian, Basque, Catalan, Danish, Dutch, English, Finnish, French, German, Hungarian, Italian,
Norwegian, Portuguese, Romanian, Russian, Spanish, Swedish and Turkish. For more information on Snowball, visit .http://snowball.tartarus.org/

StopFilterFactory, , and can optionally read stopwords in SnowballCommonGramsFilterFactory CommonGramsQueryFilterFactory
format (specify in the configuration of those FilterFactories).format="snowball"

Factory class: solr.SnowballPorterFilterFactory

Arguments:

language: (default "English") The name of a language, used to select the appropriate Porter stemmer to use. Case is significant. This string is
used to select a package name in the "org.tartarus.snowball.ext" class hierarchy.

protected: Path of a text file containing a list of protected words, one per line. Protected words will not be stemmed. Blank lines and lines that
begin with "#" are ignored. This may be an absolute path, or a simple file name in the Solr config directory.

Example:

Default behavior:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.SnowballPorterFilterFactory"/>
</analyzer>

http://snowball.tartarus.org/

93Apache Solr Reference Guide 4.4

In: "flip flipped flipping"

Tokenizer to Filter: "flip", "flipped", "flipping"

Out: "flip", "flip", "flip"

Example:

French stemmer, English words:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" language="French"/>
</analyzer>

In: "flip flipped flipping"

Tokenizer to Filter: "flip", "flipped", "flipping"

Out: "flip", "flipped", "flipping"

Example:

Spanish stemmer, Spanish words:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Spanish"/>
</analyzer>

In: "cante canta"

Tokenizer to Filter: "cante", "canta"

Out: "cant", "cant"

Standard Filter

This filter removes dots from acronyms and the substring "'s" from the end of tokens. This filter depends on the tokens being tagged with the
appropriate term-type to recognize acronyms and words with apostrophes.

Factory class: solr.StandardFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StandardFilterFactory"/>
</analyzer>

In: "Bob's I.O.U."

Tokenizer to Filter: "Bob's", "I.O.U."

Out: "Bob". "IOU"

Stop Filter

This filter discards, or analysis of, tokens that are on the given stop words list. A standard stop words list is included in the Solr configstops

94Apache Solr Reference Guide 4.4

directory, named stopwords.txt, which is appropriate for typical English language text.

Factory class: solr.StopFilterFactory

Arguments:

words: (optional) The path to a file that contains a list of stop words, one per line. Blank lines and lines that begin with "#" are ignored. This may
be an absolute path, or path relative to the Solr config directory.

format: (optional) If the stopwords list has been formatted for Snowball, you can specify so Solr can read the stopwordsformat="snowball"
file.

ignoreCase: (true/false, default false) Ignore case when testing for stop words. If true, the stop list should contain lowercase words.

enablePositionIncrements: (true/false, default false) When true, if a token is stopped (discarded) then the position of the following token is
incremented.

Example:

Case-sensitive matching, capitalized words not stopped. Token positions skip stopped words.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" words="stopwords.txt"/>
</analyzer>

In: "To be or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "To"(1), "what"(2)

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"/>
</analyzer>

In: "To be or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "what"(1)

Example:

Position increment enabled, original positions retained. No tokens at positions of stopped words.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"
enablePositionIncrements="true"/>
</analyzer>

In: "You are a star"

Tokenizer to Filter: "You"(1), "are"(2), "a"(3), "star"(4)

Out: "You"(1), "star"(4)

Synonym Filter

95Apache Solr Reference Guide 4.4

This filter does synonym mapping. Each token is looked up in the list of synonyms and if a match is found, then the synonym is emitted in place of
the token. The position value of the new tokens are set such they all occur at the same position as the original token.

Factory class: solr.SynonymFilterFactory

Arguments:

synonyms: (required) The path of a file that contains a list of synonyms, one per line. Blank lines and lines that begin with "#" are ignored. This
may be an absolute path, or path relative to the Solr config directory.There are two ways to specify synonym :mappings

A comma-separated list of words. If the token matches any of the words, then all the words in the list are substituted, which will include
the original token.

Two comma-separated lists of words with the symbol "=>" between them. If the token matches any word on the left, then the list on the
right is substituted. The original token will not be included unless it is also in the list on the right.

For the following examples, assume the following file:synonyms.txt

couch,sofa,divan
teh => the
huge,ginormous,humungous => large
small => tiny,teeny,weeny

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.SynonymFilterFactory" synonyms="mysynonyms.txt"/>
</analyzer>

In: "teh small couch"

Tokenizer to Filter: "teh"(1), "small"(2), "couch"(3)

Out: "the"(1), "tiny"(2), "teeny"(2), "weeny"(2), "couch"(3), "sofa"(3), "divan"(3)

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.SynonymFilterFactory" synonyms="mysynonyms.txt"/>
</analyzer>

In: "teh ginormous, humungous sofa"

Tokenizer to Filter: "teh"(1), "ginormous"(2), "humungous"(3), "sofa"(4)

Out: "the"(1), "large"(2), "large"(3), "couch"(4), "sofa"(4), "divan"(4)

Token Offset Payload Filter

This filter adds the numeric character offsets of the token as a payload value for that token.

Factory class: solr.TokenOffsetPayloadTokenFilterFactory

Arguments: None

Example:

96Apache Solr Reference Guide 4.4

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.TokenOffsetPayloadTokenFilterFactory"/>
</analyzer>

In: "bing bang boom"

Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0,4], "bang"[5,9], "boom"[10,14]

Trim Filter

This filter trims leading and/or trailing whitespace from tokens. Most tokenizers break tokens at whitespace, so this filter is most often used for
special situations.

Factory class: solr.TrimFilterFactory

Arguments:

updateOffsets: (true/false, default false) If true, the token's start/end offsets are adjusted to account for any whitespace that was removed.

Example:

The PatternTokenizerFactory configuration used here splits the input on simple commas, it does not remove whitespace.

<analyzer>
 <tokenizer class="solr.PatternTokenizerFactory" pattern=","/>
 <filter class="solr.TrimFilterFactory"/>
</analyzer>

In: "one, two , three ,four "

Tokenizer to Filter: "one", " two ", " three ", "four "

Out: "one", "two", "three", "four"

Type As Payload Filter

This filter adds the token's type, as an encoded byte sequence, as its payload.

Factory class: solr.TypeAsPayloadTokenFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.TypeAsPayloadTokenFilterFactory"/>
</analyzer>

In: "Pay Bob's I.O.U."

Tokenizer to Filter: "Pay", "Bob's", "I.O.U."

Out: "Pay"[<ALPHANUM>], "Bob's"[<APOSTROPHE>], "I.O.U."[<ACRONYM>]

Word Delimiter Filter

97Apache Solr Reference Guide 4.4

This filter splits tokens at word delimiters. The rules for determining delimiters are determined as follows:

A change in case within a word: "CamelCase" "Camel", "Case"This can be disabled by setting splitOnCaseChange="0" (see below).->

A transition from alpha to numeric characters or vice versa:"Gonzo5000" "Gonzo", "5000""4500XL" "4500", "XL" This can be disabled> >
by setting splitOnNumerics ="0".

Non-alphanumeric characters (discarded): "hot-spot" "hot", "spot"->

A trailing "'s" is removed: "O'Reilly's" "O", "Reilly"->

Any leading or trailing delimiters are discarded: "- "hot", "spot"hot-spot" >

Factory class: solr.WordDelimiterFilterFactory

Arguments:

generateWordParts: (integer, default 1) If non-zero, splits words at delimiters. For example:"CamelCase", "hot-spot" "Camel", "Case", "hot",->
"spot"

generateNumberParts: (integer, default 1) If non-zero, splits numeric strings at delimiters:"1947-32" "1947", "32"->

splitOnCaseChange: (integer, default 1) If 0, words are not split on camel-case changes:"BugBlaster-XL" "BugBlaster", "XL"Example 1->
below illustrates the default (non-zero) splitting behavior.

splitOnNumerics: (integer, default 1) If 0, don't split words on transitions from alpha to numeric:"FemBot3000" "Fem", "Bot3000"->

catenateWords: (integer, default 0) If non-zero, maximal runs of word parts will be joined: "hot-spot-sensor's" "hotspotsensor"->

catenateNumbers: (integer, default 0) If non-zero, maximal runs of number parts will be joined: 1947-32" "194732"->

catenateAll: (0/1, default 0) If non-zero, runs of word and number parts will be joined: "Zap-Master-9000" "ZapMaster9000"->

preserveOriginal: (integer, default 0) If non-zero, the original token is preserved: "Zap-Master-9000" "Zap-Master-9000", "Zap", "Master",->
"9000"

protected: (optional) The pathname of a file that contains a list of protected words that should be passed though without splitting.

stemEnglishPossessive: (integer, default 1) If 1, strips the possessive "'s" from each subword.

Example:

Default behavior. The whitespace tokenizer is used here to preserve non-alphanumeric characters.

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory"/>
</analyzer>

In: "hot-spot RoboBlaster/9000 100XL"

Tokenizer to Filter: "hot-spot", "RoboBlaster/9000", "100XL"

Out: "hot", "spot", "Robo", "Blaster", "9000", "100", "XL"

Example:

Do not split on case changes, and do not generate number parts. Note that by not generating number parts, tokens containing only numeric parts
are ultimately discarded.

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory" generateNumberParts="0"
splitOnCaseChange="0"/>
</analyzer>

98Apache Solr Reference Guide 4.4

In: "hot-spot RoboBlaster/9000 100-42"

Tokenizer to Filter: "hot-spot", "RoboBlaster/9000", "100-42"

Out: "hot", "spot", "RoboBlaster", "9000"

Example:

Concatenate word parts and number parts, but not word and number parts that occur in the same token.

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory" catenateWords="1"
catenateNumbers="1"/>
</analyzer>

In: "hot-spot 100+42 XL40"

Tokenizer to Filter: "hot-spot"(1), "100+42"(2), "XL40"(3)

Out: "hot"(1), "spot"(2), "hotspot"(2), "100"(3), "42"(4), "10042"(4), "XL"(5), "40"(6)

Example:

Concatenate all. Word and/or number parts are joined together.

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory" catenateAll="1"/>
</analyzer>

In: "XL-4000/ES"

Tokenizer to Filter: "XL-4000/ES"(1)

Out: "XL"(1), "4000"(2), "ES"(3), "XL4000ES"(3)

Example:

Using a protected words list that contains "AstroBlaster" and "XL-5000" (among others).

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory" protected="protwords.txt"/>
</analyzer>

In: "FooBar AstroBlaster XL-5000 ==ES-34-"

Tokenizer to Filter: "FooBar", "AstroBlaster", "XL-5000", "==ES-34-"

Out: "FooBar", "FooBar", "AstroBlaster", "XL-5000", "ES", "34"

Related Topics

TokenFilterFactories

CharFilterFactories

Char Filter is a component that pre-processes input characters. Char Filters can be chained like Token Filters and placed in front of a Tokenizer.
 can add, change, or remove characters without worrying about fault of Token offsets.Char Filters

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenFilterFactories

99Apache Solr Reference Guide 4.4

solr.MappingCharFilterFactory

This filter creates , which can be used for changing one character to another (fororg.apache.lucene.analysis.MappingCharFilter
example, for normalizing é to e.).

This filter requires specifying a argument, which is the path and name of a file containing the mappings to perform.mapping

Example:

<analyzer>
 <charFilter class="solr.MappingCharFilterFactory"
mapping="mapping-ISOLatin1Accent.txt"/>
</analyzer>

solr.HTMLStripCharFilterFactory

This filter creates . This Char Filter strips HTML from the input stream and passes theorg.apache.solr.analysis.HTMLStripCharFilter
result to another Char Filter or a Tokenizer.

The behavior of this Char Filter changed in v3.6 of Solr. The old behavior has been retained in
, although it has been deprecated and may be removed in a future release. What follows isLegacyHTMLCharFilterFactory

a description of how the filter works in Solr 4; for an overview of the changes made, see .Major Changes from Solr 3 to Solr 4

This filter:

Removes HTML/XML tags while preserving other content.
Removes attributes within tags and supports optional attribute quoting.
Removes XML processing instructions, such as: <?foo bar?>
Removes XML comments.
Removes XML elements starting with <!>.
Removes contents of <script> and <style> elements.
Handles XML comments inside these elements (normal comment processing will not always work).
Replaces numeric character entities references like ; or ;.A
The terminating ';' is optional if the entity reference is followed by whitespace.
Replaces all named character entity references.
 is replaced with a space instead of 0xa0.
The terminating ';' is mandatory to avoid false matches on something like "Alpha&Omega Corp".
Newlines are substituted for block-level elements.
<CDATA> sections are recognized.
Inline tags, such as , , or will be replaced by a space. <i>
Uppercase character entities like , , and are recognized and handled as lowercase.quot gt lt amp

The input need not be an HTML document. The filter removes only constructs that look like HTML. If the input doesn't include
anything that looks like HTML, the filter won't remove any input.

The table below presents examples of HTML stripping.

Input Output

my link my link

hello<!--comment--> hello

hello<script><!-- f('<!--internal--></script>'); --></script> hello

if a<b then print a; if a<b then print a;

hello <td height=22 nowrap align="left"> hello

a<b A Alpha&Omega a<b A Alpha&Omega

solr.LegacyHTMLStripCharFilterFactory

100Apache Solr Reference Guide 4.4

This filter strips HTML from the input stream and passes the result to another Char Filter or a Tokenizer. It has been in favor ofdeprecated
improvements introduced in Solr 3.6 to the . This filter creates HTMLCharFilter

.org.apache.solr.analysis.LegacyHTMLStripCharFilter

In Solr versions 3.5 and earlier, this filter had known bugs in the character offsets it provided, triggering (for example) exceptions in highlighting.
With version 3.6, was fixed to address this and other issues. If you depend on the behavior of HTMLStripCharFilter HTMLStripCharFilter
in version 3.5 or earlier, the previous implementation, including bugs, is preserved as . For more information onLegacyHTMLStripCharFilter
the changes, see the section .Major Changes from Solr 3 to Solr 4

solr.PatternReplaceCharFilterFactory

This filter uses to replace or change character patterns.regular expressions

Arguments:

pattern: the regular expression pattern to apply to the incoming text.

replaceWith: the text to use to replace matching patterns.

You can configure this filter in like this:schema.xml

<analyzer>
 <charFilter class="solr.PatternReplaceCharFilterFactory"
 pattern="([nN][oO]\.)\s*(\d+)" replaceWith="$1$2"/>
</analyzer>

The table below presents examples of regex-based pattern replacement:

Input pattern replaceWith Output Description

see-ing looking (\w+)(ing) 1 see-ing look Removes "ing" from the end of word.

see-ing looking (\w+)ing 1 see-ing look Same as above. 2nd parentheses can be omitted.

No.1 NO. no.
543

[nN][oO]
\.\s*(\d+)

{ },1# #1 NO. #543 Example of literal. Do not forget to set a non-period
 when using periods in patterns.blockDelimiter

abc=1234=5678 (\w+)=(\d+)=(\d+) 3,{ },1,{ },2= = 5678=abc=1234 Change the order of the groups.

Related Topics

CharFilterFactories

Language Analysis

This section contains information about tokenizers and filters related to character set conversion or for use with specific languages. For the
European languages, tokenization is fairly straightforward. Tokens are delimited by white space and/or a relatively small set of punctuation
characters. In other languages the tokenization rules are often not so simple. Some European languages may require special tokenization rules
as well, such as rules for decompounding German words.

For information about language detection at index time, see .Detecting Languages During Indexing

Topics discussed in this section:

KeyWordMarkerFilterFactory
StemmerOverrideFilterFactory
Dictionary Compound Word Token Filter
Unicode Collation
ISO Latin Accent Filter
Language-Specific Factories
Related Topics

KeyWordMarkerFilterFactory

http://www.regular-expressions.info/reference.html
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#CharFilterFactories

101Apache Solr Reference Guide 4.4

Protects words from being modified by stemmers. A customized protected word list may be specified with the "protected" attribute in the schema.
Any words in the protected word list will not be modified by any stemmer in Solr.

A sample Solr with comments can be found in the directory:protwords.txt /solr/conf/

<fieldtype name="myfieldtype" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt" />
 <filter class="solr.PorterStemFilterFactory" />
 </analyzer>
</fieldtype>

StemmerOverrideFilterFactory

Overrides stemming algorithms by applying a custom mapping, then protecting these terms from being modified by stemmers.

A customized mapping of words to stems, in a tab-separated file, can be specified to the "dictionary" attribute in the schema. Words in this
mapping will be stemmed to the stems from the file, and will not be further changed by any stemmer.

A sample with comments can be found in the Source Repository.stemdict.txt

<fieldtype name="myfieldtype" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.StemmerOverrideFilterFactory" dictionary="stemdict.txt" />
 <filter class="solr.PorterStemFilterFactory" />
 </analyzer>
</fieldtype>

Dictionary Compound Word Token Filter

This filter splits, or , compound words into individual words using a dictionary of the component words. Each input token is passeddecompounds
through unchanged. If it can also be decompounded into subwords, each subword is also added to the stream at the same logical position.

Compound words are most commonly found in Germanic languages.

Factory class: solr.DictionaryCompoundWordTokenFilterFactory

Arguments:

dictionary: (required) The path of a file that contains a list of simple words, one per line. Blank lines and lines that begin with "#" are ignored.
This path may be an absolute path, or path relative to the Solr config directory.

minWordSize: (integer, default 5) Any token shorter than this is not decompounded.

minSubwordSize: (integer, default 2) Subwords shorter than this are not emitted as tokens.

maxSubwordSize: (integer, default 15) Subwords longer than this are not emitted as tokens.

onlyLongestMatch: (true/false) If true (the default), only the longest matching subwords will generate new tokens.

Example:

Assume that contains at least the following words:germanwords.txt

dummkopfdonaudampfschiff

http://svn.apache.org/repos/asf/lucene/dev/branches/branch_4x/solr/core/src/test-files/solr/collection1/conf/stemdict.txt

102Apache Solr Reference Guide 4.4

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.DictionaryCompoundWordTokenFilterFactory"
dictionary="germanwords.txt"/>
</analyzer>

In: "Donaudampfschiff dummkopf"

Tokenizer to Filter: "Donaudampfschiff"(1), "dummkopf"(2),

Out: "Donaudampfschiff"(1), "Donau"(1), "dampf"(1), "schiff"(1), "dummkopf"(2), "dumm"(2), "kopf"(2)

Unicode Collation

Unicode Collation is a language-sensitive method of sorting text that also be used for advanced search purposes.

Unicode Collation in Solr is fast, because all the work is done at index time. It uses a to create a sort field,KeywordTokenizerFactory
followed by . The adds "sort keys" to the field at index time, so that atCollationKeyFilterFactory CollationKeyFilterFactory sort
query time you can sort on the field and your results comes back in collated order.sort

You can also name and to hold the results of your collation.CollatedField ICUCollatedField

Sorting Text for a Specific Language

In this example, text is sorted according to the default German rules provided by Java. The rules for sorting German in Java are defined in a
package called a Java Locale.

Locales are typically defined as a combination of language and country, but you can specify just the language if you want. For example, if you
specify "de" as the language, you will get sorting that works well for German language. If you specify "de" as the language and "CH" as the
country, you will get German sorting specifically tailored for Switzerland.

You can see a list of supported Locales .here

<!-- define a field type for German collation -->
<fieldType name="collatedGERMAN" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.CollationKeyFilterFactory"
 language="de"
 strength="primary"
 />
 </analyzer>
</fieldType>
...
<!-- define a field to store the German collated manufacturer names -->
<field name="manuGERMAN" type="collatedGERMAN" indexed="true" stored="false" />
...
<!-- copy the text to this field. we could create French, English, Spanish versions
too,
 and sort differently for different users! --
<copyField source="manu" dest="manuGERMAN"/>

In the example above, we defined the strength as "primary". The strength of the collation determines how strict the sort order will be, but it also
depends upon the language. For example, in English, "primary" strength ignores differences in case and accents.

For more information, see the .Collator javadocs

Sorting Text for Multiple Languages

There are two approaches to supporting multiple languages: if there is a small list of languages you wish to support, consider defining collated

http://java.sun.com/j2se/1.5.0/docs/guide/intl/locale.doc.html#util-text
http://java.sun.com/j2se/1.5.0/docs/api/java/text/Collator.html

103Apache Solr Reference Guide 4.4

fields for each language and using . However, adding a large number of sort fields can increase disk and indexing costs. AncopyField
alternative approach is to use the Unicode collator.default

The Unicode or locale has rules that are designed to work well for most languages. To use the locale, simply define thedefault ROOT default
language as the empty string. This Unicode default sort is still significantly more advanced than the standard Solr sort.

<fieldType name="collatedROOT" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.CollationKeyFilterFactory"
 language=""
 strength="primary"
 />
 </analyzer>
</fieldType>

Sorting Text with Custom Rules

You can define your own set of sorting rules. Its easiest to take existing rules that are close to what you want and customize them.

In the example below, we create a custom rule set for German called DIN 5007-2. This rule set treats umlauts in German differently: it treats ö as
equivalent to oe. For more information, see the .RuleBasedCollator javadocs

This example shows how to create a custom rule set and dump it to a file:

// get the default rules for Germany
// these are called DIN 5007-1 sorting
RuleBasedCollator baseCollator = (RuleBasedCollator) Collator.getInstance(new
Locale("de", "DE"));

// define some tailorings, to make it DIN 5007-2 sorting.
// For example, this makes ö equivalent to oe
String DIN5007_2_tailorings =
"& ae , a\u0308 & AE , A\u0308"+
"& oe , o\u0308 & OE , O\u0308"+
"& ue , u\u0308 & UE , u\u0308";

// concatenate the default rules to the tailorings, and dump it to a String
RuleBasedCollator tailoredCollator = new RuleBasedCollator(baseCollator.getRules() +
DIN5007_2_tailorings);
String tailoredRules = tailoredCollator.getRules();
// write these to a file, be sure to use UTF-8 encoding!!!
IOUtils.write(tailoredRules, new FileOutputStream("/solr_home/conf/customRules.dat"),
"UTF-8");

This rule set can now be used for custom collation in Solr:

http://java.sun.com/j2se/1.5.0/docs/api/java/text/RuleBasedCollator.html

104Apache Solr Reference Guide 4.4

<fieldType name="collatedCUSTOM" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.CollationKeyFilterFactory"
 custom="customRules.dat"
 strength="primary"
 />
 </analyzer>
</fieldType>

Searching

Collation can also be used to search on a tokenized field.

In this example, we use the same custom German rules defined above on a tokenized field. As with stemmers, although the output tokens are
nonsense they are the same values and will match for search purposes.

<fieldType name="collatedCUSTOM" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.CollationKeyFilterFactory"
 custom="customRules.dat"
 strength="primary"
 />
 </analyzer>
</fieldType>

Collation Key Filter

The filter is used at index time, indexing special "sort keys" into the sort field. It lets you choose the collator relatedsolr.CollationKeyFilter
to the target country and language. You can also choose the strength of the collation which determines the minimum level of difference
considered significant during comparison. For example:

<filter class="solr.CollationKeyFilterFactory" language="es" country="ES"
strength="primary" />

The example above shows the configuration of the , where we want to handle the Spanish language withCollationKeyFilterFactory
primary strength.

You can add the filter into field type definitions, as in the example below:

<fieldType name="polishLowercase" positionIncrementGap="100>
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.TrimFilterFactory"/>
 <filter class="solr.CollationKeyFilterFactory" language="pl" country="PL"
strength="primary"/>
 </analyzer>
</fieldType>

Handling the Polish language has been added to the definition of the currently existing type. The type will be used for the fields,lowercase
where the data contains Polish signs. For example, you could also change the type for the field to :city_sort polishLowercase

105Apache Solr Reference Guide 4.4

<field name="city_sort" type="polishLowercase" indexed="true" stored="false" />

You can check the test query result:

q=*:*&fl=city&sort=city_sort+asc

And the result may look like this:

<result name="response" numFound="6" start="0">
 <doc>
 <str name="city">Biaystok</str>
 </doc>
 <doc>
 <str name="city">Koszalin</str>
 </doc>
 <doc>
 <str name="city">owicz</str>
 </doc>
 <doc>
 <str name="city">Szczecin</str>
 </doc>
 <doc>
 <str name="city">widnik</str>
 </doc>
 <doc>
 <str name="city">Warszawa</str>
 </doc>
</result>

ICU Collation

For better performance, less memory usage, and support for more locales, you can add the contrib and use analysis-extras
 instead. See the for more information.ICUCollationKeyFilterFactory javadocs

The principles of ICU Collation are the same as those of Unicode Collation; you just specify an RFC3066 language identifier with the locale
parameter instead of specifying .language+country+variant

For example, to get German phonebook sort order:

<fieldType name="collatedICU" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.ICUCollationKeyFilterFactory"
 locale="de@collation=phonebook"
 strength="primary"
 />
 </analyzer>
</fieldType>

To use the filter, see for instructions on which jarsICUCollationKeyFilterFactory solr/contrib/analysis-extras/README.txt
you need to add to your .SOLR_HOME/lib

http://lucene.apache.org/solr/4_0_0/solr-analysis-extras/org/apache/solr/schema/ICUCollationField.html

106Apache Solr Reference Guide 4.4

ISO Latin Accent Filter

This filter replaces any accented characters in a token with the unaccented equivalent. This can increase recall by causing more matches. On the
other hand, it can reduce precision because language-specific character differences may be lost.

Characters in the ISO Latin 1 (ISO-8859-1) character set are recognized and letter case will be preserved, so that "Â" becomes "A" and "á"
becomes "a".

This filter only looks for accented characters, it does not filter out other non-ASCII characters.

Factory class: solr.ISOLatin1AccentFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ISOLatin1AccentFilterFactory"/>
</analyzer>

In: "Björn Ångström"

Tokenizer to Filter: "Björn", "Ångström"

Out: "Bjorn", "Angstrom"

Language-Specific Factories

These factories are each designed to work with specific languages. The languages covered here are:

Arabic
Brazilian Portuguese
Bulgarian
Chinese
Simplified Chinese
CJK
Czech

Dutch
Finnish
French
Galician
German
Greek
Hindi

Indonesian
Italian
Kuromoji (Japanese)
Lao, Myanmar, Khmer
Latvian
Norwegian
Persian

Polish
Portuguese
Russian
Spanish
Swedish
Thai
Turkish

Arabic

Solr provides support for the (PDF) stemming algorithm, and Lucene includes an example stopword list.Light-10

http://www.mtholyoke.edu/~lballest/Pubs/arab_stem05.pdf

107Apache Solr Reference Guide 4.4

This algorithm defines both character normalization and stemming, so these are split into two filters to provide more flexibility.

Factory classes: solr.ArabicStemFilterFactory, solr.ArabicNormalizationFilterFactory

Arguments: None

Example:

<analyzer>
 <filter class="solr.ArabicNormalizationFilterFactory"/>
 <filter class="solr.ArabicStemFilterFactory"/>
</analyzer>

Brazilian Portuguese

This is a Java filter written specifically for stemming the Brazilian dialect of the Portuguese language. It uses the Lucene class
. Although that stemmer can be configured to use a list of protected words (whichorg.apache.lucene.analysis.br.BrazilianStemmer

should not be stemmed), this factory does not accept any arguments to specify such a list.

Factory class: solr.BrazilianStemFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.BrazilianStemFilterFactory"/>
</analyzer>

In: "praia praias"

Tokenizer to Filter: "praia", "praias"

Out: "pra", "pra"

Bulgarian

Solr includes a light stemmer for Bulgarian, following (PDF), and Lucene includes an example stopword list.this algorithm

Factory class: solr.BulgarianStemFilterFactory

Arguments: None

Example:

<analyzer>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.BulgarianStemFilterFactory"/>
</analyzer>

Chinese

Chinese Tokenizer

The Chinese Tokenizer is deprecated as of Solr 3.4. Use the instead.solr.StandardTokenizerFactory

Factory class: solr.ChineseTokenizerFactory

Arguments: None

http://members.unine.ch/jacques.savoy/Papers/BUIR.pdf

108Apache Solr Reference Guide 4.4

Example:

<analyzer type="index">
 <tokenizer class="solr.ChineseTokenizerFactory"/>
</analyzer>

Chinese Filter Factory

The Chinese Filter Factory is deprecated as of Solr 3.4. Use the instead.solr.StopFilterFactory

Factory class: solr.ChineseFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ChineseFilterFactory"/>
</analyzer>

Simplified Chinese

For Simplified Chinese, Solr provides support for Chinese sentence and word segmentation with the
 and in the solr.SmartChineseSentenceTokenFilterFactory solr.SmartChineseWordTokenFilterFactory analysis-extras

contrib module. This component includes a large dictionary and segments Chinese text into words with the Hidden Markov Model. To use this
filter, see for instructions on which jars you need to add to your .solr/contrib/analysis-extras/README.txt solr_home/lib

Factory class: solr.SmartChineseWordTokenFilterFactory

Arguments: None

Examples:

To use the default setup with fallback to English Porter stemmer for English words, use:

<analyzer class="org.apache.lucene.analysis.cn.smart.SmartChineseAnalyzer"/>

Or to configure your own analysis setup, use the along with your custom filter setup. TheSmartChineseSentenceTokenizerFactory
sentence tokenizer tokenizes on sentence boundaries and the breaks this further up into words.SmartChineseWordTokenFilter

<analyzer>
 <tokenizer class="solr.SmartChineseSentenceTokenizerFactory"/>
 <filter class="solr.SmartChineseWordTokenFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.PositionFilterFactory" />
</analyzer>

CJK

This tokenizer breaks Chinese, Japanese and Korean language text into tokens. These are not whitespace delimited languages. The tokens
generated by this tokenizer are "doubles", overlapping pairs of CJK characters found in the field text.

Factory class: solr.CJKTokenizerFactory

Arguments: None

Example:

109Apache Solr Reference Guide 4.4

<analyzer type="index">
 <tokenizer class="solr.CJKTokenizerFactory"/>
</analyzer>

Czech

Solr includes a light stemmer for Czech, following , and Lucene includes an example stopword list.this algorithm

Factory class: solr.CzechStemFilterFactory

Arguments: None

Example:

<analyzer>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.CzechStemFilterFactory"/>
<analyzer>

In: "prezidenští, prezidenta, prezidentského"

Tokenizer to Filter: "prezidenští", "prezidenta", "prezidentského"

Out: "preziden", "preziden", "preziden"

Dutch

This is a Java filter written specifically for stemming the Dutch language. It uses the Lucene class
. Although that stemmer can be configured to use a list of protected words (which shouldorg.apache.lucene.analysis.nl.DutchStemmer

not be stemmed), this factory does not accept any arguments to specify such a list.

Another option for stemming Dutch words is to use the Snowball Porter Stemmer with an argument of .language="Dutch"

Factory class: solr.DutchStemFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.DutchStemFilterFactory"/>
</analyzer>

In: "kanaal kanalen"

Tokenizer to Filter: "kanaal", "kanalen"

Out: "kanal", "kanal"

Finnish

Solr includes support for stemming Finnish, and Lucene includes an example stopword list.

Factory class: solr.FinnishLightStemFilterFactory

Arguments: None

Example:

https://dl.acm.org/citation.cfm?id=1598600

110Apache Solr Reference Guide 4.4

 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.FinnishLightStemFilterFactory"/>
</analyzer>

In: "kala kalat"

Tokenizer to Filter: "kala", "kalat"

Out: "kala", "kala"

French

Elision Filter

Removes article elisions from a token stream. This filter primarily applies to the French language and makes use of the ElisionFilter class in
.org.apache.lucene.analysis.fr

Factory class: solr.ElisionFilterFactory

Arguments:

articles: (required) The pathname of a file that contains a list of articles, one per line, to be stripped. Articles are words such as "le", which are
commonly abbreviated, such as (the plane). This file should include the abbreviated form, which precedes the apostrophe. In this case,l'avion
simply " ".l

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ElisionFilterFactory"/>
</analyzer>

In: "L'histoire d'art"

Tokenizer to Filter: "L'histoire", "d'art"

Out: "histoire", "art"

French Light Stem Filter

Solr includes three stemmers for French: one in the , a lighter stemmer called solr.SnowballPorterFilterFactory
, and an even less aggressive stemmer called .solr.FrenchLightStemFilterFactory solr.FrenchMinimalStemFilterFactory

Lucene includes an example stopword list.

Factory classes: solr.FrenchLightStemFilterFactory, solr.FrenchMinimalStemFilterFactory

Arguments: None

Examples:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ElisionFilterFactory"/>
 <filter class="solr.FrenchLightStemFilterFactory"/>
</analyzer>

111Apache Solr Reference Guide 4.4

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ElisionFilterFactory"/>
 <filter class="solr.FrenchMinimalStemFilterFactory"/>
</analyzer>

In: "le chat, les chats"

Tokenizer to Filter: "le", "chat", "les", "chats"

Out: "le", "chat", "le", "chat"

Galician

Solr includes a stemmer for Galician following , and Lucene includes an example stopword list.this algorithm

Factory class: solr.GalicianStemFilterFactory

Arguments: None

Example:

<analyzer>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.GalicianStemFilterFactory"/>
</analyzer>

In: "felizmente Luzes"

Tokenizer to Filter: "felizmente", "luzes"

Out: "feliz", "luz"

German

Solr includes four stemmers for German: one in the , a stemmer called solr.SnowballPorterFilterFactory language="German"
, a lighter stemmer called , and an even less aggressivesolr.GermanStemFilterFactory solr.GermanLightStemFilterFactory

stemmer called . Lucene includes an example stopword list.solr.GermanMinimalStemFilterFactory

Factory classes: solr.GermanStemFilterFactory, solr.LightGermanStemFilterFactory, solr.MinimalGermanStemFilterFactory

Arguments: None

Examples:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.GermanStemFilterFactory"/>
</analyzer>

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.GermanLightStemFilterFactory"/>
</analyzer>

http://bvg.udc.es/recursos_lingua/stemming.jsp

112Apache Solr Reference Guide 4.4

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.GermanMinimalStemFilterFactory"/>
</analyzer>

In: "hund hunden"

Tokenizer to Filter: "hund", "hunden"

Out: "hund", "hund"

Greek

This filter converts uppercase letters in the Greek character set to the equivalent lowercase character.

Factory class: solr.GreekLowerCaseFilterFactory

Arguments:

charset: (optional, default "UnicodeGreek") Specifies the name of the character set to use. Must be "UnicodeGreek", "ISO" or "CP1253".

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you need to index text in these encodings,
please use Java's character set conversion facilities (InputStreamReader, and so on.) during I/O, so that Lucene can analyze
this text as Unicode instead.

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.GreekLowerCaseFilterFactory"/>
</analyzer>

Hindi

Solr includes support for stemming Hindi following (PDF), support for common spelling differences through the this algorithm
, support for encoding differences through the solr.HindiNormalizationFilterFactory solr.IndicNormalizationFilterFactory

following , and Lucene includes an example stopword list.this algorithm

Factory classes: solr.IndicNormalizationFilterFactory, solr.HindiNormalizationFilterFactory, solr.HindiStemFilterFactory

Arguments: None

Example:

 <filter class="solr.IndicNormalizationFilterFactory"/>
 <filter class="solr.HindiNormalizationFilterFactory"/>
 <filter class="solr.HindiStemFilterFactory"/>

Indonesian

Solr includes support for stemming Indonesian (Bahasa Indonesia) following (PDF), and Lucene includes an example stopword list.this algorithm

Factory class: solr.IndonesianStemFilterFactory

Arguments: None

Example:

http://computing.open.ac.uk/Sites/EACLSouthAsia/Papers/p6-Ramanathan.pdf
http://ldc.upenn.edu/myl/IndianScriptsUnicode.html
http://www.illc.uva.nl/Publications/ResearchReports/MoL-2003-02.text.pdf

113Apache Solr Reference Guide 4.4

<analyzer>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.IndonesianStemFilterFactory" stemDerivational="true" />
</analyzer>

In: "sebagai sebagainya"

Tokenizer to Filter: "sebagai", "sebagainya"

Out: "bagai", "bagai"

Italian

Solr includes two stemmers for Italian: one in the , and a lighter stemmersolr.SnowballPorterFilterFactory language="Italian"
called . Lucene includes an example stopword list.solr.ItalianLightStemFilterFactory

Factory class: solr.ItalianStemFilterFactory

Arguments: None

Example:

<analyzer>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ItalianLightStemFilterFactory"/>
</analyzer>

In: "propaga propagare propagamento"

Tokenizer to Filter: "propaga", "propagare", "propagamento"

Out: "propag", "propag", "propag"

Kuromoji (Japanese)

Solr includes support for stemming Kuromoji (Japanese), and Lucene includes an example stopword list. Kuromoji has a search mode (default)
that does segmentation useful for search. A heuristic is used to segment compounds into its parts and the compound itself is kept as a synonym.

With Solr 4, the now is included to normalize Japanese iteration marks.JapaneseIterationMarkCharFilterFactory

You can also make discarding punctuation configurable in the , by setting to (toJapaneseTokenizerFactory discardPunctuation false
show punctuation) or (to discard punctuation), as in the following example:true

Factory class: solr.KuromojiStemFilterFactory

Arguments:

mode: Use search-mode to get a noun-decompounding effect useful for search. Search mode improves segmentation for search at the expense
of part-of-speech accuracy. Valid values for mode are:

normal: default segmentation
search: segmentation useful for search (extra compound splitting)
extended: search mode with unigramming of unknown words (experimental)

For some applications it might be good to use search mode for indexing and normal mode for queries to reduce recall and prevent parts of
compounds from being matched and highlighted.

Kuromoji also has a convenient user dictionary feature that allows overriding the statistical model with your own entries for segmentation,
part-of-speech tags and readings without a need to specify weights. Note that user dictionaries have not been subject to extensive testing. User
dictionary attributes are:

userDictionary: user dictionary filename
: user dictionary encoding (default is UTF-8)userDictionaryEncoding

114Apache Solr Reference Guide 4.4

See for a sample user dictionary file.lang/userdict_ja.txt

Punctuation characters are discarded by default. Use to keep them.discardPunctuation="false"

Example:

<fieldType name="text_ja" positionIncrementGap="100"
autoGeneratePhraseQueries="false">
 <analyzer>
 <tokenizer class="solr.JapaneseTokenizerFactory" mode="search"
userDictionary="lang/userdict_ja.txt"/>
 <filter class="solr.JapaneseBaseFormFilterFactory"/>
 <filter class="solr.JapanesePartOfSpeechStopFilterFactory"
tags="lang/stoptags_ja.txt" enablePositionIncrements="true"/>
 <filter class="solr.CJKWidthFilterFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="lang/stopwords_ja.txt" enablePositionIncrements="true" />
 <filter class="solr.JapaneseKatakanaStemFilterFactory" minimumLength="4"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

Lao, Myanmar, Khmer

Lucene provides support for segmenting these languages into syllables with the in the solr.ICUTokenizerFactory analysis-extras
contrib module. To use this tokenizer, see instructions on which jars you need to addsolr/contrib/analysis-extras/README.txt for
to your .solr_home/lib

Latvian

Solr includes support for stemming Latvian, and Lucene includes an example stopword list.

Factory class: solr.LatvianStemFilterFactory

Arguments: None

Example:

<fieldType name="text_lvstem" class="solr.TextField" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.LatvianStemFilterFactory"/>
 </analyzer>
</fieldType>

In: "tirgiem tirgus"

Tokenizer to Filter: "tirgiem", "tirgus"

Out: "tirg", "tirg"

Norwegian

Solr includes two classes for stemming Norwegian, and .NorwegianLightStemFilterFactory NorwegianMinimalStemFilterFactory
Lucene includes an example stopword list.

Norwegian Light Stemmer

The requires a "two-pass" sort for the -dom and -het endings. This means that in the first pass the wordNorwegianLightStemFilterFactory

115Apache Solr Reference Guide 4.4

"kristendom" is stemmed to "kristen", and then all the general rules apply so it will be further stemmed to "krist". The effect of this is that "kristen,"
"kristendom," "kristendommen," and "kristendommens" will all be stemmed to "krist."

The second pass is to pick up -dom and -het endings. Consider this example:

One pass Two passes

Before After Before After

forlegen forleg forlegen forleg

forlegenhet forlegen forlegenhet forleg

forlegenheten forlegen forlegenheten forleg

forlegenhetens forlegen forlegenhetens forleg

firkantet firkant firkantet firkant

firkantethet firkantet firkantethet firkant

firkantetheten firkantet firkantetheten firkant

Factory class: solr.NorwegianLightStemFilterFactory

Arguments: None

Example:

<fieldType name="text_no" class="solr.TextField" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="lang/stopwords_no.txt" format="snowball" enablePositionIncrements="true"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Norwegian"/>
 <filter class="solr.NorwegianLightStemFilterFactory"/>
 </analyzer>
</fieldType>

In: "Forelskelsen"

Tokenizer to Filter: "forelskelsen"

Out: "forelske"

Norwegian Minimal Stemmer

The stems plural forms of Norwegian nouns only.NorwegianMinimalStemFilterFactory

Factory class: solr.NorwegianMinimalStemFilterFactory

Arguments: None

Example:

116Apache Solr Reference Guide 4.4

<fieldType name="text_no" class="solr.TextField" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="lang/stopwords_no.txt" format="snowball" enablePositionIncrements="true"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Norwegian"/>
 <filter class="solr.NorwegianMinimalStemFilterFactory"/>
 </analyzer>
</fieldType>

In: "Bilens"

Tokenizer to Filter: "bilens"

Out: "bil"

Persian

Persian Filter Factories

Solr includes support for normalizing Persian, and Lucene includes an example stopword list.

Factory class: solr.PersianNormalizationFilterFactory

Arguments: None

Example:

<analyzer>
 <filter class="solr.ArabicNormalizationFilterFactory"/>
 <filter class="solr.PersianNormalizationFilterFactory">
</analyzer>

Polish

Solr provides support for Polish stemming with the in the module.solr.StempelPolishStemFilterFactory contrib/analysis-extras
This component includes an algorithmic stemmer with tables for Polish. To use this filter, see

 for instructions on which jars you need to add to your .solr/contrib/analysis-extras/README.txt solr_home/lib

Factory class: solr.StempelPolishStemFilterFactory

Arguments: None

Example:

<analyzer>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.solr.StempelPolishStemFilterFactory"/>
</analyzer>

In: ""studenta studenci"

Tokenizer to Filter: "studenta", "studenci"

Out: "student", "student"

More information about the Stempel stemmer is available in the Lucene javadocs,

117Apache Solr Reference Guide 4.4

.https://lucene.apache.org/core/4_0_0/analyzers-stempel/index.html

Portuguese

Solr includes four stemmers for Portuguese: one in the , an alternative stemmer called solr.SnowballPorterFilterFactory
, a lighter stemmer called , and an even lesssolr.PortugueseStemFilterFactory solr.PortugueseLightStemFilterFactory

aggressive stemmer called . Lucene includes an example stopword list.solr.PortugueseMinimalStemFilterFactory

Factory class: solr.PortugueseStemFilterFactory, solr.PortugueseLightStemFilterFactory, solr.PortugueseMinimalStemFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.PortugueseStemFilterFactory"/>
</analyzer>

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.PortugueseLightStemFilterFactory"/>
</analyzer>

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.PortugueseMinimalStemFilterFactory"/>
</analyzer>

In: "praia praias"

Tokenizer to Filter: "praia", "praias"

Out: "pra", "pra"

Russian

Russian Letter Tokenizer

This tokenizer breaks Russian language text into tokens. It is similar to LetterTokenizer, but additionally looks up letters in the appropriate
Russian character set.

Factory class: solr.RussianLetterTokenizerFactory

Arguments:

charset: (optional, default "UnicodeRussian") The name of the character set to use. Must be "UnicodeRussian", "KOI8" or "CP1251".

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you need to index text in these encodings,
please use Java's character set conversion facilities (InputStreamReader, and so on.) during I/O, so that Lucene can analyze
this text as Unicode instead.

Example:

https://lucene.apache.org/core/4_0_0/analyzers-stempel/index.html

118Apache Solr Reference Guide 4.4

<analyzer type="index">
 <tokenizer class="solr.RussianLetterTokenizerFactory"/>
</analyzer>

Russian Lower Case Filter

This filter converts uppercase letters in the Russian character set to the equivalent lowercase character.

Factory class: solr.RussianLowerCaseFilterFactory

Arguments:

charset: (optional, default "UnicodeRussian") Specifies the name of the character set to use. Must be "UnicodeRussian", "KOI8" or "CP1251".

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you need to index text in these encodings,
please use Java's character set conversion facilities (InputStreamReader, and so on.) during I/O, so that Lucene can analyze
this text as Unicode instead.

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.RussianLowerCaseFilterFactory"/>
</analyzer>

Russian Stem Filter

Solr includes two stemmers for Russian: one in the , and a lighter stemmersolr.SnowballPorterFilterFactory language="Russian"
called . Lucene includes an example stopword list.solr.RussianLightStemFilterFactory

Factory class: solr.RussianLightStemFilterFactory

Arguments:

charset: (optional, default "UnicodeRussian") Specifies the name of the character set to use. Must be "UnicodeRussian", "KOI8" or "CP1251".

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.4. If you need to index text in these encodings,
please use Java's character set conversion facilities (InputStreamReader, and so on.) during I/O, so that Lucene can analyze
this text as Unicode instead.

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.RussianLowerCaseFilterFactory"/>
 <filter class="solr.RussianLightStemFilterFactory"/>
</analyzer>

Spanish

Solr includes two stemmers for Spanish: one in the , and a lighter stemmersolr.SnowballPorterFilterFactory language="Spanish"
called . Lucene includes an example stopword list.solr.SpanishLightStemFilterFactory

Factory class: solr.SpanishStemFilterFactory

119Apache Solr Reference Guide 4.4

Arguments: None

Example:

<analyzer>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SpanishLightStemFilterFactory"/>
</analyzer>

In: "torear toreara torearlo"

Tokenizer to Filter: "torear", "toreara", "torearlo"

Out: "tor", "tor", "tor"

Swedish

Swedish Stem Filter

Solr includes two stemmers for Swedish: one in the , and a lighter stemmersolr.SnowballPorterFilterFactory language="Swedish"
called . Lucene includes an example stopword list.solr.SwedishLightStemFilterFactory

Factory class: solr.SwedishStemFilterFactory

Arguments: None

Example:

<analyzer>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SwedishLightStemFilterFactory"/>
</analyzer>

In: "kloke klokhet klokheten"

Tokenizer to Filter: "kloke", "klokhet", "klokheten"

Out: "klok", "klok", "klok"

Thai

This filter converts sequences of Thai characters into individual Thai words. Unlike European languages, Thai does not use whitespace to delimit
words.

Factory class: solr.ThaiWordFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ThaiWordFilterFactory"/>
</analyzer>

Turkish

Solr includes support for stemming Turkish through the , as well as support for case-insensitive searchsolr.SnowballPorterFilterFactory
through the , and Lucene includes an example stopword list.solr.TurkishLowerCaseFilterFactory

120Apache Solr Reference Guide 4.4

Factory class: solr.TurkishLowerCaseFilterFactory

Arguments: None

Example:

 <filter class="solr.TurkishLowerCaseFilterFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Turkish" />

Related Topics

LanguageAnalysis

Phonetic Matching

Introduced with Solr v3.6, Beider-Morse Phonetic Matching (BMPM) is a "soundalike" tool that lets you search using a new phonetic matching
system. BMPM helps you search for personal names (or just surnames) in a Solr/Lucene index, and is far superior to the existing phonetic
codecs, such as regular soundex, metaphone, caverphone, etc.

In general, phonetic matching lets you search a name list for names that are phonetically equivalent to the desired name. BMPM is similar to a
soundex search in that an exact spelling is not required. Unlike soundex, it does not generate a large quantity of false hits.

From the spelling of the name, BMPM attempts to determine the language. It then applies phonetic rules for that particular language to
transliterate the name into a phonetic alphabet. If it is not possible to determine the language with a fair degree of certainty, it uses generic
phonetic instead. Finally, it applies language-independent rules regarding such things as voiced and unvoiced consonants and vowels to further
insure the reliability of the matches.

For example, assume that the matches found when searching for Stephen in a database are "Stefan", "Steph", "Stephen", "Steve", "Steven",
"Stove", and "Stuffin". "Stefan", "Stephen", and "Steven" are probably relevant, and are names that you want to see. "Stuffin", however, is
probably not relevant. Also rejected were "Steph", "Steve", and "Stove". Of those, "Stove" is probably not one that we would have wanted. But
"Steph" and "Steve" are possibly ones that you might be interested in.

For Solr, BMPM searching is available for the following languages:

English
French
German
Greek
Hebrew written in Hebrew letters
Hungarian
Italian

Lithuanian and Latvian
Polish
Romanian
Russian written in Cyrillic letters
Russian transliterated into English letters
Spanish
Turkish

The name matching is also applicable to non-Jewish surnames from the countries in which those languages are spoken.

For more information, see here: and .http://stevemorse.org/phoneticinfo.htm http://stevemorse.org/phonetics/bmpm.htm.

Running Your Analyzer

Once you've defined a field type in and specified the analysis steps that you want applied to it, you should test it out to make sureschema.xml
that it behaves the way you expect it to. Luckily, there is a very handy page in the Solr that lets you do just that. You can invokeadmin interface
the analyzer for any text field, provide sample input, and display the resulting token stream.

For example, assume that the following field type definition has been added to :schema.xml

http://wiki.apache.org/solr/LanguageAnalysis
http://stevemorse.org/phoneticinfo.htm
http://stevemorse.org/phonetics/bmpm.htm

121Apache Solr Reference Guide 4.4

<fieldType name="mytextfield" class="solr.TextField">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.HyphenatedWordsFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

The objective here (during indexing) is to reconstruct hyphenated words, which may have been split across lines in the text, then to set all words
to lowercase. For queries, you want to skip the de-hyphenation step.

To test this out, point your browser at the of the Solr Admin Web interface. By default, this will be at the following URL (adjust theAnalysis Screen
hostname and/or port to match your configuration): . You should see a page like this.http://localhost:8983/solr/#/collection1/analysis

Empty Analysis screen

We want to test the field type definition for "mytextfield", defined above. The drop-down labeled "Analyse Fieldname/FieldType" allows choosing
the field or field type to use for the analysis.

There are two "Field Value" boxes, one for how text will be analyzed during indexing and a second for how text will be analyzed for query
processing. In the "Field Value (Index)" box enter some sample text "Super-computer" in this example) to be processed by the analyzer. We will
leave the query field value empty for now.

The result we expect is that will join the hyphenated pair "Super-" and "computer" into the single wordHyphenatedWordsFilter
"Supercomputer", and then will set it to "supercomputer". Let's see what happens:LowerCaseFilter

http://localhost:8983/solr/#/collection1/analysis

122Apache Solr Reference Guide 4.4

Running index-time analyzer, verbose output.

The result is two distinct tokens rather than the one we expected. What went wrong? Looking at the first token that came out of
, we can see the trailing hyphen has been stripped off of "Super-". Checking the documentation for ,StandardTokenizer StandardTokenizer

we see that it treats all punctuation characters as delimiters and discards them. What we really want in this case is a whitespace tokenizer that will
preserve the hyphen character when it breaks the text into tokens.

Let's make this change and try again:

<fieldType name="mytextfield" class="solr.TextField">
 <analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.HyphenatedWordsFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

Re-submitting the form by clicking "Analyse Values" again, we see the result in the screen shot below.

123Apache Solr Reference Guide 4.4

Using WhitespaceTokenizer, expected results.

That's more like it. Because the whitespace tokenizer preserved the trailing hyphen on the first token, was able toHyphenatedWordsFilter
reconstruct the hyphenated word, which then passed it on to , where capital letters are set to lowercase.LowerCaseFilter

Now let's see what happens when invoking the analyzer for query processing. For query terms, we don't want to do de-hyphenation and we do
want to discard punctuation, so let's try the same input on it. We'll copy the same text to the "Field Value (Query)" box and clear the one for index
analysis. We'll also include the full, unhyphenated word as another term to make sure it is processed to lower case as we expect. Submitting
again yields these results:

Query-time analyzer, good results.

We can see that for queries the analyzer behaves the way we want it to. Punctuation is stripped out, doesn't run, andHyphenatedWordsFilter
we wind up with the three tokens we expected.

Refer to the section for more information about conducting field analysisRunning Field Analysis to Test Analyzers, Tokenizers, and TokenFilters
through the Admin Web interface.

124Apache Solr Reference Guide 4.4

Indexing and Basic Data Operations
This section describes how Solr adds data to its index. It covers the following topics:

What Is Indexing?: An overview of Solr's indexing process.

Uploading Data with Solr Cell using Apache Tika: Information about using the Solr Cell framework to upload data for indexing.

Uploading Data with Index Handlers: Information about using Solr's Index Handlers to upload XML and CSV data.

Uploading Structured Data Store Data with the Data Import Handler: Information about uploading and indexing data from a structured data store.

Detecting Languages During Indexing: Information about using language identification during the indexing process.

UIMA Integration: Information about integrating Solr with Apache's Unstructured Information Management Architecture (UIMA). UIMA lets you
define custom pipelines of Analysis Engines that incrementally add metadata to your documents as annotations.

Content Streams: Information about streaming content to Solr Request Handlers.

What Is Indexing?

This section describes the process of indexing: adding content to a Solr index and, if necessary, modifying that content or deleting it. By adding
content to an index, we make it searchable by Solr.

A Solr index can accept data from many different sources, including XML files, comma-separated value (CSV) files, data extracted from tables in
a database, and files in common file formats such as Microsoft Word or PDF.

Here are the three most common ways of loading data into a Solr index:

Using the framework built on Apache Tika for ingesting binary files or structured files such as Office, Word, PDF, and otherSolr Cell
proprietary formats.

Uploading XML files by sending HTTP requests to the Solr server from any environment where such requests can be generated.

Writing a custom Java application to ingest data through Solr's Java Client API (which is described in more detail in . UsingClient APIs
the Java API may be the best choice if you're working with an application, such as a Content Management System (CMS), that offers a
Java API.

Regardless of the method used to ingest data, there is a common basic data structure for data being fed into a Solr index: a containingdocument
multiple each with a and containing which may be empty. One of the fields is usually designated as a unique ID fieldfields, name content,
(analogous to a primary key in a database), although the use of a unique ID field is not strictly required by Solr.

If the field name is defined in the file that is associated with the index, then the analysis steps associated with that field will beschema.xml
applied to its content when the content is tokenized. Fields that are not explicitly defined in the schema will either be ignored or mapped to a
dynamic field definition (see), if one matching the field name exists.Documents, Fields, and Schema Design

For more information on indexing in Solr, see the .Solr Wiki

The Solr Example Directory

The directory includes a sample Solr implementation, along with sample documents for uploading into an index. You will find theexample/
example docs in .$SOLR_HOME/example/exampledocs

The Utility for Transferring Filescurl

Many of the instructions and examples in this section make use of the utility for transferring content through a URL. posts andcurl curl
retrieves data over HTTP, FTP, and many other protocols. Most Linux distributions include a copy of . You'll find curl downloads for Linux,curl
Windows, and many other operating systems at . Documentation for is available here: http://curl.haxx.se/download.html curl

.http://curl.haxx.se/docs/manpage.html

https://wiki.apache.org/solr/FrontPage
http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html

125Apache Solr Reference Guide 4.4

Using or other command line tools for posting data is just fine for examples or tests, but it's not the recommended methodcurl
for achieving the best performance for updates in production environments. You will achieve better performance with Solr Cell
or the other methods described in this section.

Instead of , you can use utilities such as GNU () or manage GETs and POSTScurl wget http://www.gnu.org/software/wget/
with Perl, although the command line options will differ.

Uploading Data with Solr Cell using Apache Tika

Solr uses code from the project to provide a framework for incorporating many different file-format parsers such as Apache Tika Apache PDFBox
and into Solr itself. Working with this framework, Solr's can use Tika to support uploading binaryApache POI ExtractingRequestHandler
files, including files in popular formats such as Word and PDF, for data extraction and indexing.

As of version 4.4, Solr uses Apache Tika v1.4.

When this framework was under development, it was called the Solr Content Extraction Library or CEL; from that abbreviation came this
framework's name: Solr Cell.

If you want to supply your own for Solr to use, you can extend the ExtractingRequestHandler and override the ContentHandler
 method. This factory is responsible for constructing the that interacts with Tika, and allows literals tocreateFactory() SolrContentHandler

override Tika-parsed values. Set the parameter , which normally defaults to *true, to *false to append Tika-parsed values toliteralsOverride
literal values.

For more information on Solr's Extracting Request Handler, see .https://wiki.apache.org/solr/ExtractingRequestHandler

Topics covered in this section:

Key Concepts
Trying out Tika with the Solr Example Directory
Input Parameters
Order of Operations
Configuring the Solr ExtractingRequestHandler
Indexing Encrypted Documents with the ExtractingUpdateRequestHandler
Examples
Sending Documents to Solr with a POST
Sending Documents to Solr with Solr Cell and SolrJ
Related Topics

Key Concepts

When using the Solr Cell framework, it is helpful to keep the following in mind:

Tika will automatically attempt to determine the input document type (Word, PDF, HTML) and extract the content appropriately. If you like,
you can explicitly specify a MIME type for Tika with the parameter. stream.type

Tika works by producing an XHTML stream that it feeds to a SAX ContentHandler. SAX is a common interface implemented for many
different XML parsers. For more information, see . http://www.saxproject.org/quickstart.html

Solr then responds to Tika's SAX events and creates the fields to index.

Tika produces metadata such as Title, Subject, and Author according to specifications such as the DublinCore. See
 for the file types supported. http://tika.apache.org/1.0/formats.html

Tika adds all the extracted text to the field. This field is defined as "stored" in . It is also copied to the fieldcontent schema.xml text
with a rule. copyField

You can map Tika's metadata fields to Solr fields. You can also boost these fields.

You can pass in literals for field values. Literals will override Tika-parsed values, including fields in the Tika metadata object, the Tika
content field, and any "captured content" fields.

You can apply an XPath expression to the Tika XHTML to restrict the content that is produced.

http://www.gnu.org/software/wget/
http://lucene.apache.org/tika/
http://incubator.apache.org/pdfbox/
http://poi.apache.org/index.html
http://wiki.apache.org/solr/ContentHandler
http://wiki.apache.org/solr/SolrContentHandler
https://wiki.apache.org/solr/ExtractingRequestHandler
http://www.saxproject.org/quickstart.html
http://tika.apache.org/1.0/formats.html

126Apache Solr Reference Guide 4.4

While Apache Tika is quite powerful, it is not perfect and fails on some files. PDF files are particularly problematic, mostly due to
the PDF format itself. In case of a failure processing any file, the does not have a secondaryExtractingRequestHandler
mechanism to try to extract some text from the file; it will throw an exception and fail.

Trying out Tika with the Solr Example Directory

You can try out the Tika framework using the example application included in Solr.

Start the Solr example server:

cd example -jar start.jar

In a separate window go to the directory (which contains some nice example docs), or the site directory if you built Solr from source, anddocs/
send Solr a file via HTTP POST:

curl 'http://localhost:8983/solr/update/extract?literal.id=doc1&commit=true' -F
"myfile=@tutorial.html"

The URL above calls the Extraction Request Handler, uploads the file and assigns it the unique ID . Here's a closer look attutorial.html doc1
the components of this command:

The parameter provides the necessary unique ID for the document being indexed.literal.id=doc1

The causes Solr to perform a commit after indexing the document, making it immediately searchable. Forcommit=true parameter
optimum performance when loading many documents, don't call the commit command until you are done.

The flag instructs curl to POST data using the Content-Type and supports the uploading of binary files. The-F multipart/form-data
@ symbol instructs curl to upload the attached file.

The argument needs a valid path, which can be absolute or relative (for example, myfile=@tutorial.html
 if you are still in exampledocs directory).myfile=@../../site/tutorial.html

Now you should be able to execute a query and find that document (open the following link in your browser):
.http://localhost:8983/solr/select?q=tutorial

You may notice that although you can search on any of the text in the sample document, you may not be able to see that text when the document
is retrieved. This is simply because the "content" field generated by Tika is mapped to the Solr field called , which is indexed but not stored.text
This operation is controlled by default map rule in the handler in , and its behavior can be easily changed/update/extract solrconfig.xml
or overridden. For example, to store and see all metadata and content, execute the following:

curl
'http://localhost:8983/solr/update/extract?literal.id=doc1&uprefix=attr_&fmap.content=attr_content&commit=true'
-F "myfile=@tutorial.html"

In this command, the parameter causes all generated fields that aren't defined in the schema to be prefixed with , whichuprefix=attr_ attr_
is a dynamic field that is stored.

The parameter overrides the default causing the content to be added to the fmap.content=attr_content fmap.content=text
 field instead.attr_content

Then run this command to query the document: http://localhost:8983/solr/select?q=attr_content:tutorial

Input Parameters

The table below describes the parameters accepted by the Extraction Request Handler.

Parameter Description

http://localhost:8983/solr/select?q=tutorial
http://localhost:8983/solr/select?q=attr_content:tutorial

127Apache Solr Reference Guide 4.4

1.

2.
3.
4.

boost.< >fieldname Boosts the specified field by the defined float amount. (Boosting a field alters its importance in a query response. To
learn about boosting fields, see .)Searching

capture Captures XHTML elements with the specified name for a supplementary addition to the Solr document. This
parameter can be useful for copying chunks of the XHTML into a separate field. For instance, it could be used to
grab paragraphs () and index them into a separate field. Note that content is still also captured into the overall<p>
"content" field.

captureAttr Indexes attributes of the Tika XHTML elements into separate fields, named after the element. If set to true, for
example, when extracting from HTML, Tika can return the href attributes in <a> tags as fields named "a". See the
examples below.

commitWithin Add the document within the specified number of milliseconds.

date.formats Defines the date format patterns to identify in the documents.

defaultField If the uprefix parameter (see below) is not specified and a field cannot be determined, the default field will be used.

extractOnly Default is false. If true, returns the extracted content from Tika without indexing the document. This literally includes
the extracted XHTML as a string in the response. When viewing manually, it may be useful to use a response
format other than XML to aid in viewing the embedded XHTML tags.For an example, see

.http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

extractFormat Default is "xml", but the other option is "text". Controls the serialization format of the extract content. The xml format
is actually XHTML, the same format that results from passing the command to the Tika command line-x
application, while the text format is like that produced by Tika's command. This parameter is valid only if -t

 is set to true.extractOnly

fmap.< >source_field Maps (moves) one field name to another. The must be a field in incoming documents, and thesource_field
value is the Solr field to map to. Example: causes the data in the field generatedfmap.content=text content
by Tika to be moved to the Solr's field.text

literal.< >fieldname Populates a field with the name supplied with the specified value for each document. The data can be multivalued if
the field is multivalued.

literalsOverride If true (the default), literal field values will override other values with the same field name. If false, literal values
defined with will be appended to data already in the fields extracted from Tika. If setting literal.< >fieldname

 to "false", the field must be multivalued.literalsOverride

lowernames Values are "true" or "false". If true, all field names will be mapped to lowercase with underscores, if needed. For
example, "Content-Type" would be mapped to "content_type."

multipartUploadLimitInKB Useful if uploading very large documents, this defines the KB size of documents to allow.

passwordsFile Defines a file path and name for a file of file name to password mappings.

resource.name Specifies the optional name of the file. Tika can use it as a hint for detecting a file's MIME type.

resource.password Defines a password to use for a password-protected PDF or OOXML file

tika.config Defines a file path and name to a customized Tika configuration file. This is only required if you have customized
your Tika implementation.

uprefix Prefixes all fields that are not defined in the schema with the given prefix. This is very useful when combined with
dynamic field definitions. Example: would effectively ignore all unknown fields generated byuprefix=ignored_
Tika given the example schema contains <dynamicField name="ignored_*" type="ignored"/>

xpath When extracting, only return Tika XHTML content that satisfies the given XPath expression. See
 for details on the format of Tika XHTML. See also http://tika.apache.org/1.0/index.html

.http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

Order of Operations

Here is the order in which the Solr Cell framework, using the Extraction Request Handler and Tika, processes its input.

Tika generates fields or passes them in as literals specified by . If ,literal.<fieldname>=<value> literalsOverride=false
literals will be appended as multi-value to the Tika-generated field.
If , Tika maps fields to lowercase.lowernames=true
Tika applies the mapping rules specified by parameters.fmap.source=target
If is specified, any unknown field names are prefixed with that value, else if is specified, any unknown fieldsuprefix defaultField
are copied to the default field.

Configuring the Solr ExtractingRequestHandler

http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://tika.apache.org/1.0/index.html
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

128Apache Solr Reference Guide 4.4

If you are not working in the supplied directory, you must copy all libraries from into a directoryexample/solr example/solr/libs libs
within your own solr directory or to a directory you've specified in using the new directive. The solrconfig.xml libs

 is not incorporated into the Solr WAR file, so you have to install it separately.ExtractingRequestHandler

Here is an example of configuring the in .ExtractingRequestHandler solrconfig.xml

<requestHandler name="/update/extract"
class="org.apache.solr.handler.extraction.ExtractingRequestHandler">
 <lst name="defaults">
 <str name="fmap.Last-Modified">last_modified</str>
 <str name="uprefix">ignored_</str>
 </lst>
 <!--Optional. Specify a path to a tika configuration file. See the Tika docs for
details.-->
 <str name="tika.config">/my/path/to/tika.config</str>
 <!-- Optional. Specify one or more date formats to parse. See
DateUtil.DEFAULT_DATE_FORMATS
 for default date formats -->
 <lst name="date.formats">
 <str>yyyy-MM-dd</str>
 </lst>
 </requestHandler>

In the defaults section, we are mapping Tika's Last-Modified Metadata attribute to a field named . We are also telling it to ignorelast_modified
undeclared fields. These are all overridden parameters.

The entry points to a file containing a Tika configuration. The allows you to specify various tika.config date.formats
 date formats for working with transforming extracted input to a Date. Solr comes configured with thejava.text.SimpleDateFormats

following date formats (see the in Solr):DateUtil

yyyy-MM-dd'T'HH:mm:ss'Z'
yyyy-MM-dd'T'HH:mm:ss
yyyy-MM-dd
yyyy-MM-dd hh:mm:ss
yyyy-MM-dd HH:mm:ss
EEE MMM d hh:mm:ss z yyyy
EEE, dd MMM yyyy HH:mm:ss zzz
EEEE, dd-MMM-yy HH:mm:ss zzz
EEE MMM d HH:mm:ss yyyy

You may also need to adjust the attribute as follows if you are submitting very large documents.multipartUploadLimitInKB

 <requestDispatcher handleSelect="true" >
 <requestParsers enableRemoteStreaming="false" multipartUploadLimitInKB="20480" />
 ...

Multi-Core Configuration

For a multi-core configuration, specify in the section of in order for Solr to find the JAR files in sharedLib='lib' <solr/> solr.xml
.example/solr/lib

For more information about Solr cores, see .The Well-Configured Solr Instance

Indexing Encrypted Documents with the ExtractingUpdateRequestHandler

The ExtractingRequestHandler will decrypt encrypted files and index their content if you supply a password in either onresource.password
the request, or in a file.passwordsFile

In the case of , the file supplied must be formatted so there is one line per rule. Each rule contains a file name regularpasswordsFile
expression, followed by "=", then the password in clear-text. Because the passwords are in clear-text, the file should have strict access
restrictions.

129Apache Solr Reference Guide 4.4

This is a comment
myFileName = myPassword
.*\.docx$ = myWordPassword
.*\.pdf$ = myPdfPassword

Examples

Metadata

As mentioned before, Tika produces metadata about the document. Metadata describes different aspects of a document, such as the author's
name, the number of pages, the file size, and so on. The metadata produced depends on the type of document submitted. For instance, PDFs
have different metadata than Word documents do.

In addition to Tika's metadata, Solr adds the following metadata (defined in):ExtractingMetadataConstants

Solr Metadata Description

stream_name The name of the Content Stream as uploaded to Solr. Depending on how the file is uploaded, this may or may not be
set

stream_source_info Any source info about the stream. (See the section on Content Streams later in this section.)

stream_size The size of the stream in bytes.

stream_content_type The content type of the stream, if available.

We recommend that you try using the option to discover which values Solr is setting for these metadataextractOnly
elements.

Examples of Uploads Using the Extraction Request Handler

Capture and Mapping

The command below captures tags separately, and then maps all the instances of that field to a dynamic field named .<div> foo_t

curl
"http://localhost:8983/solr/update/extract?literal.id=doc2&captureAttr=true&defaultField=text&fmap.div=foo_t&capture=div"
-F "tutorial=@tutorial.pdf"

Capture, Mapping, and Boosting

The command below captures tags separately, maps the field to a dynamic field named , then boosts by 3.<div> foo_t foo_t

curl
"http://localhost:8983/solr/update/extract?literal.id=doc3&captureAttr=true&defaultField=text&capture=div&fmap.div=foo_t&boost.foo_t=3"
-F "tutorial=@tutorial.pdf"

Using Literals to Define Your Own Metadata

To add in your own metadata, pass in the literal parameter along with the file:

130Apache Solr Reference Guide 4.4

curl
"http://localhost:8983/solr/update/extract?literal.id=doc4&captureAttr=true&defaultField=text&capture=div&fmap.div=foo_t&boost.foo_t=3&literal.blah_s=Bah"
-F "tutorial=@tutorial.pdf"

XPath

The example below passes in an XPath expression to restrict the XHTML returned by Tika:

curl
"http://localhost:8983/solr/update/extract?literal.id=doc5&captureAttr=true&defaultField=text&capture=div&fmap.div=foo_t&boost.foo_t=3&literal.id=id&xpath=/xhtml:html/xhtml:body/xhtml:div/descendant:node()"
-F "tutorial=@tutorial.pdf"

Extracting Data without Indexing It

Solr allows you to extract data without indexing. You might want to do this if you're using Solr solely as an extraction server or if you're interested
in testing Solr extraction.

The example below sets the to extract data without indexing it.extractOnly=true parameter

curl "http://localhost:8983/solr/update/extract?&extractOnly=true" --data-binary
@tutorial.html -H 'Content-type:text/html'

The output includes XML generated by Tika (and further escaped by Solr's XML) using a different output format to make it more readable:

curl "http://localhost:8983/solr/update/extract?&extractOnly=true&wt=ruby&indent=true"
--data-binary @tutorial.html -H 'Content-type:text/html'

Sending Documents to Solr with a POST

The example below streams the file as the body of the POST, which does not, then, provide information to Solr about the name of the file.

curl "http://localhost:8983/solr/update/extract?literal.id=doc5&defaultField=text"
--data-binary @tutorial.html -H 'Content-type:text/html'

Sending Documents to Solr with Solr Cell and SolrJ

SolrJ is a Java client that you can use to add documents to the index, update the index, or query the index. You'll find more information on SolrJ
in .Client APIs

Here's an example of using Solr Cell and SolrJ to add documents to a Solr index.

First, let's use SolrJ to create a new SolrServer, then we'll construct a request containing a ContentStream (essentially a wrapper around a file)
and sent it to Solr:

131Apache Solr Reference Guide 4.4

public class SolrCellRequestDemo {
 public static void main (String[] args){color} throws IOException,
SolrServerException {
 SolrServer server = new HttpSolrServer("http://localhost:8983/solr");
 ContentStreamUpdateRequest req = new
ContentStreamUpdateRequest("/update/extract");
 req.addFile(new File("apache-solr/site/features.pdf"));
 req.setParam(ExtractingParams.EXTRACT_ONLY, "true");
 NamedList<Object> result = server.request(req);
 System.out.println("Result: " + result);
}

This operation streams the file into the Solr index.features.pdf

The sample code above calls the extract command, but you can easily substitute other commands that are supported by Solr Cell. The key class
to use is the , which makes sure the ContentStreams are set properly. SolrJ takes care of the rest.ContentStreamUpdateRequest

Note that the is not just specific to Solr Cell. You can send CSV to the CSV Update handler and to any otherContentStreamUpdateRequest
Request Handler that works with Content Streams for updates.

Related Topics

ExtractingRequestHandler

Uploading Data with Index Handlers

Index Handlers are Update Handlers designed to add, delete and update documents to the index. Solr includes several of these to allow indexing
documents in XML, CSV and JSON.

The example URLs given here reflect the handler configuration in the supplied . If the name associated with the handler issolrconfig.xml
changed then the URLs will need to be modified. It is quite possible to access the same handler using more than one name, which can be useful if
you wish to specify different sets of default options.

New now default to the field if it is the appropriate type for configured fields. The processors automatically addUpdateProcessors uniqueKey
fields with new UUIDs and Timestamps to . These work similarly to the <field default="..."/> option in , butSolrInputDocuments schema.xml
are applied in the . They may be used prior to other , or to generate a field valueUpdateProcessorChain UpdateProcessors uniqueKey
when using the (i.e., SolrCloud), , DistributedUpdateProcessor TimestampUpdateProcessorFactory

, and .UUIDUpdateProcessorFactory DefaultValueUpdateProcessorFactory

Index Handlers covered in this section:

Combined UpdateRequestHandlers
XMLUpdateRequestHandler for XML-formatted Data
XSLTRequestHandler to Transform XML Content
CSVRequestHandler for CSV Content
Using the JSONRequestHandler for JSON Content
Updating Only Part of a Document
Using SimplePostTool
Indexing Using SolrJ

Combined UpdateRequestHandlers

For the separate XML, CSV, JSON, and javabin update request handlers explained below, Solr provides a single , andRequestHandler
chooses the appropriate based on the header, entered as the (query type) parameter matching theContentStreamLoader Content-Type qt
name of registered handlers. The "standard" request handler is the default and will be used if is not specified in the request.qt

 <requestHandler name="standard" />
 <requestHandler name="custom" />

http://wiki.apache.org/solr/ExtractingRequestHandler

132Apache Solr Reference Guide 4.4

Configuring Shard Handlers for Distributed Searches

Inside the RequestHandler, you can configure and specify the shard handler used for distributed search. You can also plug in custom shard
handlers as well.

Configuring the standard handler, set up the configuration as in this example:

<requestHandler name="standard" default="true">
 <!-- other params go here -->
 <shardHandlerFactory>
 <int name="socketTimeOut">1000</int>
 <int name="connTimeOut">5000</int>
 </shardHandler>
 </requestHandler>

The parameters that can be specified are as follows:

Parameter Default Explanation

socketTimeout default: 0 (use OS
default)

The amount of time in ms that a socket is allowed to wait

connTimeout default: 0 (use OS
default)

The amount of time in ms that is accepted for binding / connection a socket

maxConnectionsPerHost default: 20 The maximum number of connections that is made to each individual shard in a distributed
search

corePoolSize default: 0 The retained lowest limit on the number of threads used in coordinating distributed search

maximumPoolSize default:
Integer.MAX_VALUE

The maximum number of threads used for coordinating distributed search

maxThreadIdleTime default: 5 seconds The amount of time to wait for before threads are scaled back in response to a reduction in
load

sizeOfQueue default: -1 If specified, the thread pool will use a backing queue instead of a direct handoff buffer. High
throughput systems will want to configure this to be a direct hand off (with -1). Systems that
desire better latency will want to configure a reasonable size of queue to handle variations in
requests.

fairnessPolicy default: false Chooses the JVM specifics dealing with fair policy queuing. If enabled, distributed searches
will be handled in a First in - First out method at a cost to throughput. If disabled, throughput
will be favored over latency.

XMLUpdateRequestHandler for XML-formatted Data

Configuration

The default configuration file has the update request handler configured by default.

<requestHandler name="/update" class="solr.XmlUpdateRequestHandler" />

Adding Documents

Documents are added to the index by sending an XML message to the update handler.

The XML schema recognized by the update handler is very straightforward:

The element introduces one more documents to be added.<add>
The element introduces the fields making up a document.<doc>
The element presents the content for a specific field.<field>

For example:

133Apache Solr Reference Guide 4.4

<add>
 <doc>
 <field name="authors">Patrick Eagar</field>
 <field name="subject">Sports</field>
 <field name="dd">796.35</field>
 <field name="numpages">128</field>
 <field name="desc"></field>
 <field name="price">12.40</field>
 <field name="title" boost="2.0">Summer of the all-rounder: Test and championship
cricket in England 1982</field>
 <field name="isbn">0002166313</field>
 <field name="yearpub">1982</field>
 <field name="publisher">Collins</field>
 </doc>
 <doc boost="2.5">
 ...
 </doc>
</add>

If the document schema defines a unique key, then an operation silently replaces a document in the index with the same unique key,/update
unless the element sets the attribute to . If no unique key has been defined, indexing performance is somewhat faster,<add> allowDups true
as no search has to be made for an existing document.

Each element has certain optional attributes which may be specified.

Command Command Description Optional
Parameter

Parameter Description

<add> Introduces one or more documents to be
added to the index.

commitWithin=
number

Add the document within the specified number of milliseconds

<doc> Introduces the definition of a specific
document.

boost=float Default is 1.0. Sets a boost value for the document.To learn more
about boosting, see .Searching

<field> Defines a field within a document. boost=float Default is 1.0. Sets a boost value for the field.

Other optional parameters for , including , , and , are now<add> allowDups overwritePending overwriteCommitted
deprecated. However, you can specify for XML updates to avoid overwriting.overwrite=false

Commit and Optimize Operations

The operation writes all documents loaded since the last commit to one or more segment files on the disk. Before a commit has been<commit>
issued, newly indexed content is not visible to searches. The commit operation opens a new searcher, and triggers any event listeners that have
been configured.

Commits may be issued explicitly with a message, and can also be triggered from parameters in <commit/> <autocommit> solrconfig.xml
.

The operation requests Solr to merge internal data structures in order to improve search performance. For a large index,<optimize>
optimization will take some time to complete, but by merging many small segment files into a larger one, search performance will improve. If you
are using Solr's replication mechanism to distribute searches across many systems, be aware that after an optimize, a complete index will need to
be transferred. In contrast, post-commit transfers are usually much smaller.

The and elements accept these optional attributes:<commit> <optimize>

Optional
Attribute

Description

maxSegments Default is 1. Optimizes the index to include no more than this number of segments.

waitFlush Default is true. Blocks until index changes are flushed to disk.

134Apache Solr Reference Guide 4.4

waitSearcher Default is true. Blocks until a new searcher is opened and registered as the main query searcher, making the changes
visible.

expungeDeletes Default is false. Merges segments and removes deleted documents.

Here are examples of <commit> and <optimize> using optional attributes:

<commit waitFlush="false" waitSearcher="false"/>
<commit waitFlush="false" waitSearcher="false" expungeDeletes="true"/>
<optimize waitFlush="false" waitSearcher="false"/>

Delete Operations

Documents can be deleted from the index in two ways. "Delete by ID" deletes the document with the specified ID, and can be used only if a
UniqueID field has been defined in the schema. "Delete by Query" deletes all documents matching a specified query, although iscommitWithin
ignored for a Delete by Query. A single delete message can contain multiple delete operations.

<delete>
 <id>0002166313</id>
 <id>0031745983</id>
 <query>subject:sport</query>
 <query>publisher:penguin</query>
</delete>

Rollback Operations

The rollback command rolls back all add and deletes made to the index since the last commit. It neither calls any event listeners nor creates a
new searcher. Its syntax is simple: .<rollback/>

Using to Perform Updates with the Update Request Handler.curl

You can use the utility to perform any of the above commands, using its option to append the XML message to the curl --data-binary curl
command, and generating a HTTP POST request. For example:

curl http://localhost:8983/update -H "Content-Type: text/xml" --data-binary '
<add>
 <doc>
 <field name="authors">Patrick Eagar</field>
 <field name="subject">Sports</field>
 <field name="dd">796.35</field>
 <field name="isbn">0002166313</field>
 <field name="yearpub">1982</field>
 <field name="publisher">Collins</field>
 </doc>
</add>'

For posting XML messages contained in a file, you can use the alternative form:

curl http://localhost:8983/update -H "Content-Type: text/xml"
 --data-binary @myfile.xml

Short requests can also be sent using a HTTP GET command, URL-encoding the request, as in the following. Note the escaping of "<" and ">":

135Apache Solr Reference Guide 4.4

curl http://localhost:8983/update?stream.body=%3Ccommit/%3E

Responses from Solr take the form shown here:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">127</int>
 </lst>
</response>

The status field will be non-zero in case of failure. The servlet container will generate an appropriate HTML-formatted message in the case of an
error at the HTTP layer.

A Simple Cross-Platform Posting Tool

For demo purposes, the file includes a cross-platform Java tool for POST-ing XML documents.$SOLR/example/exampledocs/post.jar
Open a window and run:

java -jar post.jar <list of files with messages>

By default, this will contact the server at . The "-help" option outputs the following information on its usage:localhost:8983

SimplePostTool: version 1.2

This is a simple command line tool for POSTing raw XML to a Solr port. XML data can be read from files specified as command line args; as raw
commandline arg strings; or via STDIN.

Examples:

 java -Ddata=files -jar post.jar *.xml
 java -Ddata=args -jar post.jar '<delete><id>42</id></delete>'
 java -Ddata=stdin -jar post.jar < hd.xml

Other options controlled by System Properties include the Solr URL to POST to, and whether a commit should be executed. These are the
defaults for all System Properties.

 -Ddata=files
 -Durl=[http://localhost:8983/solr/update|http://localhost:8983/solr/update]
 -Dcommit=yes

For more information about the XML Update Request Handler, see .https://wiki.apache.org/solr/UpdateXmlMessages

XSLTRequestHandler to Transform XML Content

Configuration

The default configuration file has the update request handler configured by default, although the "lazy load" flag is set.

https://wiki.apache.org/solr/UpdateXmlMessages

136Apache Solr Reference Guide 4.4

The XSLTRequestHandler allows you to index any XML data with the . You must have an XSLT stylesheet in theXML command<tr>
solr/conf/xslt directory that can transform the incoming data to the expected format.<add><doc/></add>

<requestHandler name="/update/xslt" startup="lazy"
class="solr.XsltUpdateRequestHandler"/>

Here is an example XSLT stylesheet:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="/">
 <add>
 <xsl:apply-templates select="/random/document"/>
 </add>
 </xsl:template>

 <xsl:template match="document">

 <doc boost="5.5">
 <xsl:apply-templates select="*"/>
 </doc>
 </xsl:template>

 <xsl:template match="node">
 <field name="{@name}">
 <xsl:if test="@enhance!=''">
 <xsl:attribute name="boost"><xsl:value-of select="@enhance"/></xsl:attribute>
 </xsl:if>
 <xsl:value-of select="@value"/>
 </field>
 </xsl:template>

</xsl:stylesheet>

Attaching the stylesheet "updateXml.xsl" transforms a search result to Solr's syntax. One example is to copy a Solr1.3 index (whichUpdateXml
does not have CSV response writer) into a format which can be indexed into another Solr file (provided that all fields are stored):

http://localhost:8983/solr/select?q=*:*&wt=xslt&tr=updateXml.xsl&rows=1000

You can also use the stylesheet in to transform an index when updating:XsltUpdateRequestHandler

curl "http://localhost:8983/solr/update/xslt?commit=true&tr=updateX

CSVRequestHandler for CSV Content

Configuration

The default configuration file has the update request handler configured by default, although the "lazy load" flag is set.

<requestHandler name="/update/csv" class="solr.CSVRequestHandler" startup="lazy" />

http://xmlstar.sourceforge.net/doc/UG/ch04s02.html

137Apache Solr Reference Guide 4.4

Parameters

The CSV handler allows the specification of many parameters in the URL in the form: .f.parameter.optional_fieldname=value

The table below describes the parameters for the update handler.

Parameter Usage Global
(g) or
Per
Field (f)

Example

separator Character used as field separator; default is "," g,(f: see
split)

separator=%

trim If true, remove leading and trailing whitespace from values. Default=false. g,f f.isbn.trim=true
trim=false

header Set to true if first line of input contains field names. These will be used if the
 parameter is absent.field_name

g

field_name Comma separated list of field names to use when adding documents. g field_name=isbn,price,title

literal.<field_name> Comma separated list of field names to use when processing literal values. g literal.color=red,blue,black

skip Comma separated list of field names to skip. g skip=uninteresting,shoesize

skipLines Number of lines to discard in the input stream before the CSV data starts,
including the header, if present. Default=0.

g skipLines=5

encapsulator The character optionally used to surround values to preserve characters such as
the CSV separator or whitespace. This standard CSV format handles the
encapsulator itself appearing in an encapsulated value by doubling the
encapsulator.

g,(f: see
split)

encapsulator="

escape The character used for escaping CSV separators or other reserved characters. If
an escape is specified, the encapsulator is not used unless also explicitly
specified since most formats use either encapsulation or escaping, not both

g escape=\

keepEmpty Keep and index zero length (empty) fields. Default=false. g,f f.price.keepEmpty=true

map Map one value to another. Format is value:replacement (which can be empty.) g,f map=left:right
f.subject.map=history:bunk

split If true, split a field into multiple values by a separate parser. f

overwrite If true (the default), check for and overwrite duplicate documents, based on the
uniqueKey field declared in the Solr schema. If you know the documents you are
indexing do not contain any duplicates then you may see a considerable speed
up setting this to false.

g

commit Issues a commit after the data has been ingested. g

commitWithin Add the document within the specified number of milliseconds. g commitWithin=10000

rowid Map the rowid (line number) to a field specified by the value of the parameter,
for instance if your CSV doesn't have a unique key and you want to use the row
id as such.

g rowid=id

rowidOffset Add the given offset (as an int) to the rowid before adding it to the document.
Default is 0

g rowidOffset=10

For more information on the CSV Update Request Handler, see .https://wiki.apache.org/solr/UpdateCSV

Using the JSONRequestHandler for JSON Content

JSON formatted update requests may be sent to Solr using the URL. All of the normal methods for uploading content are/solr/update/json
supported.

Configuration

The default configuration file has the update request handler configured by default, although the "lazy load" flag is set.

https://wiki.apache.org/solr/UpdateCSV

138Apache Solr Reference Guide 4.4

<requestHandler name="/update/json" class="solr.JsonUpdateRequestHandler"
startup="lazy" />

Examples

There is a sample JSON file at that you can use to add documents to the Solr example server.example/exampledocs/books.json

cd example/exampledocs
curl 'http://localhost:8983/solr/update/json?commit=true'
 --data-binary @books.json -H 'Content-type:application/json'

Adding to the URL makes the documents immediately searchable.commit=true

You should now be able to query for the newly added documents:

http://localhost:8983/solr/select?q=title:monsters&wt=json&indent=true returns:

{
 "responseHeader":{
 "status":0,
 "QTime":2,
 "params":{
 "indent":"true",
 "wt":"json",
 "q":"title:monsters"}},
 "response":{"numFound":1,"start":0,"docs":[
 {
 "id":"978-1423103349",
 "author":"Rick Riordan",
 "series_t":"Percy Jackson and the Olympians",
 "sequence_i":2,
 "genre_s":"fantasy",
 "inStock":true,
 "price":6.49,
 "pages_i":304,
 "title":[
 "The Sea of Monsters"],
 "cat":["book","paperback"]}]
 }
}

Update Commands

The JSON update handler accepts all of the update commands that the XML update handler supports, through a straightforward mapping.
Multiple commands may be contained in one message:

http://localhost:8983/solr/select?q=title:monsters&wt=json&indent=true

139Apache Solr Reference Guide 4.4

{
"add": {
 "doc": {
 "id": "DOC1",
 "my_boosted_field": { /* use a map with boost/value for a boosted field */
 "boost": 2.3,
 "value": "test"
 },
 "my_multivalued_field": ["aaa", "bbb"] /* use an array for a multi-valued
field */
 }
},
"add": {
 "commitWithin": 5000, /* commit this document within 5 seconds */
 "overwrite": false, /* don't check for existing documents with the same
uniqueKey */
 "boost": 3.45, /* a document boost */
 "doc": {
 "f1": "v1",
 "f1": "v2"
 }
},

"commit": {},
"optimize": { "waitFlush":false, "waitSearcher":false },

"delete": { "id":"ID" }, /* delete by ID */
"delete": { "query":"QUERY" } /* delete by query */
}

Comments are not allowed JSON, but duplicate names are.

As with other update handlers, parameters such as , , , and may be specified in the URL insteadcommit commitWithin optimize overwrite
of in the body of the message.

The JSON update format allows for a simple delete-by-id. The value of a can be an array which contains a list of zero or more specificdelete
document id's (not a range) to be deleted. For example:

"delete":"myid"

"delete":["id1","id2"]

The value of a "delete" can be an array which contains a list of zero or more id's to be deleted. It is not a range (start and end).

You can also specify with each "delete":_version_

String str = "{'delete':'id':50, '_version_':12345}"

You can specify the version of deletes in the body of the update request as well.

For more information about the JSON Update Request Handler, see .https://wiki.apache.org/solr/UpdateJSON

https://wiki.apache.org/solr/UpdateJSON

140Apache Solr Reference Guide 4.4

Updating Only Part of a Document

Solr supports several modifiers that atomically update values of a document.

Modifier Usage

set Set or replace a particular value, or remove the value if null is specified as the new value.

add Adds an additional value to a list.

inc Increments a numeric value by a specific amount.

All original source fields must be stored for field modifiers to work correctly, which is the Solr default.

For example:

{"id":"mydoc", "f1"{"set":10}, "f2"{"add":20}}

This example results in field being set to "10", and field having an additional value of "20" added. All other existing fields from the originalf1 f2
document remain unchanged.

Using SimplePostTool

This is a simple command line tool for POSTing raw data to a Solr port. Data can be read from files specified as command line arguments, as raw
command line argument strings, or via . Options controlled by System Properties include the Solr URL to post to, the ofSTDIN Content-Type
the data, whether a commit or optimize should be executed, and whether the response should be written to . If the tool will trySTDOUT auto=yes
to guess the type and set and the URL automatically. When posting rich documents the file name will be propagated as Content-Type

 and also used as . You may override these or any other request parameter through the propertyresource.name literal.id -Dparams

Supported System Properties and their defaults:

Parameter Values Default

-Ddata yes, no default=files

-Dtype <content-type> default=application/xml

-Durl <solr-update-url> default=http://localhost:8983/solr/update

-Dauto yes, no default=no

-Drecursive yes, no default=no

-Dfiletypes <type>[,<type>,..] default=xml, json, csv, pdf, doc, docx, ppt, pptx, xls, xlsx, odt, odp, ods, rtf, htm, html

-Dparams "<key>=<value>[&<key>=<value>...]" values must be URL-encoded

-Dcommit yes, no default=yes

-Doptimize yes, no default=no

-Dout yes,no default=no

Examples:

http://localhost:8983/solr/update

141Apache Solr Reference Guide 4.4

 java -jar post.jar *.xml
 java -Ddata=args -jar post.jar '<delete><id>42</id></delete>'
 java -Ddata=stdin -jar post.jar < hd.xml
 java -Dtype=text/csv -jar post.jar *.csv
 java -Dtype=application/json -jar post.jar *.json
 java -Durl=[http://localhost:8983/solr/update/extract] -Dparams=literal.id=a
 -Dtype=application/pdf -jar post.jar a.pdf
 java -Dauto=yes -jar post.jar a.pdf
 java -Dauto=yes -Drecursive=yes -jar post.jar afolder
 java -Dauto=yes -Dfiletypes=ppt,html -jar post.jar afolder

In the above example:

-Dauto=yes Will guess file type from file name suffix, and set type and url accordingly. It also sets the ID and file name automatically.

-Drecursive=yes Will recurse into sub-folders and index all files.

-Dfiletypes Specifies the file types to consider when indexing folders.

-Dparams HTTP GET params to add to the request, so you don't need to write the whole URL again.

Indexing Using SolrJ

Use of the SolrJ client library is covered in the section on .Using SolrJ

Uploading Structured Data Store Data with the Data Import Handler

Many search applications store the content to be indexed in a structured data store, such as a relational database. The Data Import Handler (DIH)
provides a mechanism for importing content from a data store and indexing it. In addition to relational databases, DIH can index content from
HTTP based data sources such as RSS and ATOM feeds, e-mail repositories, and structured XML where an XPath processor is used to generate
fields.

The DataImportHandler jars are no longer included in the Solr WAR. You should add them to Solr's lib directory, or reference
them via the directive in .<lib> solrconfig.xml

For more information about the Data Import Handler, see .https://wiki.apache.org/solr/DataImportHandler

Topics covered in this section:

Concepts and Terminology
Configuration
Data Import Handler Commands
Property Writer
Data Sources
Entity Processors
Transformers
Special Commands for the Data Import Handler

Concepts and Terminology

Descriptions of the Data Import Handler use several familiar terms, such as entity and processor, in specific ways, as explained in the table below.

Term Definition

Datasource As its name suggests, a datasource defines the location of the data of interest. For a database, it's a DSN. For an HTTP
datasource, it's the base URL.

https://wiki.apache.org/solr/DataImportHandler

142Apache Solr Reference Guide 4.4

Entity Conceptually, an entity is processed to generate a set of documents, containing multiple fields, which (after optionally being
transformed in various ways) are sent to Solr for indexing. For a RDBMS data source, an entity is a view or table, which would be
processed by one or more SQL statements to generate a set of rows (documents) with one or more columns (fields).

Processor An entity processor does the work of extracting content from a data source, transforming it, and adding it to the index. Custom
entity processors can be written to extend or replace the ones supplied.

Transformer Each set of fields fetched by the entity may optionally be transformed. This process can modify the fields, create new fields, or
generate multiple rows/documents form a single row. There are several built-in transformers in the DIH, which perform functions
such as modifying dates and stripping HTML. It is possible to write custom transformers using the publicly available interface.

Configuration

Configuring solrconfig.xml

The Data Import Handler has to be registered in . For example:solrconfig.xml

<requestHandler name="/dataimport"
class="org.apache.solr.handler.dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config">/path/to/my/DIHconfigfile.xml</str>
 </lst>
 </requestHandler>

The only required parameter is the parameter, which specifies the location of the DIH configuration file that contains specifications for theconfig
data source, how to fetch data, what data to fetch, and how to process it to generate the Solr documents to be posted to the index.

You can have multiple DIH configuration files. Each file would require a separate definition in the file, specifying a path to thesolrconfig.xml
file.

Configuring the DIH Configuration File

There is a sample DIH application distributed with Solr in the directory . This accesses a small hsqldb database. Detailsexample/example-DIH
of how to run this example can be found in the README.txt file. The sample DIH configuration can be found in

.example/example-DIH/solr/db/conf/db-data-config.xml

An annotated configuration file, based on the sample, is shown below. It extracts fields from the four tables defining a simple product database,
with this schema. More information about the parameters and options shown here are described in the sections following.

<dataConfig>
<!-- The first element is the dataSource, in this case an HSQLDB database.
 The path to the JDBC driver and the JDBC URL and login credentials are all
specified here.
 Other permissible attributes include whether or not to autocommit to Solr,the
batchsize
 used in the JDBC connection, a 'readOnly' flag -->
 <dataSource driver="org.hsqldb.jdbcDriver" url="jdbc:hsqldb:./example-DIH/hsqldb/ex"
user="sa" />

<!-- a 'document' element follows, containing multiple 'entity' elements.
 Note that 'entity' elements can be nested, and this allows the entity
 relationships in the sample database to be mirrored here, so that we can
 generate a denormalized Solr record which may include multiple features
 for one item, for instance -->
 <document>

<!-- The possible attributes for the entity element are described below.
 Entity elements may contain one or more 'field' elements, which map
 the data source field names to Solr fields, and optionally specify

143Apache Solr Reference Guide 4.4

 per-field transformations -->
<!-- this entity is the 'root' entity. -->
 <entity name="item" query="select * from item"
 deltaQuery="select id from item where last_modified >
'${dataimporter.last_index_time}'">
 <field column="NAME" name="name" />

<!-- This entity is nested and reflects the one-to-many relationship between an item
and its multiple features.
 Note the use of variables; ${item.ID} is the value of the column 'ID' for the
current item
 ('item' referring to the entity name) -->
 <entity name="feature"
 query="select DESCRIPTION from FEATURE where ITEM_ID='${item.ID}'"
 deltaQuery="select ITEM_ID from FEATURE where last_modified >
'${dataimporter.last_index_time}'"
 parentDeltaQuery="select ID from item where ID=${feature.ITEM_ID}">
 <field name="features" column="DESCRIPTION" />
 </entity>
 <entity name="item_category"
 query="select CATEGORY_ID from item_category where ITEM_ID='${item.ID}'"
 deltaQuery="select ITEM_ID, CATEGORY_ID from item_category where
last_modified > '${dataimporter.last_index_time}'"
 parentDeltaQuery="select ID from item where
ID=${item_category.ITEM_ID}">
 <entity name="category"
 query="select DESCRIPTION from category where ID =
'${item_category.CATEGORY_ID}'"
 deltaQuery="select ID from category where last_modified >
'${dataimporter.last_index_time}'"
 parentDeltaQuery="select ITEM_ID, CATEGORY_ID from item_category where
CATEGORY_ID=${category.ID}">
 <field column="description" name="cat" />
 </entity>
 </entity>
 </entity>

144Apache Solr Reference Guide 4.4

 </document>
</dataConfig>

Datasources can still be specified in . These must be specified in the defaults section of the handler in .solrconfig.xml solrconfig.xml
However, these are not parsed until the main configuration is loaded.

The entire configuration itself can be passed as a request parameter using the parameter rather than using a file. WhendataConfig
configuration errors are encountered, the error message is returned in XML format.

In Solr 4.1, a new property was added, the element, which allows defining the date format and locale for use with deltapropertyWriter
queries. It also allows customizing the name and location of the properties file.

The command is still supported, which is useful for validating a new configuration file, or if you want to specify a file, load it, andreload-config
not have it reloaded again on import. If there is an mistake in the configuration a user-friendly message is returned in format. You canxml xml
then fix the problem and do a .reload-config

You can also view the DIH configuration in the Solr Admin UI. There is also an interface to import content.

Data Import Handler Commands

DIH commands are sent to Solr via an HTTP request. The following operations are supported.

Command Description

abort Aborts an ongoing operation. The URL is .http://<host>:<port>/solr/dataimport?command=abort

delta-import For incremental imports and change detection. The command is of the form
. It supports the same clean, commit, optimizehttp://<host>:<port>/solr/dataimport?command=delta-import

and debug parameters as full-import command.

full-import A Full Import operation can be started with a URL of the form
. The command returns immediately. Thehttp://<host>:<port>/solr/dataimport?command=full-import

operation will be started in a new thread and the attribute in the response should be shown as . The operationstatus busy
may take some time depending on the size of dataset. Queries to Solr are not blocked during full-imports.
When a full-import command is executed, it stores the start time of the operation in a file located at

. This stored timestamp is used when a delta-import operation is executed. conf/dataimport.properties
For a list of parameters that can be passed to this command, see below.

reload-config If the configuration file has been changed and you wish to reload it without restarting Solr, run the command
.http://<host>:<port>/solr/dataimport?command=reload-config

status The URL is . It returns statistics on the number ofhttp://<host>:<port>/solr/dataimport?command=status
documents created, deleted, queries run, rows fetched, status, and so on.

Parameters for the Commandfull-import

The command accepts the following parameters:full-import

Parameter Description

clean Default is true. Tells whether to clean up the index before the indexing is started.

commit Default is true. Tells whether to commit after the operation.

debug Default is false Runs the command in debug mode. It is used by the interactive development mode. Note that in debug mode,
documents are never committed automatically. If you want to run debug mode and commit the results too, add ascommit=true
a request parameter.

entity The name of an entity directly under the tag in the configuration file. Use this to execute one or more entities<document>
selectively. Multiple "entity" parameters can be passed on to run multiple entities at once. If nothing is passed, all entities are
executed.

optimize Default is true. Tells Solr whether to optimize after the operation.

Property Writer

The element defines the date format and locale for use with delta queries. It is an optional configuration. Add the element topropertyWriter

145Apache Solr Reference Guide 4.4

the DIH configuration file, directly under the element.dataConfig

<propertyWriter dateFormat="yyyy-MM-dd HH:mm:ss" type="SimplePropertiesWriter"
directory="data" filename="my_dih.properties" locale="en_US" />

The parameters available are:

Parameter Description

dateFormat A java.text.SimpleDateFormat to use when converting the date to text. The default is "yyyy-MM-dd HH:mm:ss".

type The implementation class. Use for non-SolrCloud installations. If using SolrCloud, use SimplePropertiesWriter
. If this is not specified, it will default to the appropriate class depending on if SolrCloud mode is enabled.ZKPropertiesWriter

directory Used with the only). The directory for the properties file. If not specified, the default is "conf".SimplePropertiesWriter

filename Used with the only). The name of the properties file. If not specified, the default is theSimplePropertiesWriter
requestHandler name (as defined in , appended by ".properties" (i.e., "dataimport.properties").solrconfig.xml

locale The locale. If not defined, the ROOT locale is used. It must be specified as language-country. For example, .en-US

Data Sources

A data source specifies the origin of data and its type. Somewhat confusingly, some data sources are configured within the associated entity
processor. Data sources can also be specified in , which is useful when you have multiple environments (for example,solrconfig.xml
development, QA, and production) differing only in their data sources.

You can create a custom data source by writing a class that extends .org.apache.solr.handler.dataimport.DataSource

The mandatory attributes for a data source definition are its name and type. The name identifies the data source to an Entity element.

The types of data sources available are described below.

ContentStreamDataSource

This takes the POST data as the data source. This can be used with any EntityProcessor that uses a .DataSource<Reader>

FieldReaderDataSource

This can be used where a database field contains XML which you wish to process using the XpathEntityProcessor. You would set up a
configuration with both JDBC and FieldReader data sources, and two entities, as follows:

146Apache Solr Reference Guide 4.4

 <dataSource name="a1" driver="org.hsqldb.jdbcDriver" ... />
 <dataSource name="a2" type=FieldReaderDataSource" />

 <!-- processor for database -->

 <entity name ="e1" dataSource="a1" processor="SQLEntityProcessor" pk="docid"
 query="select * from t1 ...">

<!-- nested XpathEntity; the field in the parent which is to be used for
 Xpath is set in the "datafield" attribute in place of the "url" attribute -->

<entity name="e2"
 dataSource="a2"
 processor="XPathEntityProcessor"
 dataField="e1.fieldToUseForXPath"

<!-- Xpath configuration follows -->
 ...
 </entity>
 </entity>

The FieldReaderDataSource can take an parameter, which will default to "UTF-8" if not specified.It must be specified asencoding
language-country. For example, .en-US

FileDataSource

This can be used like an , but is used to fetch content from files on disk. The only difference from URLDataSource, whenURLDataSource
accessing disk files, is how a pathname is specified.

This data source accepts these optional attributes.

Optional Attribute Description

basePath The base path relative to which the value is evaluated if it is not absolute.

encoding Defines the character encoding to use. If not defined, UTF-8 is used.

JdbcDataSource

This is the default datasource. It's used with the . See the example in the section for details onSQLEntityProcessor FieldReaderDataSource
configuration.

URLDataSource

This data source is often used with XPathEntityProcessor to fetch content from an underlying or location. Here's an example:file:// http://

<dataSource name="a"
 type="URLDataSource"
 baseUrl="http://host:port/"
 encoding="UTF-8"
 connectionTimeout="5000"
 readTimeout="10000"/>

The URLDataSource type accepts these optional parameters:

Optional
Parameter

Description

file://

147Apache Solr Reference Guide 4.4

baseURL Specifies a new baseURL for pathnames. You can use this to specify host/port changes between Dev/QA/Prod
environments. Using this attribute isolates the changes to be made to the solrconfig.xml

connectionTimeout Specifies the length of time in milliseconds after which the connection should time out. The default value is 5000ms.

encoding By default the encoding in the response header is used. You can use this property to override the default encoding.

readTimeout Specifies the length of time in milliseconds after which a read operation should time out. The default value is 10000ms.

Entity Processors

Entity processors extract data, transform it, and add it to a Solr index. Examples of entities include views or tables in a data store.

Each processor has its own set of attributes, described in its own section below. In addition, there are non-specific attributes common to all
entities which may be specified.

Attribute Use

datasource The name of a data source. Used if there are multiple data sources, specified, in which case each one must have a
name.

name Required. The unique name used to identify an entity.

pk The primary key for the entity. It is optional, and required only when using delta-imports. It has no relation to the
uniqueKey defined in but they can both be the same. It is mandatory if you do delta-imports and thenschema.xml
refers to the column name in } which is used as the primary key.${dataimporter.delta.<column-name>

processor Default is SQLEntityProcessor. Required only if the datasource is not RDBMS.

onError Permissible values are (abort|skip|continue) . The default value is 'abort'. 'Skip' skips the current document. 'Continue'
ignores the error and processing continues.

preImportDeleteQuery Before a full-import command, use this query this to cleanup the index instead of using ' '. This is honored only on an:
entity that is an immediate sub-child of .<document>

postImportDeleteQuery Similar to the above, but executed after the import has completed.

rootEntity By default the entities immediately under the are root entities. If this attribute is set to false, the entity<document>
directly falling under that entity will be treated as the root entity (and so on). For every row returned by the root entity,
a document is created in Solr.

transformer Optional. One or more transformers to be applied on this entity.

The SQL Entity Processor

The SqlEntityProcessor is the default processor. The associated should be a JDBC URL.data source

The entity attributes specific to this processor are shown in the table below.

Attribute Use

query Required. The SQL query used to select rows.

deltaQuery SQL query used if the operation is delta-import. This query selects the primary keys of the rows which will be parts of the
delta-update. The pks will be available to the deltaImportQuery through the variable

}.${dataimporter.delta.<column-name>

parentDeltaQuery SQL query used if the operation is delta-import.

deletedPkQuery SQL query used if the operation is delta-import.

deltaImportQuery SQL query used if the operation is delta-import. If this is not present, DIH tries to construct the import query by(after
identifying the delta) modifying the 'query' (this is error prone). There is a namespace

} which can be used in this query. For example, ${dataimporter.delta.<column-name> select * from tbl
}.where id=${dataimporter.delta.id

The XPathEntityProcessor

This processor is used when indexing XML formatted data. The data source is typically or . Xpath can also beURLDataSource FileDataSource
used with the described below, to generate a document from each file.FileListEntityProcessor

The entity attributes unique to this processor are shown below.

148Apache Solr Reference Guide 4.4

Attribute Use

Processor Required. Must be set to "XpathEntityProcessor".

url Required. HTTP URL or file location.

stream Optional: Set to true for a large file or download.

forEach Required unless you define . The Xpath expression which demarcates each record. This will beuseSolrAddSchema
used to set up the processing loop.

xsl Optional: Its value (a URL or filesystem path) is the name of a resource used as a preprocessor for applying the XSL
transformation.

useSolrAddSchema Set this to true if the content is in the form of the standard Solr update XML schema.

flatten Optional: If set true, then text from under all the tags is extracted into one field.

Each field element in the entity can have the following attributes as well as the default ones.

Attribute Use

xpath Required. The XPath expression which will extract the content from the record for this field. Only a subset of Xpath syntax is
supported.

commonField Optional. If true, then when this field is encountered in a record it will be copied to future records when creating a Solr
document.

Example:

149Apache Solr Reference Guide 4.4

<!-- slashdot RSS Feed --->
<dataConfig>
 <dataSource type="HttpDataSource" />
 <document>
<entity name="slashdot"
 pk="link"
 url="http://rss.slashdot.org/Slashdot/slashdot"
 processor="XPathEntityProcessor"

 <!-- forEach sets up a processing loop ; here there are two expressions-->

forEach="/RDF/channel | /RDF/item"
 transformer="DateFormatTransformer">
 <field column="source"
 xpath="/RDF/channel/title"
 commonField="true" />
 <field column="source-link"
 xpath="/RDF/channel/link"
 commonField="true"/>
 <field column="subject"
 xpath="/RDF/channel/subject"
 commonField="true" />
 <field column="title"
 xpath="/RDF/item/title" />
 <field column="link"
 xpath="/RDF/item/link" />
 <field column="description"
 xpath="/RDF/item/description" />
 <field column="creator"
 xpath="/RDF/item/creator" />
 <field column="item-subject"
 xpath="/RDF/item/subject" />
 <field column="date"
 xpath="/RDF/item/date"
 dateTimeFormat="yyyy-MM-dd'T'hh:mm:ss" />
 <field column="slash-department"
 xpath="/RDF/item/department" />
 <field column="slash-section"
 xpath="/RDF/item/section" />
 <field column="slash-comments"
 xpath="/RDF/item/comments" />
 </entity>
 </document>
 </dataConfig>

http://wiki.apache.org/solr/MailEntityProcessor

The TikaEntityProcessor

The TikaEntityProcessor uses Apache Tika to process incoming documents. This is similar to ,Uploading Data with Solr Cell using Apache Tika
but using the DataImportHandler options instead.

The directory in Solr's directory shows one option for using the TikaEntityProcessor. Here is the sample example-DIH example
 file:data-config.xml

http://wiki.apache.org/solr/MailEntityProcessor

150Apache Solr Reference Guide 4.4

<dataConfig>
 <dataSource type="BinFileDataSource" />
 <document>
 <entity name="tika-test" processor="TikaEntityProcessor"
 url="../contrib/extraction/src/test-files/extraction/solr-word.pdf"
format="text">
 <field column="Author" name="author" meta="true"/>
 <field column="title" name="title" meta="true"/>
 <field column="text" name="text"/>
 </entity>
 </document>
</dataConfig>

The parameters for this processor are described in the table below:

Attribute Use

dataSource This parameter defines the data source and an optional name which can be referred to in later parts of the configuration if
needed. This is the same dataSource explained in the description of general entity processor attributes above.

The available data source types for this processor are:

BinURLDataSource: used for HTTP resources, but can also be used for files.
BinContentStreamDataSource: used for uploading content as a stream.
BinFileDataSource: used for content on the local filesystem.

url The path to the source file(s), as a file path or a traditional internet URL. This parameter is required.

htmlMapper Allows control of how Tika parses HTML. The "default" mapper strips much of the HTML from documents while the "identity"
mapper passes all HTML as-is with no modifications. If this parameter is defined, it must be either or ; if it isdefault identity
absent, "default" is assumed.

format The output format. The options are , , or . The default is "text" if not defined. The format "none" can be used iftext xml html none
metadata only should be indexed and not the body of the documents.

parser The default parser is . If a custom or other parser should be used, it shouldorg.apache.tika.parser.AutoDetectParser
be entered as a fully-qualified name of the class and path.

fields The list of fields from the input documents and how they should be mapped to Solr fields. If the attribute is defined asmeta
"true", the field will be obtained from the metadata of the document and not parsed from the body of the main text.

The FileListEntityProcessor

This processor is basically a wrapper, and is designed to generate a set of files satisfying conditions specified in the attributes which can then be
passed to another processor, such as the . The entity information for this processor would be nested within theXPathEntityProcessor
FileListEnitity entry. It generates four implicit fields: , , , which can be used in thefileAbsolutePath fileSize fileLastModified fileName
nested processor. This processor does not use a data source.

The attributes specific to this processor are described in the table below:

Attribute Use

fileName Required. A regular expression pattern to identify files to be included.

basedir Required. The base directory (absolute path).

recursive Whether to search directories recursively. Default is 'false'.

excludes A regular expression pattern to identify files which will be excluded.

newerThan A date in the format or a date math expression ().yyyy-MM-ddHH:mm:ss NOW - 2YEARS

olderThan A date, using the same formats as newerThan.

rootEntity This should be set to false. This ensures that each row (filepath) emitted by this processor is considered to be a document.

151Apache Solr Reference Guide 4.4

dataSource Must be set to null.

The example below shows the combination of the FileListEntityProcessor with another processor which will generate a set of fields from each file
found.

<dataConfig>
<dataSource type="FileDataSource"/><document>
 <!-- this outer processor generates a list of files satisfying the conditions
 specified in the attributes -->
 <entity name="f" processor="FileListEntityProcessor"
 fileName=".*xml"
 newerThan="'NOW-30DAYS'"
 recursive="true"
 rootEntity="false"
 dataSource="null"
 baseDir="/my/document/directory">

 <!-- this processor extracts content using Xpath from each file found -->

<entity name="nested" processor="XPathEntityProcessor"
 forEach="/rootelement" url="${f.fileAbsolutePath}" >
 <field column="name" xpath="/rootelement/name"/>
 <field column="number" xpath="/rootelement/number"/>
 </entity>
 </entity>
 </document>
</dataConfig>

LineEntityProcessor

This EntityProcessor reads all content from the data source on a line by line basis and returns a field called for each line read. TherawLine
content is not parsed in any way; however, you may add transformers to manipulate the data within the field, or to create otherrawLine
additional fields.

The lines read can be filtered by two regular expressions specified with the and attributes. The table belowacceptLineRegex omitLineRegex
describes the LineEntityProcessor's attributes:

Attribute Description

url A required attribute that specifies the location of the input file in a way that is compatible with the configured data source. If
this value is relative and you are using FileDataSource or URLDataSource, it assumed to be relative to baseLoc.

acceptLineRegex An optional attribute that if present discards any line which does not match the regExp.

omitLineRegex An optional attribute that is applied after any acceptLineRegex and that discards any line which matches this regExp.

For example:

<entity name="jc"
 processor="LineEntityProcessor"
 acceptLineRegex="^.*\.xml$"
 omitLineRegex="/obsolete"
 url="file:///Volumes/ts/files.lis"
 rootEntity="false"
 dataSource="myURIreader1"
 transformer="RegexTransformer,DateFormatTransformer"
 >
 ...

152Apache Solr Reference Guide 4.4

While there are use cases where you might need to create a Solr document for each line read from a file, it is expected that in most cases that the
lines read by this processor will consist of a pathname, which in turn will be consumed by another EntityProcessor, such as XPathEntityProcessor
.

PlainTextEntityProcessor

This EntityProcessor reads all content from the data source into an single implicit field called . The content is not parsed in any way,plainText
however you may add transformers to manipulate the data within the as needed, or to create other additional fields.plainText

For example:

<entity processor="PlainTextEntityProcessor" name="x" url="http://abc.com/a.txt"
dataSource="data-source-name">
 <!-- copies the text to a field called 'text' in Solr-->
 <field column="plainText" name="text"/>
</entity>

Ensure that the dataSource is of type (,).DataSource<Reader> FileDataSource URLDataSource

Transformers

Transformers manipulate the fields in a document returned by an entity. A transformer can create new fields or modify existing ones. You must tell
the entity which transformers your import operation will be using, by adding an attribute containing a comma separated list to the <entity>
element.

<entity name="abcde"
 transformer="org.apache.solr....,my.own.transformer,..." />

Specific transformation rules are then added to the attributes of a element, as shown in the examples below. The transformers are<field>
applied in the order in which they are specified in the transformer attribute.

The Data Import Handler contains several built-in transformers. You can also write your own custom transformers, as described in the Solr Wiki
(see). The ScriptTransformer (described below) offers an alternative method for writing yourhttp://wiki.apache.org/solr/DIHCustomTransformer
own transformers.

Solr includes the following built-in transformers:

Transformer Name Use

ClobTransformer Used to create a String out of a Clob type in database.

DateFormatTransformer Parse date/time instances.

HTMLStripTransformer Strip HTML from a field.

LogTransformer Used to log data to log files or a console.

NumberFormatTransformer Uses the NumberFormat class in java to parse a string into a number.

RegexTransformer Use regular expressions to manipulate fields.

ScriptTransformer Write transformers in Javascript or any other scripting language supported by Java. Requires Java 6.

TemplateTransformer Transform a field using a template.

These transformers are described below.

ClobTransformer

You can use the ClobTransformer to create a string out of a CLOB in a database. A CLOB is a character large object: a collection of character
data typically stored in a separate location that is referenced in the database. See . Here's anhttp://en.wikipedia.org/wiki/Character_large_object
example of invoking the ClobTransformer.

http://wiki.apache.org/solr/PathEntityProcessor
http://wiki.apache.org/solr/DIHCustomTransformer
http://en.wikipedia.org/wiki/Character_large_object

153Apache Solr Reference Guide 4.4

<entity name="e" transformer="ClobTransformer" ..>
<field column="hugeTextField" clob="true" />
...
</entity>

The ClobTransformer accepts these attributes:

Attribute Description

clob Boolean value to signal if ClobTransformer should process this field or not. If this attribute is omitted, then the corresponding
field is not transformed.

sourceColName The source column to be used as input. If this is absent source and target are same

The DateFormatTransformer

This transformer converts dates from one format to another. This would be useful, for example, in a situation where you wanted to convert a field
with a fully specified date/time into a less precise date format, for use in faceting.

DateFormatTransformer applies only on the fields with an attribute . Other fields are not modified.dateTimeFormat

This transformer recognizes the following attributes:

Attribute Description

dateTimeFormat The format used for parsing this field. This must comply with the syntax of the class.JavaSimpleDateFormat

sourceColName The column on which the dateFormat is to be applied. If this is absent source and target are same.

locale The locale to use for date transformations. If not specified, the ROOT locale will be used. It must be specified as
language-country. For example, .en-US

Here is example code that returns the date rounded up to the month "2007-JUL":

<entity name="en" pk="id" transformer="DateTimeTransformer" ... >
 ...
 <field column="date"
 sourceColName="fulldate"
 dateTimeFormat="yyyy-MMM"/>
</entity>

The HTMLStripTransformer

You can use this transformer to strip HTML out of a field. For example:

<entity name="e" transformer="HTMLStripTransformer" ..>
<field column="htmlText" stripHTML="true" />
...
</entity>

There is one attribute for this transformer, , which is a boolean value (true/false) to signal if the HTMLStripTransformer should processstripHTML
the field or not.

The LogTransformer

You can use this transformer to log data to the console or log files. For example:

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

154Apache Solr Reference Guide 4.4

<entity ...
transformer="LogTransformer"
logTemplate="The name is $\{e.name\}" logLevel="debug" >
....
</entity>

Unlike other transformers, the LogTransformer does not apply to any field, so the attributes are applied on the entity itself.

The NumberFormatTransformer

Use this transformer to parse a number from a string, converting it into the specified format, and optionally using a different locale.

NumberFormatTransformer will be applied only to fields with an attribute .formatStyle

This transformer recognizes the following attributes:

Attribute Description

formatStyle The format used for parsing this field. The value of the attribute must be one of ().number|percent|integer|currency
This uses the semantics of the Java NumberFormat class.

sourceColName The column on which the NumberFormat is to be applied. This is attribute is absent. The source column and the target
column are the same.

locale The locale to be used for parsing the strings. If this is absent, the ROOT locale is used. It must be specified as
language-country. For example, .en-US

For example:

<entity name="en" pk="id" transformer="NumberFormatTransformer" ...>
 ...

<!-- treat this field as UK pounds -->

<field name="price_uk"
 column="price"
 formatStyle="currency"
 locale="en-UK" />
</entity>

The RegexTransformer

The regex transformer helps in extracting or manipulating values from fields (from the source) using Regular Expressions. The actual class name
is . But as it belongs to the default package the package-name can beorg.apache.solr.handler.dataimport.RegexTransformer
omitted.

The table below describes the attributes recognized by the regex transformer.

Attribute Description

regex The regular expression that is used to match against the column or sourceColName's value(s). If replaceWith is absent, each
regex is taken as a value and a list of values is returned.group

sourceColName The column on which the regex is to be applied. If not present, then the source and target are identical.

splitBy Used to split a string. It returns a list of values.

groupNames A comma separated list of field column names, used where the regex contains groups and each group is to be saved to a
different field. If some groups are not to be named leave a space between commas.

replaceWith Used along with regex . It is equivalent to the method new String(<sourceColVal>).replaceAll(<regex>,
.<replaceWith>)

155Apache Solr Reference Guide 4.4

Here is an example of configuring the regex transformer:

<entity name="foo" transformer="RegexTransformer"
query="select full_name , emailids from foo"/>
... />
 <field column="full_name"/>
 <field column="firstName" regex="Mr(\w*)\b.*" sourceColName="full_name"/>
 <field column="lastName" regex="Mr.*?\b(\w*)" sourceColName="full_name"/>

 <!-- another way of doing the same -->

 <field column="fullName" regex="Mr(\w*)\b(.*)" groupNames="firstName,lastName"/>
 <field column="mailId" splitBy="," sourceColName="emailids"/>
</entity>

In this example, regex and sourceColName are custom attributes used by the transformer. The transformer reads the field from thefull_name
resultset and transforms it to two new target fields, and . Even though the query returned only one column, , infirstName lastName full_name
the result set, the Solr document gets two extra fields and which are "derived" fields. These new fields are only created iffirstName lastName
the regexp matches.

The emailids field in the table can be a comma-separated value. It ends up producing one or more email IDs, and we expect the to be amailId
multivalued field in Solr.

Note that this transformer can either be used to split a string into tokens based on a splitBy pattern, or to perform a string substitution as per
replaceWith, or it can assign groups within a pattern to a list of groupNames. It decides what it is to do based upon the above attributes ,splitBy

 and which are looked for in order. This first one found is acted upon and other unrelated attributes are ignored.replaceWith groupNames

The ScriptTransformer

The script transformer allows arbitrary transformer functions to be written in any scripting language supported by Java, such as Javascript, JRuby,
Jython, Groovy, or BeanShell. Javascript is integrated into Java 6; you'll need to integrate other languages yourself.

Each function you write must accept a row variable (which corresponds to a , thus permitting Java Map<String,Object> get,put,remove
operations). Thus you can modify the value of an existing field or add new fields. The return value of the function is the returned object.

The script is inserted into the DIH configuration file at the top level and is called once for each row.

Here is a simple example.

156Apache Solr Reference Guide 4.4

<dataconfig>

 <!-- simple script to generate a new row, converting a temperature from Fahrenheit
to Centigrade -->

 <script>
<CDATA
 function f2c(row) { var tempf, tempc; tempf = row.get('temp_f'); if (tempf !=
null) { tempc = (tempf - 32.0)*5.0/9.0
 row.put('temp_c', temp_c);
 }
 return row;
 }
 >
</script>
 <document>

 <!-- the function is specified as an entity attribute -->

 <entity name="e1" pk="id" transformer="script:f2c" query="select * from X">

 </entity>
 </document>
</dataConfig>

The TemplateTransformer

You can use the template transformer to construct or modify a field value, perhaps using the value of other fields. You can insert extra text into the
template.

<entity name="en" pk="id" transformer="TemplateTransformer" ...>
 ...
<!-- generate a full address from fields containing the component parts -->
<field column="full_address"
 template="$en.\{street\},$en\{city\},$en\{zip\}" />
</entity>

Special Commands for the Data Import Handler

You can pass special commands to the DIH by adding any of the variables listed below to any row returned by any component:

Variable Description

$skipDoc Skip the current document; that is, do not add it to Solr. The value can be the string .true|false

$skipRow Skip the current row. The document will be added with rows from other entities. The value can be the string
true|false

$docBoost Boost the current document. The boost value can be a number or the conversion of a number.toString

$deleteDocById Delete a document from Solr with this ID. The value has to be the value of the document.uniqueKey

$deleteDocByQuery Delete documents from Solr using this query. The value must be a Solr Query.

De-Duplication

157Apache Solr Reference Guide 4.4

Preventing duplicate or near duplicate documents from entering an index or tagging documents with a signature/fingerprint for duplicate field
collapsing can be efficiently achieved with a low collision or fuzzy hash algorithm. Solr natively supports de-duplication techniques of this type via
the class and allows for the easy addition of new hash/signature implementations. A Signature can be implemented several ways:<Signature>

Method Description

MD5Signature 128 bit hash used for exact duplicate detection.

Lookup3Signature 64 bit hash used for exact duplicate detection, much faster than MD5 and smaller to index

TextProfileSignature Fuzzy hashing implementation from nutch for near duplicate detection. Its tunable but works best on longer text.

Other, more sophisticated algorithms for fuzzy/near hashing can be added later.

Adding in the deduplication process will change the setting so that it applies to an update Term (with allowDups
 in this case) rather than the unique field Term. Of course the could be the unique field,signatureField signatureField

but generally you want the unique field to be unique. When a document is added, a signature will automatically be generated
and attached to the document in the specified .signatureField

Configuration Options

In solrconfig.xml

The has to be registered in the solrconfig.xml as part of the :SignatureUpdateProcessorFactory UpdateRequestProcessorChain

<updateRequestProcessorChain name="dedupe">
 <processor class="solr.processor.SignatureUpdateProcessorFactory">
 <bool name="enabled">true</bool>
 <str name="signatureField">id</str>
 <bool name="overwriteDupes">false</bool>
 <str name="fields">name,features,cat</str>
 <str name="signatureClass">solr.processor.Lookup3Signature</str>
 </processor>
</updateRequestProcessorChain>

Setting Default Description

signatureClass org.apache.solr.update.processor.Lookup3Signature A Signature implementation for generating a signature hash.

fields all fields The fields to use to generate the signature hash in a comma separated
list. By default, all fields on the document will be used.

signatureField signatureField The name of the field used to hold the fingerprint/signature. Be sure the
field is defined in schema.xml.

enabled true Enable/disable deduplication factory processing

In schema.xml

If you are using a separate field for storing the signature you must have it indexed:

 <field name="signature" type="string" stored="true" indexed="true"
multiValued="false" />

Be sure to change your update handlers to use the defined chain, i.e.

http://wiki.apache.org/solr/TextProfileSignature
http://wiki.apache.org/solr/UpdateRequestProcessor

158Apache Solr Reference Guide 4.4

 <requestHandler name="/update" >
 <lst name="defaults">
 <str name="update.chain">dedupe</str>
 </lst>
 </requestHandler>

The update processor can also be specified per request with a parameter of .update.chain=dedupe

Detecting Languages During Indexing

Solr can identify languages and map text to language-specific fields during indexing using the UpdateRequestProcessor. Solr supportslangid
two implementations of this feature:

Tika's language detection feature: http://tika.apache.org/0.10/detection.html
LangDetect language detection: http://code.google.com/p/language-detection/

You can see a comparison between the two implementations here:
. In general, the LangDetect implementation supports morehttp://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html

languages with higher performance.

For specific information on each of these language identification implementations, including a list of supported languages for each, see the
relevant project websites. For more information about the UpdateRequestProcessor, see the Solr wiki: langid

. For more information about language analysis in Solr, see .http://wiki.apache.org/solr/LanguageDetection Language Analysis

Configuring Language Detection

You can configure the UpdateRequestProcessor in . Both implementations take the same parameters, which arelangid solrconfig.xml
described in the following section. At a minimum, you must specify the fields for language identification and a field for the resulting language code.

Configuring Tika Language Detection

Here is an example of a minimal Tika configuration in :langid solrconfig.xml

<processor
class="org.apache.solr.update.processor.TikaLanguageIdentifierUpdateProcessorFactory">
 <lst name="defaults">
 <str name="langid.fl">title,subject,text,keywords</str>
 <str name="langid.langField">language_s</str>
 </lst>
</processor>

Configuring LangDetect Language Detection

Here is an example of a minimal LangDetect configuration in :langid solrconfig.xml

<processor
class="org.apache.solr.update.processor.LangDetectLanguageIdentifierUpdateProcessorFactory">
<lst name="defaults">
 <str name="langid.fl">title,subject,text,keywords</str>
 <str name="langid.langField">language_s</str>
 </lst>
</processor>

http://tika.apache.org/0.10/detection.html
http://code.google.com/p/language-detection/
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html
http://wiki.apache.org/solr/LanguageDetection

159Apache Solr Reference Guide 4.4

langid Parameters

As previously mentioned, both implementations of the UpdateRequestProcessor take the same parameters.langid

Parameter Type Default Required Description

langid Boolean true no Enables and disables language detection.

langid.fl string none yes A comma- or space-delimited list of fields to be processed by .langid

langid.langField string none yes Specifies the field for the returned language code.

langid.langsField multivalued
string

none no Specifies the field for a list of returned language codes. If you use
, each detected language will be added tolangid.map.individual

this field.

langid.overwrite Boolean false no Specifies whether the content of the and fieldslangField langsField
will be overwritten if they already contain values.

langid.lcmap string none false A space-separated list specifying colon delimited language code
mappings to apply to the detected languages. For example, you might
use this to map Chinese, Japanese, and Korean to a common code,cjk
and map both American and British English to a single code by using en

.langid.lcmap=ja:cjk zh:cjk ko:cjk en_GB:en en_US:en
This affects both the values put into the and langField langsField
fields, as well as the field suffixes when using , unlesslangid.map
overridden by langid.map.lcmap

langid.threshold float 0.5 no Specifies a threshold value between 0 and 1 that the language
identification score must reach before accepts it. With longer textlangid
fields, a high threshold such at 0.8 will give good results. For shorter text
fields, you may need to lower the threshold for language identification,
though you will be risking somewhat lower quality results. We recommend
experimenting with your data to tune your results.

langid.whitelist string none no Specifies a list of allowed language identification codes. Use this in
combination with to ensure that you only index documentslangid.map
into fields that are in your schema.

langid.map Boolean false no Enables field name mapping. If true, Solr will map field names for all fields
listed in .langid.fl

langid.map.fl string none no A comma-separated list of fields for that is different than thelangid.map
fields specified in .langid.fl

langid.map.keepOrig Boolean false no If true, Solr will copy the field during the field name mapping process,
leaving the original field in place.

langid.map.individual Boolean false no If true, Solr will detect and map languages for each field individually.

langid.map.individual.fl string none no A comma-separated list of fields for use with langid.map.individual
that is different than the fields specified in .langid.fl

langid.fallbackFields string none no If no language is detected that meets the score, orlangid.threshold
if the detected language is not on the , this fieldlangid.whitelist
specifies language codes to be used as fallback values. If no appropriate
fallback languages are found, Solr will use the language code specified in

.langid.fallback

langid.fallback string none no Specifies a language code to use if no language is detected or specified
in .langid.fallbackFields

langid.map.lcmap string determined by
langid.lcmap

no A space-separated list specifying colon delimited language code
mappings to use when mapping field names. For example, you might use
this to make Chinese, Japanese, and Korean language fields use a
common suffix, and map both American and British English fields*_cjk
to a single by using *_en langid.map.lcmap=ja:cjk zh:cjk

.ko:cjk en_GB:en en_US:en

langid.map.pattern Java
regular
expression

none no By default, fields are mapped as <field>_<language>. To change this
pattern, you can specify a Java regular expression in this parameter.

160Apache Solr Reference Guide 4.4

langid.map.replace Java
replace

none no By default, fields are mapped as <field>_<language>. To change this
pattern, you can specify a Java replace in this parameter.

langid.enforceSchema Boolean true no If false, the processor does not validate field names against yourlangid
schema. This may be useful if you plan to rename or delete fields later in
the UpdateChain.

Content Streams

When Solr RequestHandlers are accessed using path based URLs, the object containing the parameters of the requestSolrQueryRequest
may also contain a list of ContentStreams containing bulk data for the request. (The name SolrQueryRequest is a bit misleading: it is involved in
all requests, regardless of whether it is a query request or an update request.)

Stream Sources

Currently RequestHandlers can get content streams in a variety of ways:

For multipart file uploads, each file is passed as a stream.
For POST requests where the content-type is not , the raw POST body is passed as aapplication/x-www-form-urlencoded
stream. The full POST body is parsed as parameters and included in the Solr parameters.
The contents of parameter is passed as a stream.stream.body
If remote streaming is enabled and URL content is called for during request handling, the contents of each and stream.url

 parameters are fetched and passed as a stream.stream.file

By default, curl sends a header. If you need to test a SolrContentHeader contentcontentType="application/x-www-form-urlencoded"
stream, you will need to set the content type with the "-H" flag.

RemoteStreaming

Remote streaming lets you send the contents of a URL as a stream to a given SolrRequestHandler. You could use remote streaming to send a
remote or local file to an update plugin. For security reasons, remote streaming is disabled in the included in the examplesolrconfig.xml
directory.

If you enable streaming, be aware that this allows to send a request to any URL or local file. If dump is enabled, it willanyone
allow anyone to view any file on your system.

<!--Make sure your system has authentication before enabling remote streaming!-->
 <requestParsers enableRemoteStreaming="true" multipartUploadLimitInKB="2048" />

Debugging Requests

The example includes a "dump" RequestHandler:solrconfig.xml

 <requestHandler name="/debug/dump" class="solr.DumpRequestHandler" />

This handler simply outputs the contents of the SolrQueryRequest using the specified writer type . This is a useful tool to help understand whatwt
streams are available to the RequestHandlers.

UIMA Integration

You can integrate the Apache Unstructured Information Management Architecture () with Solr. UIMA lets you define custom pipelines ofUIMA
Analysis Engines that incrementally add metadata to your documents as annotations.

For more information about Solr UIMA integration, see .https://wiki.apache.org/solr/SolrUIMA

Configuring UIMA

The SolrUIMA UpdateRequestProcessor is a custom update request processor that takes documents being indexed, sends them to a UIMA

https://uima.apache.org/
https://wiki.apache.org/solr/SolrUIMA

161Apache Solr Reference Guide 4.4

1.

2.

3.

pipeline, and then returns the documents enriched with the specified metadata. To configure UIMA for Solr, follow these steps:

Copy (under) and its libraries (under) to a Solrapache-solr-uima-3.x.0.jar /apache-solr-3.x.0/dist/ contrib/uima/lib
libraries directory, or set tags in appropriately to point to those jar files: <lib/> solrconfig.xml

<lib dir="../../contrib/uima/lib" />
<lib dir="../../dist/" regex="apache-solr-uima-\d.*\.jar" />

Modify , adding your desired metadata fields specifying proper values for type, indexed, stored, and multiValued options.schema.xml
For example:

<field name="language" type="string" indexed="true" stored="true"
required="false"/>
<field name="concept" type="string" indexed="true" stored="true"
multiValued="true" required="false"/>
<field name="sentence" type="text" indexed="true" stored="true"
multiValued="true" required="false" />

Add the following snippet to : solrconfig.xml

 <updateRequestProcessorChain name="uima">
 <processor
class="org.apache.solr.uima.processor.UIMAUpdateRequestProcessorFactory">
 <lst name="uimaConfig">
 <lst name="runtimeParameters">
 <str name="keyword_apikey">VALID_ALCHEMYAPI_KEY</str>
 <str name="concept_apikey">VALID_ALCHEMYAPI_KEY</str>
 <str name="lang_apikey">VALID_ALCHEMYAPI_KEY</str>
 <str name="cat_apikey">VALID_ALCHEMYAPI_KEY</str>
 <str name="entities_apikey">VALID_ALCHEMYAPI_KEY</str>
 <str name="oc_licenseID">VALID_OPENCALAIS_KEY</str>
 </lst>
 <str
name="analysisEngine">/org/apache/uima/desc/OverridingParamsExtServicesAE.xml</str>
<!-- Set to true if you want to continue indexing even if text processing fails.
 Default is false. That is, Solr throws RuntimeException and
 never indexed documents entirely in your session. -->
 <bool name="ignoreErrors">true</bool>
 <!-- This is optional. It is used for logging when text processing
fails.
 If logField is not specified, uniqueKey will be used as logField.
 <str name="logField">id</str>
 -->
 <lst name="analyzeFields">
 <bool name="merge">false</bool>
 <arr name="fields">
 <str>text</str>
 </arr>
 </lst>
 <lst name="fieldMappings">
 <lst name="type">
 <str name="name">org.apache.uima.alchemy.ts.concept.ConceptFS</str>

162Apache Solr Reference Guide 4.4

3.

 <lst name="mapping">
 <str name="feature">text</str>
 <str name="field">concept</str>
 </lst>
 </lst>
 <lst name="type">
 <str
name="name">org.apache.uima.alchemy.ts.language.LanguageFS</str>
 <lst name="mapping">
 <str name="feature">language</str>
 <str name="field">language</str>
 </lst>
 </lst>
 <lst name="type">
 <str name="name">org.apache.uima.SentenceAnnotation</str>
 <lst name="mapping">
 <str name="feature">coveredText</str>
 <str name="field">sentence</str>
 </lst>
 </lst>
 </lst>
 </lst>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />

163Apache Solr Reference Guide 4.4

3.

4.

 <processor class="solr.RunUpdateProcessorFactory" />
 </updateRequestProcessorChain>

VALID_ALCHEMYAPI_KEY is your AlchemyAPI Access Key. You need to register an AlchemyAPI Access key to use
AlchemyAPI services: . http://www.alchemyapi.com/api/register.html

 is your Calais Service Key. You need to register a Calais Service key to use the CalaisVALID_OPENCALAIS_KEY
services: . http://www.opencalais.com/apikey

 must contain an AE descriptor inside the specified path in the classpath. analysisEngine

 must contain the input fields that need to be analyzed by UIMA. If then their content willanalyzeFields merge=true
be merged and analyzed only once.

Field mapping describes which features of which types should go in a field.

In your replace the existing default UpdateRequestHandler or create a new UpdateRequestHandler: solrconfig.xml

 <requestHandler name="/update" class="solr.XmlUpdateRequestHandler">
 <lst name="defaults">
 <str name="update.processor">uima</str>
 </lst>
 </requestHandler>

Once you are done with the configuration your documents will be automatically enriched with the specified fields when you index them.

http://www.alchemyapi.com/api/register.html
http://www.opencalais.com/apikey

164Apache Solr Reference Guide 4.4

Searching
This section describes how Solr works with search requests. It covers the following topics:

Overview of Searching in Solr: An introduction to searching with Solr.

Velocity Search UI: A sample search UI in the example configuration using the VelocityResponseWriter.

Relevance: Conceptual information about understanding relevance in search results.

Query Syntax and Parsing: A brief conceptual overview of query syntax and parsing. It also contains the following sub-sections:
Common Query Parameters: No matter the query parser, there are several parameters that are common to all of them.
The Standard Query Parser: Detailed information about the standard Lucene query parser.
The DisMax Query Parser: Detailed information about Solr's DisMax query parser.
The Extended DisMax Query Parser: Detailed information about Solr's Extended DisMax (eDisMax) Query Parser.
Local Parameters in Queries: How to add local arguments to queries.
Other Parsers: More parsers designed for use in specific situations.

Highlighting: Detailed information about Solr's highlighting utilities.

MoreLikeThis: Detailed information about Solr's similar results query component.

Faceting: Detailed information about categorizing search results based on indexed terms.

Result Grouping: Detailed information about grouping results based on common field values.

Spell Checking: Detailed information about Solr's spelling checker.

Suggester: Detailed information about Solr's powerful autosuggest component.

Function Queries: Detailed information about parameters for generating relevancy scores using values from one or more numeric fields.

Spatial Search: How to use Solr's spatial search capabilities.

The Terms Component: Detailed information about accessing indexed terms and the documents that include them.

The Term Vector Component: How to get term information about specific documents.

The Stats Component: How to return information from numeric fields within a document set.

The Query Elevation Component: How to force documents to the top of the results for certain queries.

Response Writers: Detailed information about configuring and using Solr's response writers.

Near Real Time Searching: How to include documents in search results nearly immediately after they are indexed.

RealTime Get: How to get the latest version of a document without opening a searcher.

Overview of Searching in Solr

Solr offers a rich, flexible set of features for search. To understand the extent of this flexibility, it's helpful to begin with an overview of the steps
and components involved in a Solr search.

When a user runs a search in Solr, the search query is processed by a . A request handler is a Solr plug-in that defines the logicrequest handler
to be used when Solr processes a request. Solr supports a variety of request handlers. Some are designed for processing search queries, while
others manage tasks such as index replication.

Search applications select a particular request handler by default. In addition, applications can be configured to allow users to override the default
selection in preference of a different request handler.

To process a search query, a request handler calls a , which interprets the terms and parameters of a query. Different query parsersquery parser
support different syntax. The default query parser is the query parser. Solr also includes an earlier "standard" (Lucene) query parser, andDisMax
an (eDisMax) query parser. The query parser's syntax allows for greater precision in searches, but the DisMax queryExtended DisMax standard
parser is much more tolerant of errors. The DisMax query parser is designed to provide an experience similar to that of popular search engines
such as Google, which rarely display syntax errors to users. The Extended DisMax query parser is an improved version of DisMax that handles
the full Lucene query syntax while still tolerating syntax errors. It also includes several additional features.

In addition, there are that are accepted by all query parsers.common query parameters

Input to a query parser can include:

165Apache Solr Reference Guide 4.4

search strings---that is, to search for in the indexterms
parameters for fine-tuning the query by increasing the importance of particular strings or fields, by applying Boolean logic among the
search terms, or by excluding content from the search results
parameters for controlling the presentation of the query response, such as specifying the order in which results are to be presented or
limiting the response to particular fields of the search application's schema.

Search parameters may also specify a . As part of a search response, a query filter runs a query against the entire index and cachesquery filter
the results. Because Solr allocates a separate cache for filter queries, the strategic use of filter queries can improve search performance. (Despite
their similar names, query filters are not related to analysis filters. Query filters perform queries at search time against data already in the index,
while analysis filters, such as Tokenizers, parse content for indexing, following specified rules).

A search query can request that certain terms be highlighted in the search response; that is, the selected terms will be displayed in colored boxes
so that they "jump out" on the screen of search results. can make it easier to find relevant passages in long documents returned in aHighlighting
search. Solr supports multi-term highlighting. Solr includes a rich set of search parameters for controlling how terms are highlighted.

Search responses can also be configured to include (document excerpts) featuring highlighted text. Popular search engines such assnippets
Google and Yahoo! return snippets in their search results: 3-4 lines of text offering a description of a search result.

To help users zero in on the content they're looking for, Solr supports two special ways of grouping search results to aid further exploration:
faceting and clustering.

Faceting is the arrangement of search results into categories (which are based on indexed terms). Within each category, Solr reports on the
number of hits for relevant term, which is called a facet constraint. Faceting makes it easy for users to explore search results on sites such as
movie sites and product review sites, where there are many categories and many items within a category.

The image below shows an example of faceting from the CNET Web site, which was the first site to use Solr.

Faceting makes use of fields defined when the search applications were indexed. In the example above, these fields include categories of
information that are useful for describing digital cameras: manufacturer, resolution, and zoom range.

Clustering groups search results by similarities discovered when a search is executed, rather than when content is indexed. The results of
clustering often lack the neat hierarchical organization found in faceted search results, but clustering can be useful nonetheless. It can reveal
unexpected commonalities among search results, and it can help users rule out content that isn't pertinent to what they're really searching for.

Solr also supports a feature called , which enables users to submit new queries that focus on particular terms returned in an earlierMoreLikeThis
query. MoreLikeThis queries can make use of faceting or clustering to provide additional aid to users.

A Solr component called a manages the final presentation of the query response. Solr includes a variety of response writers,response writer
including an and a .XML Response Writer JSON Response Writer

The diagram below summarizes some key elements of the search process.

166Apache Solr Reference Guide 4.4

Velocity Search UI

Solr includes a sample search UI based on the (also known as Solritas) that demonstrates several useful features, suchVelocityResponseWriter
as searching, faceting, highlighting, autocomplete, and geospatial searching.

You can access the Velocity sample Search UI here: http://localhost:8983/solr/browse

http://localhost:8983/solr/browse

167Apache Solr Reference Guide 4.4

The Velocity Search UI

For more information about the Velocity Response Writer, see the .Response Writer page

Relevance

Relevance is the degree to which a query response satisfies a user who is searching for information.

The relevance of a query response depends on the context in which the query was performed. A single search application may be used in
different contexts by users with different needs and expectations. For example, a search engine of climate data might be used by a university
researcher studying long-term climate trends, a farmer interested in calculating the likely date of the last frost of spring, a civil engineer interested
in rainfall patterns and the frequency of floods, and a college student planning a vacation to a region and wondering what to pack. Because the
motivations of these users vary, the relevance of any particular response to a query will vary as well.

How comprehensive should query responses be? Like relevance in general, the answer to this question depends on the context of a search. The
cost of finding a particular document in response to a query is high in some contexts, such as a legal e-discovery search in response to anot
subpoena, and quite low in others, such as a search for a cake recipe on a Web site with dozens or hundreds of cake recipes. When configuring
Solr, you should weigh comprehensiveness against other factors such as timeliness and ease-of-use.

The e-discovery and recipe examples demonstrate the importance of two concepts related to relevance:

Precision is the percentage of documents in the returned results that are relevant.
Recall is the percentage of relevant results returned out of all relevant results in the system. Obtaining perfect recall is trivial: simply
return every document in the collection for every query.

Returning to the examples above, it's important for an e-discovery search application to have 100% recall returning all the documents that are
relevant to a subpoena. It's far less important that a recipe application offer this degree of precision, however. In some cases, returning too many
results in casual contexts could overwhelm users. In some contexts, returning fewer results that have a higher likelihood of relevance may be the
best approach.

Using the concepts of precision and recall, it's possible to quantify relevance across users and queries for a collection of documents. A perfect

168Apache Solr Reference Guide 4.4

system would have 100% precision and 100% recall for every user and every query. In other words, it would retrieve all the relevant documents
and nothing else. In practical terms, when talking about precision and recall in real systems, it is common to focus on precision and recall at a
certain number of results, the most common (and useful) being ten results.

Through faceting, query filters, and other search components, a Solr application can be configured with the flexibility to help users fine-tune their
searches in order to return the most relevant results for users. That is, Solr can be configured to balance precision and recall to meet the needs of
a particular user community.

The configuration of a Solr application should take into account:

the needs of the application's various users (which can include ease of use and speed of response, in addition to strictly informational
needs)
the categories that are meaningful to these users in their various contexts (e.g., dates, product categories, or regions)
any inherent relevance of documents (e.g., it might make sense to ensure that an official product description or FAQ is always returned
near the top of the search results)
whether or not the age of documents matters significantly (in some contexts, the most recent documents might always be the most
important)

Keeping all these factors in mind, it's often helpful in the planning stages of a Solr deployment to sketch out the types of responses you think the
search application should return for sample queries. Once the application is up and running, you can employ a series of testing methodologies,
such as focus groups, in-house testing, tests and A/B testing to fine tune the configuration of the application to best meet the needs of itsTREC
users.

For more information about relevance, see Grant Ingersoll's tech article which is available onDebugging Search Application Relevance Issues
SearchHub.org.

Query Syntax and Parsing

Solr supports several query parsers, offering search application designers great flexibility in controlling how queries are parsed.

This section explains how to specify the query parser to be used. It also describes the syntax and features supported by the main query parsers
included with Solr and describes some other parsers that may be useful for particular situations. There are some query parameters common to all
Solr parsers; these are discussed in the section .Common Query Parameters

The parsers discussed in this Guide are:

The Standard Query Parser
The DisMax Query Parser
The Extended DisMax Query Parser
Other Parsers

The query parser plugins are all subclasses of . If youhttp://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/search/QParserPlugin.html
have custom parsing needs, you may want to extend that class to create your own query parser.

For more detailed information about the many query parsers available in Solr, see .https://wiki.apache.org/solr/SolrQuerySyntax

Common Query Parameters

The table below summarizes Solr's common query parameters, which are supported by the , , and Request Handlers.Standard DisMax eDisMax

Parameter Description

defType Selects the query parser to be used to process the query.

sort Sorts the response to a query in either ascending or descending order based on the response's score or another specified
characteristic.

start Specifies an offset (by default, 0) into the responses at which Solr should begin displaying content.

rows Controls how many rows of responses are displayed at a time (default value: 10)

fq Applies a filter query to the search results.

fl With version 3.6, Solr limited the query's responses to a listed set of fields. With version 4.0, this parameter returns only the
score.

debug Request additional debugging information in the response. Specifying the parameter returns just the timingdebug=timing
information; specifying the parameter returns "explain" information for each of the documents returned;debug=results
specifying the returns all of the debug information.debug=query parameter

http://trec.nist.gov
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/search/QParserPlugin.html
https://wiki.apache.org/solr/SolrQuerySyntax

169Apache Solr Reference Guide 4.4

explainOther Allows clients to specify a Lucene query to identify a set of documents. If non-blank, the explain info of each document which
matches this query, relative to the main query (specified by the q parameter) will be returned along with the rest of the
debugging information.

timeAllowed Defines the time allowed for the query to be processed. If the time elapses before the query response is complete, partial
information may be returned.

omitHeader Excludes the header from the returned results, if set to true. The header contains information about the request, such as the
time the request took to complete. The default is false.

wt Specifies the Response Writer to be used to format the query response.

cache=false By default, Solr caches the results of all queries and filter queries. Set to disable caching of the results of acache=false
query.

The following sections describe these parameters in detail.

The ParameterdefType

The defType parameter selects the query parser that Solr should use to process the request. For example:

defType=dismax

In Solr 1.3 and later, the query parser is set to dismax by default.

The Parametersort

The parameter arranges search results in either ascending () or descending () order. The parameter can be used with eithersort asc desc
numerical or alphabetical content. The directions can be entered in either all lowercase or all uppercase letters (i.e., both or).asc ASC

Solr can sort query responses according to document scores or the value of any indexed field with a single value (that is, any field whose
attributes in include and), provided that:schema.xml multiValued="false" indexed="true"

the field is non-tokenized (that is, the field has no analyzer and its contents have been parsed into tokens, which would make the sorting
inconsistent), or

the field uses an analyzer (such as the KeywordTokenizer) that produces only a single term.

If you want to be able to sort on a field whose contents you want to tokenize to facilitate searching, use the directive in the <copyField>
 file to clone the field. Then search on the field and sort on its clone.schema.xml

The table explains how Solr responds to various settings of the parameter.sort

Example Result

 If the sort parameter is omitted, sorting is performed as though the parameter were set to score .desc

score desc Sorts in descending order from the highest score to the lowest score.

price asc Sorts in ascending order of the price field

inStock desc, price
asc

Sorts by the contents of the field in descending order, then within those results sorts in ascending order by theinStock
contents of the price field.

Regarding the sort parameter's arguments:

A sort ordering must include a field name (or as a pseudo field), followed by whitespace (escaped as + or in URL strings),score %20
followed by a sort direction (or).asc desc

Multiple sort orderings can be separated by a comma, using this syntax: sort=<field name>+<direction>,<field
name>+<direction>],...

The Parameterstart

When specified, the parameter specifies an offset into a query's result set and instructs Solr to begin displaying results from this offset.start

The default value is "0". In other words, by default, Solr returns results without an offset, beginning where the results themselves begin.

Setting the parameter to some other number, such as 3, causes Solr to skip over the preceding records and start at the documentstart
identified by the offset.

You can use the parameter this way for paging. For example, if the parameter is set to 10, you could display three successive pagesstart rows

170Apache Solr Reference Guide 4.4

of results by setting start to 0, then re-issuing the same query and setting start to 10, then issuing the query again and setting start to 20.

The Parameterrows

You can use the rows parameter to paginate results from a query. The parameter specifies the maximum number of documents from the
complete result set that Solr should return to the client at one time.

The default value is 10. That is, by default, Solr returns 10 documents at a time in response to a query.

The (Filter Query) Parameterfq

The parameter defines a query that can be used to restrict the superset of documents that can be returned, without influencing score. It can befq
very useful for speeding up complex queries, since the queries specified with are cached independently of the main query. When a later queryfq
uses the same filter, there's a cache hit, and filter results are returned quickly from the cache.

When using the parameter, keep in mind the following:fq

The parameter can be specified multiple times in a query. Documents will only be included in the result if they are in the intersection offq
the document sets resulting from each instance of the parameter. In the example below, only documents which have a popularity greater
then 10 and have a section of 0 will match.

fq=popularity:[10 TO *]&fq=section:0

Filter queries can involve complicated Boolean queries. The above example could also be written as a single with two mandatoryfq
clauses like so:

fq=+popularity:[10 TO *]+section:0

The document sets from each filter query are cached independently. Thus, concerning the previous examples: use a single containingfq
two mandatory clauses if those clauses appear together often, and use two separate parameters if they are relatively independent.fq
(To learn about tuning cache sizes and making sure a filter cache actually exists, see .)The Well-Configured Solr Instance

As with all parameters: special characters in an URL need to be properly escaped and encoded as hex values. Online tools are available
to help you with URL-encoding. For example: .http://meyerweb.com/eric/tools/dencoder/

The (Field List) Parameterfl

The parameter limits the information included in a query response to a specified list of fields. The fields need to have been indexed as storedfl
for this parameter to work correctly.

The field list can be specified as a space-separated or comma-separated list of field names. The string "score" can be used to indicate that the
score of each document for the particular query should be returned as a field. The wildcard character "*" selects all the stored fields in a
document. You can also add psuedo-fields, functions and transformers to the field list request.

This table shows some basic examples of how to use :fl

Field List Result

id name price Return only the id, name, and price fields.

id,name,price Return only the id, name, and price fields.

id name, price Return only the id, name, and price fields.

id score Return the id field and the score.

* Return all the fields in each document. This is the default value of the fl parameter.

* score Return all the fields in each document, along with each field's score.

Document Transformers

Transformers modify fields returned with the query response. Transformers must first be configured in . The sample solrconfig.xml
 has a few examples commented out which could be enabled, but others could be added. Then the transformers could besolrconfig.xml

http://meyerweb.com/eric/tools/dencoder/

171Apache Solr Reference Guide 4.4

added to the query request and the response will be modified accordingly.

For example, if you have enabled a transformer called "elevated", you could mark all documents that have been elevated with the
QueryElevationComponent. One way to do that is to make this entry in :solrconfig.xml

<transformer name="elevated"
class="org.apache.solr.response.transform.EditorialMarkerFactory" />

Then, you would include in the part of your request where you define the fields to return:[elevated]

fl=id,title,[elevated]

Other common examples are to add "explain" information, add a constant "value" to all documents, or add the "shard" the document has been
indexed on. For more information about transformers, see also .http://wiki.apache.org/solr/DocTransformers

Field Name Aliases

You can change the name a field is returned with by passing a parameter of . This will change the name of the field in:fieldName displayName
the response to the . For example:displayName

fl=id,price:sale_price

The Parameterdebug

In Solr 4, requesting debugging information with results has been simplified from a suite of related parameters to a single parameter that takes
format information as arguments. The parameter is now simply , with the following arguments:debug

debug=true: return debug information about the query only.
debug=query: return debug information about the query only.
debug=timing: return debug information about how long the query took to process.
debug=results: return debug information about the results (also known as "explain")

The default behavior is not to include debugging information.

The ParameterexplainOther

The parameter specifies a Lucene query in order to identify a set of documents. If this parameter is included and is set to aexplainOther
non-blank value, the query will return debugging information, along with the "explain info" of each document that matches the Lucene query,
relative to the main query (which is specified by the q parameter). For example:

q=supervillians&debugQuery=on&explainOther=id:juggernaut

The query above allows you to examine the scoring explain info of the top matching documents, compare it to the explain info for documents
matching , and determine why the rankings are not as you expect.id:juggernaut

The default value of this parameter is blank, which causes no extra "explain info" to be returned.

The ParametertimeAllowed

This parameter specifies the amount of time, in milliseconds, allowed for a search to complete. If this time expires before the search is complete,
any partial results will be returned.

The ParameteromitHeader

This parameter may be set to either true or false.

If set to true, this parameter excludes the header from the returned results. The header contains information about the request, such as the time it
took to complete. The default value for this parameter is false.

http://wiki.apache.org/solr/DocTransformers

172Apache Solr Reference Guide 4.4

The Parameterwt

The parameter selects the Response Writer that Solr should use to format the query's response. For detailed descriptions of Responsewt
Writers, see .Response Writers

The cache=false Parameter

Solr caches the results of all queries and filter queries by default. To disable result caching, set the parameter.cache=false

You can also use the option to control the order in which non-cached filter queries are evaluated. This allows you to order less expensivecost
non-cached filters before expensive non-cached filters.

For very high cost filters, if and and the query implements the interface, a Collector will be requestedcache=false cost>=100 PostFilter
from that query and used to filter documents after they have matched the main query and all other filter queries. There can be multiple post filters;
they are also ordered by cost.

For example:

// normal function range query used as a filter, all matching documents generated up
front and cached
fq={!frange l=10 u=100}mul(popularity,price)

// function range query run in parallel with the main query like a traditional lucene
filter
fq={!frange l=10 u=100 cache=false}mul(popularity,price)

// function range query checked after each document that already matches the query and
all other filters.
 Good for really expensive function queries.
fq={!frange l=10 u=100 cache=false cost=100}mul(popularity,price)

The Standard Query Parser

Before Solr 1.3, the Standard Request Handler called the standard query parser as the default query parser. In versions since Solr 1.3, the
Standard Request Handler calls the DisMax query parser as the default query parser. You can configure Solr to call the standard query parser
instead, if you like.

The advantage of the standard query parser is that it enables users to specify very precise queries. The disadvantage is that it is less tolerant of
syntax errors than the query parser. The DisMax query parser is designed to throw as few errors as possible.DisMax

Topics covered in this section:

Standard Query Parser Parameters
The Standard Query Parser's Response
Specifying Terms for the Standard Query Parser
Specifying Fields in a Query to the Standard Query Parser
Boolean Operators Supported by the Standard Query Parser
Grouping Terms to Form Sub-Queries
Differences between Lucene Query Parser and the Solr Standard Query Parser
Related Topics

Standard Query Parser Parameters

In addition to the , , , and , the standard queryCommon Query Parameters Faceting Parameters Highlighting Parameters MoreLikeThis Parameters
parser supports the parameters described in the table below.

Parameter Description

q Defines a query using standard query syntax. This parameter is mandatory.

q.op Specifies the default operator for query expressions, overriding the default operator specified in the file. Possibleschema.xml
values are "AND" or "OR".

173Apache Solr Reference Guide 4.4

df Specifies a default field, overriding the definition of a default field in the file.schema.xml

Default parameter values are specified in , or overridden by query-time values in the request.solrconfig.xml

The Standard Query Parser's Response

By default, the response from the standard query parser contains one block, which is unnamed. If the is<result> parameterdebugQuery
used, then an additional block will be returned, using the name "debug". This will contain useful debugging info, including the original<lst>
query string, the parsed query string, and explain info for each document in the <result> block. If the is also used, then parameterexplainOther
additional explain info will be provided for all the documents matching that query.

Sample Responses

This section presents examples of responses from the standard query parser.

The URL below submits a simple query and requests the XML Response Writer to use indentation to make the XML response more readable.

http://yourhost.tld:9999/solr/select?q=id:SP2514N&version=2.1&indent=1

Results:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<responseHeader><status>0</status><QTime>1</QTime></responseHeader>
<result numFound="1" start="0">
 <doc>
 <arr name="cat"><str>electronics</str><str>hard drive</str></arr>
 <arr name="features"><str>7200RPM, 8MB cache, IDE Ultra ATA-133</str>
 <str>NoiseGuard, SilentSeek technology, Fluid Dynamic Bearing (FDB)
motor</str></arr>
 <str name="id">SP2514N</str>
 <bool name="inStock">true</bool>
 <str name="manu">Samsung Electronics Co. Ltd.</str>
 <str name="name">Samsung SpinPoint P120 SP2514N - hard drive - 250 GB -
ATA-133</str>
 <int name="popularity">6</int>
 <float name="price">92.0</float>
 <str name="sku">SP2514N</str>
 </doc>
</result>
</response>

Here's an example of a query with a limited field list.

http://yourhost.tld:9999/solr/select?q=id:SP2514N&version=2.1&indent=1&fl=id+name

Results:

http://yourhost.tld:9999/solr/select?q=id:SP2514N&version=2.1&indent=1

174Apache Solr Reference Guide 4.4

<?xml version="1.0" encoding="UTF-8"?>
<response>
<responseHeader><status>0</status><QTime>2</QTime></responseHeader>
<result numFound="1" start="0">
 <doc>
 <str name="id">SP2514N</str>
 <str name="name">Samsung SpinPoint P120 SP2514N - hard drive - 250 GB -
ATA-133</str>
 </doc>
</result>
</response>

Specifying Terms for the Standard Query Parser

A query to the standard query parser is broken up into terms and operators. There are two types of terms: single terms and phrases.

A single term is a single word such as "test" or "hello"
A phrase is a group of words surrounded by double quotes such as "hello dolly"

Multiple terms can be combined together with Boolean operators to form more complex queries (as described below).

It is important that the analyzer used for queries parses terms and phrases in a way that is consistent with the way the analyzer
used for indexing parses terms and phrases; otherwise, searches may produce unexpected results.

Term Modifiers

Solr supports a variety of term modifiers that add flexibility or precision, as needed, to searches. These modifiers include wildcard characters,
characters for making a search "fuzzy" or more general, and so on. The sections below describe these modifiers in detail.

Wildcard Searches

Solr's standard query parser supports single and multiple character wildcard searches within single terms. Wildcard characters can be applied to
single terms, but not to search phrases.

Wildcard Search Type Special
Character

Example

Single character (matches a single character) ? The search string would match both test and text.te?t

Multiple characters (matches zero or more sequential
characters)

* The wildcard search:

 tes*

would match test, testing, and tester.

You can also use wildcard characters in the middle of a term. For
example:

 te*t

would match test and text.

 *est

would match pest and test.

As of Solr 1.4, you can use a * or ? symbol as the first character of a search with the standard query parser.

Fuzzy Searches

175Apache Solr Reference Guide 4.4

Solr's standard query parser supports fuzzy searches based on the Levenshtein Distance or Edit Distance algorithm. Fuzzy searches discover
terms that are similar to a specified term without necessarily being an exact match. To perform a fuzzy search, use the tilde ~ symbol at the end
of a single-word term. For example, to search for a term similar in spelling to "roam," use the fuzzy search:

roam~

This search will match terms like foam and roams. It will also match the word "roam" itself.

An optional, additional parameter specifies the degree of similarity required for a match in a fuzzy search. The value must be between 0 and 1.
When set closer to 1, the optional parameter causes only terms with a higher similarity to be matched. For example, the search below requires a
high degree of similarity to the term "roam" in order for Solr to return a match:

roam~0.8

If this numerical parameter is omitted, Lucene performs the search as though the parameter were set to 0.5. The sample query above is not very
scalable. Upon parsing this query will check the quasi-edit distance for every term in the index. As a result, this query is practical for only very
small indexes.

In many cases, stemming (reducing terms to a common stem) can produce similar effects to fuzzy searches and wildcard
searches.

Proximity Searches

A proximity search looks for terms that are within a specific distance from one another.

To perform a proximity search, add the tilde character ~ and a numeric value to the end of a search phrase. For example, to search for a "apache"
and "jakarta" within 10 words of each other in a document, use the search:

"jakarta apache"~10

The distance referred to here is the number of term movements needed to match the specified phrase. In the example above, if "apache" and
"jakarta" were 10 spaces apart in a field, but "apache" appeared before "jakarta", more than 10 term movements would be required to move the
terms together and position "apache" to the right of "jakarta" with a space in between.

Range Searches

A range search specifies a range of values for a field (a range with an upper bound and a lower bound). The query matches documents whose
values for the specified field or fields fall within the range. Range queries can be inclusive or exclusive of the upper and lower bounds. Sorting is
done lexicographically, except on numeric fields. For example, the range query below matches all documents whose field has a valuemod_date
between 20020101 and 20030101, inclusive.

mod_date:[20020101 TO 20030101]

Range queries are not limited to date fields or even numerical fields. You could also use range queries with non-date fields:

title:{Aida TO Carmen}

This will find all documents whose titles are between Aida and Carmen, but not including Aida and Carmen.

The brackets around a query determine its inclusiveness.

Square brackets [] denote an inclusive range query that matches values including the upper and lower bound.
Curly brackets { } denote an exclusive range query that matches values between the upper and lower bounds, but excluding the upper
and lower bounds themselves.

Boosting a Term with ^

Lucene/Solr provides the relevance level of matching documents based on the terms found. To boost a term use the caret symbol with a boost^
factor (a number) at the end of the term you are searching. The higher the boost factor, the more relevant the term will be.

Boosting allows you to control the relevance of a document by boosting its term. For example, if you are searching for

"jakarta apache" and you want the term "jakarta" to be more relevant, you can boost it by adding the ^ symbol along with the boost factor
immediately after the term. For example, you could type:

jakarta^4 apache

This will make documents with the term jakarta appear more relevant. You can also boost Phrase Terms as in the example:

"jakarta apache"^4 "Apache Lucene"

176Apache Solr Reference Guide 4.4

By default, the boost factor is 1. Although the boost factor must be positive, it can be less than 1 (for example, it could be 0.2).

Specifying Fields in a Query to the Standard Query Parser

Data indexed in Solr is organized in fields, which are defined in the Solr file. Searches can take advantage of fields to add precisionschema.xml
to queries. For example, you can search for a term only in a specific field, such as a title field.

The file defines one field as a default field. If you do not specify a field in a query, Solr searches only the default field. Alternatively,schema.xml
you can specify a different field or a combination of fields in a query.

To specify a field, type the field name followed by a colon ":" and then the term you are searching for within the field.

For example, suppose an index contains two fields, title and text,and that text is the default field. If you want to find a document called "The Right
Way" which contains the text "don't go this way," you could include either of the following terms in your search query:

title:"The Right Way" AND text:go

title:"Do it right" AND go

Since text is the default field, the field indicator is not required; hence the second query above omits it.

The field is only valid for the term that it directly precedes, so the query will find only "Do" in the title field. It will find "it" andtitle:Do it right
"right" in the default field (in this case the text field).

Boolean Operators Supported by the Standard Query Parser

Boolean operators allow you to apply Boolean logic to queries, requiring the presence or absence of specific terms or conditions in fields in order
to match documents. The table below summarizes the Boolean operators supported by the standard query parser.

Boolean
Operator

Alternative
Symbol

Description

AND && Requires both terms on either side of the Boolean operator to be present for a match.

NOT ! Requires that the following term not be present.

OR || Requires that either term (or both terms) be present for a match.

 + Requires that the following term be present.

 - Prohibits the following term (that is, matches on fields or documents that do not include that term). The - operator is
functional similar to the Boolean operator !. Because it's used by popular search engines such as Google, it may be
more familiar to some user communities.

Boolean operators allow terms to be combined through logic operators. Lucene supports AND, "+", OR, NOT and "-" as Boolean operators.

When specifying Boolean operators with keywords such as AND or NOT, the keywords must appear in all uppercase.

The standard query parser supports all the Boolean operators listed in the table above. The DisMax query parser supports only
+ and -.

The OR operator is the default conjunction operator. This means that if there is no Boolean operator between two terms, the OR operator is used.
The OR operator links two terms and finds a matching document if either of the terms exist in a document. This is equivalent to a union using
sets. The symbol || can be used in place of the word OR.

In the file, you can specify which symbols can take the place of Boolean operators such as OR. To search for documents thatschema.xml
contain either "jakarta apache" or just "jakarta," use the query:

"jakarta apache" jakarta

or

"jakarta apache" OR jakarta

The Boolean Operator +

The + symbol (also known as the "required" operator) requires that the term after the + symbol exist somewhere in a field in at least one
document in order for the query to return a match.

177Apache Solr Reference Guide 4.4

For example, to search for documents that must contain "jakarta" and that may or may not contain "lucene," use the following query:

+jakarta lucene

This operator is supported by both the standard query parser and the DisMax query parser.

The Boolean Operator AND (&&)

The AND operator matches documents where both terms exist anywhere in the text of a single document. This is equivalent to an intersection
using sets. The symbol && can be used in place of the word AND.

To search for documents that contain "jakarta apache" and "Apache Lucene," use either of the following queries:

"jakarta apache" AND "Apache Lucene"

"jakarta apache" && "Apache Lucene"

The Boolean Operator NOT (!)

The NOT operator excludes documents that contain the term after NOT. This is equivalent to a difference using sets. The symbol ! can be used in
place of the word NOT.

The following queries search for documents that contain the phrase "jakarta apache" but do not contain the phrase "Apache Lucene":

"jakarta apache" NOT "Apache Lucene"

"jakarta apache" ! "Apache Lucene"

The Boolean Operator -

The - symbol or "prohibit" operator excludes documents that contain the term after the - symbol.

For example, to search for documents that contain "jakarta apache" but not "Apache Lucene," use the following query:

"jakarta apache" -"Apache Lucene"

Escaping Special Characters

Solr gives the following characters special meaning when they appear in a query:

+ - && || ! () { } [] ^ " ~ * ? : /

To make Solr interpret any of these characters literally, rather as a special character, precede the character with a backslash character \. For
example, to search for (1+1):2 without having Solr interpret the plus sign and parentheses as special characters for formulating a sub-query with
two terms, escape the characters by preceding each one with a backslash:

\(1\+1\)\:2

Grouping Terms to Form Sub-Queries

Lucene/Solr supports using parentheses to group clauses to form sub-queries. This can be very useful if you want to control the Boolean logic for
a query.

The query below searches for either "jakarta" or "apache" and "website":

(jakarta OR apache) AND website

This adds precision to the query, requiring that the term "website" exist, along with either term "jakarta" and "apache."

Grouping Clauses within a Field

To apply two or more Boolean operators to a single field in a search, group the Boolean clauses within parentheses. For example, the query
below searches for a title field that contains both the word "return" and the phrase "pink panther":

title:(+return +"pink panther")

178Apache Solr Reference Guide 4.4

Differences between Lucene Query Parser and the Solr Standard Query Parser

Solr's standard query parser differs from the Lucene Query Parser in the following ways:

A * may be used for either or both endpoints to specify an open-ended range query
field:[* TO 100] finds all field values less than or equal to 100
field:[100 TO *] finds all field values greater than or equal to 100
field:[* TO *] matches all documents with the field

Pure negative queries (all clauses prohibited) are allowed (only as a top-level clause)
-inStock:false finds all field values where inStock is not false
-field:[* TO *] finds all documents without a value for field

A hook into FunctionQuery syntax. You'll need to use quotes to encapsulate the function if it includes parentheses, as shown in the
second example below:

:myfieldval
:"recip(rord(myfield),1,2,3)"val

Support for any type of query parser. Prior to Solr 4.1, the "magic" field " needed to be used to nest another query parser._query_
However, with Solr 4.1, other query parsers can be used directly using the local parameters syntax.

{ }!geodist d=10 p=20.5,30.2
Range queries ("[a TO z]"), prefix queries ("a*"), and wildcard queries ("a*b") are constant-scoring (all matching documents get an equal
score). The scoring factors TF, IDF, index boost, and "coord" are not used. There is no limitation on the number of terms that match (as
there was in past versions of Lucene).

Specifying Dates and Times

If you use the Solr type, any queries on those fields (typically range queries) should use the TrieDate Field. Here are some examplesDateField
of valid parameters using syntax appropriate for the DateField type:

timestamp:[*TO NOW]
createdate:[1976-03-06T23:59:59.999Z TO *]
createdate:[1995-12-31T23:59:59.999Z TO 2007-03-06T00:00:00Z]
pubdate:[NOW-1YEAR/DAY TO NOW/DAY+1DAY]
createdate:[1976-03-06T23:59:59.999Z TO 1976-03-06T23:59:59.999Z+1YEAR]
createdate:[1976-03-06T23:59:59.999Z/YEAR TO 1976-03-06T23:59:59.999Z]

Related Topics

Local Parameters in Queries
Other Parsers

The DisMax Query Parser

The DisMax query parser is designed to process simple phrases (without complex syntax) entered by users and to search for individual terms
across several fields using different weighting (boosts) based on the significance of each field. Additional options enable users to influence the
score based on rules specific to each use case (independent of user input).

In general, the DisMax query parser's interface is more like that of Google than the interface of the 'standard' Solr request handler. This similarity
makes DisMax the appropriate query parser for many consumer applications. It accepts a simple syntax, and it rarely produces error messages.

The DisMax query parser supports an extremely simplified subset of the Lucene QueryParser syntax. As in Lucene, quotes can be used to group
phrases, and +/- can be used to denote mandatory and optional clauses. All other Lucene query parser special characters (except AND and OR)
are escaped to simplify the user experience. The DisMax query parser takes responsibility for building a good query from the user's input using
Boolean clauses containing DisMax queries across fields and boosts specified by the user. It also lets the Solr administrator provide additional
boosting queries, boosting functions, and filtering queries to artificially affect the outcome of all searches. These options can all be specified as
default parameters for the handler in the file or overridden in the Solr query URL.solrconfig.xml

Interested in the technical concept behind the DisMax name? DisMax stands for Maximum Disjunction. Here's a definition of a Maximum
Disjunction or "DisMax" query:

A query that generates the union of documents produced by its subqueries, and that scores each document with the maximum
score for that document as produced by any subquery, plus a tie breaking increment for any additional matching subqueries.

Whether or not you remember this explanation, do remember that the DisMax request handler was primarily designed to be easy to use and to
accept almost any input without returning an error.

DisMax Parameters

In addition to the common request parameter, highlighting parameters, and simple facet parameters, the DisMax query parser supports the
parameters described below. Like the standard query parser, the DisMax query parser allows default parameter values to be specified in

, or overridden by query-time values in the request.solrconfig.xml

179Apache Solr Reference Guide 4.4

Parameter Description

q Defines the raw input strings for the query.

q.alt Calls the standard query parser and defines query input strings, when the q parameter is not used.

qf Query Fields: specifies the fields in the index on which to perform the query. If absent, defaults to .df

mm Minimum "Should" Match: specifies a minimum number of fields that must match in a query. If no 'mm' parameter is specified in
the query, or as a default in , the effective value of the parameter (either in the query, as a default in solrconfig.xml q.op

, or from the 'defaultOperator' option in) is used to influence the behavior. If is effectivelysolrconfig.xml schema.xml q.op
AND'ed, then mm=100%; if is OR'ed, then mm=1. Users who want to force the legacy behavior should set a default valueq.op
for the 'mm' parameter in their file. Users should add this as a configured default for their request handlers.solrconfig.xml
This parameter tolerates miscellaneous white spaces in expressions (e.g., " 3 < -25% 10 < -3\n", " \n-25%\n ", "

).\n3\n "

pf Phrase Fields: boosts the score of documents in cases where all of the terms in the q parameter appear in close proximity.

ps Phrase Slop: specifies the number of positions two terms can be apart in order to match the specified phrase.

qs Query Phrase Slop: specifies the number of positions two terms can be apart in order to match the specified phrase. Used
specifically with the parameter.qf

tie Tie Breaker: specifies a float value (which should be something much less than 1) to use as tiebreaker in DisMax queries.

bq Boost Query: specifies a factor by which a term or phrase should be "boosted" in importance when considering a match.

bf Boost Functions: specifies functions to be applied to boosts. (See for details about function queries.)

The sections below explain these parameters in detail.

The Parameterq

The parameter defines the main "query" constituting the essence of the search. The parameter supports raw input strings provided by usersq
with no special escaping. The + and - characters are treated as "mandatory" and "prohibited" modifiers for terms. Text wrapped in balanced quote
characters (for example, "San Jose") is treated as a phrase. Any query containing an odd number of quote characters is evaluated as if there
were no quote characters at all.

The parameter does not support wildcard characters such as *.q

The Parameterq.alt

If specified, the parameter defines a query (which by default will be parsed using standard query parsing syntax) when the main qq.alt
parameter is not specified or is blank. The parameter comes in handy when you need something like a query to match all documentsq.alt
(don't forget for that one!) in order to get collection-wise faceting counts.&rows=0

The (Query Fields) Parameterqf

The parameter introduces a list of fields, each of which is assigned a boost factor to increase or decrease that particular field's importance inqf
the query. For example, the query below:

qf="fieldOne^2.3 fieldTwo fieldThree^0.4"

assigns a boost of 2.3, leaves with the default boost (because no boost factor is specified), and a boost offieldOne fieldTwo fieldThree
0.4. These boost factors make matches in much more significant than matches in , which in turn are much more significantfieldOne fieldTwo
than matches in .fieldThree

The (Minimum Should Match) Parametermm

When processing queries, Lucene/Solr recognizes three types of clauses: mandatory, prohibited, and "optional" (also known as "should" clauses).
By default, all words or phrases specified in the parameter are treated as "optional" clauses unless they are preceded by a "+" or a "-". Whenq
dealing with these "optional" clauses, the parameter makes it possible to say that a certain minimum number of those clauses must match.mm
The DisMax query parser offers great flexibility in how the minimum number can be specified.

The table below explains the various ways that mm values can be specified.

Syntax Example Description

180Apache Solr Reference Guide 4.4

Positive integer 3 Defines the minimum number of clauses that must match, regardless of how many clauses there
are in total.

Negative integer -2 Sets the minimum number of matching clauses to the total number of optional clauses, minus this
value.

Percentage 75% Sets the minimum number of matching clauses to this percentage of the total number of optional
clauses. The number computed from the percentage is rounded down and used as the minimum.

Negative percentage -25% Indicates that this percent of the total number of optional clauses can be missing. The number
computed from the percentage is rounded down, before being subtracted from the total to
determine the minimum number.

An expression beginning with
a positive integer followed by
a > or < sign and another
value

3<90% Defines a conditional expression indicating that if the number of optional clauses is equal to (or less
than) the integer, they are all required, but if it's greater than the integer, the specification applies.
In this example: if there are 1 to 3 clauses they are all required, but for 4 or more clauses only 90%
are required.

Multiple conditional
expressions involving > or <
signs

2<-25%
9<-3

Defines multiple conditions, each one being valid only for numbers greater than the one before it. In
the example at left, if there are 1 or 2 clauses, then both are required. If there are 3-9 clauses all
but 25% are required. If there are more then 9 clauses, all but three are required.

When specifying values, keep in mind the following:mm

When dealing with percentages, negative values can be used to get different behavior in edge cases. 75% and -25% mean the same
thing when dealing with 4 clauses, but when dealing with 5 clauses 75% means 3 are required, but -25% means 4 are required.

If the calculations based on the parameter arguments determine that no optional clauses are needed, the usual rules about Boolean
queries still apply at search time. (That is, a Boolean query containing no required clauses must still match at least one optional clause).

No matter what number the calculation arrives at, Solr will never use a value greater than the number of optional clauses, or a value less
then 1. (In other words, no matter how low or how high the calculated result, the minimum number of required matches will never be less
then 1 or greater than the number of clauses.)

The default value of is 100% (meaning that all clauses must match).mm

The (Phrase Fields) Parameterpf

Once the list of matching documents has been identified using the and parameters, the parameter can be used to "boost" the score offq qf pf
documents in cases where all of the terms in the q parameter appear in close proximity.

The format is the same as that used by the parameter: a list of fields and "boosts" to associate with each of them when making phrase queriesqf
out of the entire q parameter.

The (Phrase Slop) Parameterps

The parameter specifies the amount of "phrase slop" to apply to queries specified with the pf parameter. Phrase slop is the number ofps
positions one token needs to be moved in relation to another token in order to match a phrase specified in a query.

The (Query Phrase Slop) Parameterqs

The parameter specifies the amount of slop permitted on phrase queries explicitly included in the user's query string with the parameter. Asqs qf
explained above, slop refers to the number of positions one token needs to be moved in relation to another token in order to match a phrase
specified in a query.

The (Tie Breaker) Parametertie

The parameter specifies a float value (which should be something much less than 1) to use as tiebreaker in DisMax queries.tie

When a term from the user's input is tested against multiple fields, more than one field may match. If so, each field will generate a different score
based on how common that word is in that field (for each document relative to all other documents). The parameter lets you control howtie
much the final score of the query will be influenced by the scores of the lower scoring fields compared to the highest scoring field.

A value of "0.0" makes the query a pure "disjunction max query": that is, only the maximum scoring subquery contributes to the final score. A
value of "1.0" makes the query a pure "disjunction sum query" where it doesn't matter what the maximum scoring sub query is, because the final
score will be the sum of the subquery scores. Typically a low value, such as 0.1, is useful.

The (Boost Query) Parameterbq

The parameter specifies a raw query string (expressed in Solr query syntax) that will be included with the user's query to influence the score.bq
For example, if you wanted to add a relevancy boost for recent documents:

181Apache Solr Reference Guide 4.4

q=cheese bq=date\[NOW/DAY-1YEAR TO NOW/DAY\]

You can specify multiple parameters. If you want your query to be parsed as separate clauses with separate boosts, use multiple bq bq
parameters.

The (Boost Functions) Parameterbf

The parameter specifies functions (with optional boosts) that will be included in the user's query to influence the score. Any function supportedbf
natively by Solr can be used, along with a boost value. For example:

recip(rord(myfield),1,2,3)^1.5

Specifying functions with the parameter is just shorthand for using the syntax in a parameter.bf val:"...function..." bq

For example, if you want to show the most recent documents first, use

recip(rord(creationDate),1,1000,1000)

Examples of Queries Submitted to the DisMax Query Parser

Normal results for the word "video" using the StandardRequestHandler with the default search field:

http://localhost:8983/solr/select/?q=video&fl=name+score

The "dismax" handler is configured to search across the text, features, name, sku, id, manu, and cat fields all with varying boosts designed to
ensure that "better" matches appear first, specifically: documents which match on the name and cat fields get higher scores.

http://localhost:8983/solr/select/?defType=dismax&q=video

Note that this instance is also configured with a default field list, which can be overridden in the URL.

http://localhost:8983/solr/select/?defType=dismax&q=video&fl=*,score

You can also override which fields are searched on and how much boost each field gets.

http://localhost:8983/solr/select/?defType=dismax&q=video&qf=features^20.0+text^0.3

You can boost results that have a field that matches a specific value.

http://localhost:8983/solr/select/?defType=dismax&q=video&bq=cat:electronics^5.0

Another instance of the handler is registered using the "instock" and has slightly different configuration options, notably: a filter for (youqt
guessed it) .inStock:true)

http://localhost:8983/solr/select/?defType=dismax&q=video&fl=name,score,inStock

http://localhost:8983/solr/select/?defType=dismax&q=video&qt=instock&fl=name,score,inStock

One of the other really cool features in this handler is robust support for specifying the "BooleanQuery.minimumNumberShouldMatch" you want to
be used based on how many terms are in your user's query. These allows flexibility for typos and partial matches. For the dismax handler, one
and two word queries require that all of the optional clauses match, but for three to five word queries one missing word is allowed.

http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod

http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+gibberish

http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+apple

Just like the StandardRequestHandler, it supports the debugQuery option to viewing the parsed query, and the score explanations for each
document.

http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+gibberish&debugQuery=true

http://localhost:8983/solr/select/?q=video&fl=name+score
http://localhost:8983/solr/select/?defType=dismax&q=video
http://localhost:8983/solr/select/?defType=dismax&q=video&fl=*,score
http://localhost:8983/solr/select/?defType=dismax&q=video&qf=features^20.0+text^0.3
http://localhost:8983/solr/select/?defType=dismax&q=video&bq=cat:electronics^5.0
http://localhost:8983/solr/select/?defType=dismax&q=video&fl=name,score,inStock
http://localhost:8983/solr/select/?defType=dismax&q=video&qt=instock&fl=name,score,inStock
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+gibberish
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+apple
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+gibberish&debugQuery=true

182Apache Solr Reference Guide 4.4

http://localhost:8983/solr/select/?defType=dismax&q=video+card&debugQuery=true

The Extended DisMax Query Parser

The Extended DisMax (eDisMax) query parser is an improved version of the . In addition to supporting all the DisMax queryDisMax query parser
parser parameters, Extended Dismax:

supports the full Lucene query parser syntax.
supports queries such as AND, OR, NOT, -, and +.
treats "and" and "or" as "AND" and "OR" in Lucene syntax mode.
respects the 'magic field' names and . These are not a real fields in , but if used it helps do special things_val_ _query_ schema.xml
(like a function query in the case of or a nested query in the case of). If is used in a term or phrase query, the_val_ _query_ _val_
value is parsed as a function.
includes improved smart partial escaping in the case of syntax errors; fielded queries, +/-, and phrase queries are still supported in this
mode.
improves proximity boosting by using word shingles; you do not need the query to match all words in the document before proximity
boosting is applied.
includes advanced stopword handling: stopwords are not required in the mandatory part of the query but are still used in the proximity
boosting part. If a query consists of all stopwords, such as "to be or not to be", then all words are required.
includes improved boost function: in Extended DisMax, the function is a multiplier rather than an addend, improving your boostboost
results; the additive boost functions of DisMax (and) are also supported.bf bq
supports pure negative nested queries: queries such as will match all documents.+foo (-foo)
lets you specify which fields the end user is allowed to query, and to disallow direct fielded searches.

The Extended DisMax query parser is still under active development, in fact many changes were introduced for Solr 4. However,
many organizations are already using it in production with great success.

Extended DisMax Parameters

In addition to all the , Extended DisMax includes these query parameters:DisMax parameters

The Parameterboost

A multivalued list of strings parsed as queries with scores multiplied by the score from the main query for all matching documents. This parameter
is shorthand for wrapping the query produced by eDisMax using the BoostQParserPlugin

The ParameterlowercaseOperators

A Boolean parameter indicating if lowercase "and" and "or" should be treated the same as operators "AND" and "OR".

The Parameterps

Default amount of slop on phrase queries built with , and/or fields (affects boosting).pf pf2 pf3

The Parameterpf2

A multivalued list of fields with optional weights, based on pairs of word shingles.

The Parameterps2

Default amount of slop on phrase queries built with , and/or fields (affects boosting). New with Solr 4, it is similar to but sets defaultpf pf2 pf3 ps
slop factor for . If not specified, is used.pf2 ps

The Parameterpf3

A multivalued list of fields with optional weights, based on triplets of word shingles. Similar to , except that instead of building a phrase per fieldpf
out of all the words in the input, it builds a set of phrases for each field out of each triplet of word shingles.

The Parameterps3

New with Solr 4. As with but sets default slop factor for . If not specified, will be used.ps pf3 ps

The Parameterstopwords

A Boolean parameter indicating if the configured in the query analyzer should be respected when parsing the query: if it isStopFilterFactory

http://localhost:8983/solr/select/?defType=dismax&q=video+card&debugQuery=true

183Apache Solr Reference Guide 4.4

false, then the in the query analyzer is ignored.StopFilterFactory

The Parameteruf

Specifies which schema fields the end user is allowed to explicitly query. This parameter supports wildcards. The default is to allow all fields,
equivalent to . To allow only title field, use . To allow title and all fields ending with _s, use . To allow all fields&uf=* &uf=title &uf=title,*_s
except title, use . To disallow all fielded searches, use .&uf=*-title &uf=-*

Examples of Queries Submitted to the Extended DisMax Query Parser

Boost the result of the query term "hello" based on the document's popularity:

http://localhost:8983/solr/select/?defType=edismax&q=hello&pf=text&qf=text&boost=popularity

Search for iPods OR video:

http://localhost:8983/solr/select/?defType=edismax&q=ipod OR video

Search across multiple fields, specifying (via boosts) how important each field is relative each other:

http://localhost:8983/solr/select/?q=video&defType=edismax&qf=features^20.0+text^0.3

You can boost results that have a field that matches a specific value:

http://localhost:8983/solr/select/?q=video&defType=edismax&qf=features^20.0+text^0.3&bq=cat:electronics^5.0

Using the "mm" param, 1 and 2 word queries require that all of the optional clauses match, but for queries with three or more clauses one missing
clause is allowed:

http://localhost:8983/solr/select/?q=belkin+ipod&defType=edismax&mm=2
http://localhost:8983/solr/select/?q=belkin+ipod+gibberish&defType=edismax&mm=2
http://localhost:8983/solr/select/?q=belkin+ipod+apple&defType=edismax&mm=2

Using negative boost

Negative query boosts have been supported at the "Query" object level for a long time (resulting in negative scores for matching documents).
Now the QueryParsers have been updated to handle this too.

Using 'slop'

Dismax and can run queries against all query fields, and also run a query in the form of a phrase against the phrase fields. (This willEdismax
work only for boosting documents, not actually for matching.) However, that phrase query can have a 'slop,' which is the distance between the
terms of the query while still considering it a phrase match. For example:

q=foo bar
qf=field1^5 field2^10
pf=field1^50 field2^20
defType=dismax

With these parameters, the Dismax Query Parser generates a query that looks something like this:

184Apache Solr Reference Guide 4.4

 (+(field1:foo^5 OR field2:bar^10) AND (field1:bar^5 OR field2:bar^10))

But it also generates another query that will only be used for boosting results:

field1:"foo bar"^50 OR field2:"foo bar"^20

Thus, any document that has the terms "foo" and "bar" will match; however if some of those documents have both of the terms as a phrase, it will
score much higher because it's more relevant.

If you add the parameter (phrase slop), the second query will instead be:ps

ps=10 field1:"foo bar"~10^50 OR field2:"foo bar"~10^20

This means that if the terms "foo" and "bar" appear in the document with less than 10 terms between each other, the phrase will match. For
example the doc that says:

Foo term1 term2 term3 *bar*

will match the phrase query.

How does one use phrase slop? Usually it is configured in the request handler (in).solrconfig

With query slop () the concept is similar, but it applies to explicit phrase queries from the user. For example, if you want to search for a name,qs
you could enter:

q="Hans Anderson"

A document that contains "Hans Anderson" will match, but a document that contains the middle name "Christian" or where the name is written
with the last name first ("Anderson, Hans") won't. For those cases one could configure the query field , so that even if the user searches for anqs
explicit phrase query, a slop is applied.

Finally, contains not only a phrase fields () parameters, but also phrase and query fields 2 and 3. You can use those fields for settingedismax pf
different fields or boosts. Each of those can use a different phrase slop.

Using the 'magic fields' _val_ and _query_

If the 'magic field' name is used in a term or phrase query, the value is parsed as a function._val_

The Solr Query Parser's use of and differs from the Lucene Query Parser in the following ways:_val_ _query_

If the magic field name is used in a term or phrase query, the value is parsed as a function._val_

It provides a hook into syntax. Quotes are necessary to encapsulate the function when it includes parentheses. ForFunctionQuery
example:

val:myfield
val:"recip(rord(myfield),1,2,3)"

The Solr Query Parser offers nested query support for any type of query parser (via QParserPlugin). Quotes are often necessary to
encapsulate the nested query if it contains reserved characters. For example:

http://wiki.apache.org/solr/FunctionQuery

185Apache Solr Reference Guide 4.4

query:"{\!dismax;qf=myfield}how;now;brown;cow"

Although not technically a syntax difference, note that if you use the Solr type, any queries on those fields (typically range queries)DateField
should use either the Complete ISO 8601 Date syntax that field supports, or the to get relative dates. For example:DateMath Syntax

timestamp:[* TO NOW]
createdate:[1976-03-06T23:59:59.999Z TO *]
createdate:[1995-12-31T23:59:59.999Z TO 2007-03-06T00:00:00Z]
pubdate:[NOW-1YEAR/DAY TO NOW/DAY+1DAY]
createdate:[1976-03-06T23:59:59.999Z TO 1976-03-06T23:59:59.999Z+1YEAR]
createdate:[1976-03-06T23:59:59.999Z/YEAR TO 1976-03-06T23:59:59.999Z]

TO must be uppercase, or Solr will report a 'Range Group' error.

Local Parameters in Queries

Local parameters are arguments in a Solr request that are specific to a query parameter. Local parameters provide a way to add meta-data to
certain argument types such as query strings. (In Solr documentation, local parameters are sometimes referred to as LocalParams.)

Local parameters are specified as prefixes to arguments. Take the following query argument, for example:

q=solr rocks

We can prefix this query string with local parameters to provide more information to the Standard Query Parser. For example, we can change the
default operator type to "AND" and the default field to "title":

q={!q.op=AND df=title}solr rocks

These local parameters would change the query to require a match on both "solr" and "rocks" while searching the "title" field by default.

Basic Syntax of Local Parameters

To specify a local parameter, insert the following before the argument to be modified:

Begin with {!

Insert any number of key=value pairs separated by white space

End with } and immediately follow with the query argument

You may specify only one local parameters prefix per argument. Values in the key-value pairs may be quoted via single or double quotes, and
backslash escaping works within quoted strings.

Query Type Short Form

If a local parameter value appears without a name, it is given the implicit name of "type". This allows short-form representation for the type of
query parser to use when parsing a query string. Thus

q={!dismax qf=myfield}solr rocks

is equivalent to:

q={!type=dismax qf=myfield}solr rocks

Specifying the Parameter Value with the ' ' Keyv

A special key of within local parameters is an alternate way to specify the value of that parameter.v

q={!dismax qf=myfield}solr rocks

is equivalent to

http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/schema/DateField.html
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html

186Apache Solr Reference Guide 4.4

q={!type=dismax qf=myfield v='solr rocks'}

Parameter Dereferencing

Parameter dereferencing or indirection lets you use the value of another argument rather than specifying it directly. This can be used to simplify
queries, decouple user input from query parameters, or decouple front-end GUI parameters from defaults set in .solrconfig.xml

q={!dismax qf=myfield}solr rocks

is equivalent to:

q={!type=dismax qf=myfield v=$qq}&qq=solr rocks

Other Parsers

In addition to the main query parsers discussed earlier, there are several other query parsers that can be used instead of or in conjunction with
the main parsers for specific purposes. This section details the other parsers, and gives examples for how they might be used.

Many of these parsers are expressed the same way as .Local Parameters in Queries

Query parsers discussed in this section:

Boost Query Parser
Field Query Parser
Function Query Parser
Function Range Query Parser
Join Query Parser
Lucene Query Parser
Max Score Query Parser

Nested Query Parser
Old Lucene Query Parser
Prefix Query Parser
Raw Query Parser
Spatial Filter Query Parser
Surround Query Parser
Switch Query Parser
Term Query Parser

Boost Query Parser

BoostQParser extends the and creates a boosted query from the input value. The main value is the query to be boosted.QParserPlugin
Parameter is the function query to use as the boost. The query to be boosted may be of any type.b

Examples:

Creates a query "foo" which is boosted (scores are multiplied) by the function query :log(popularity)

{!boost b=log(popularity)}foo

Creates a query "foo" which is boosted by the date boosting function referenced in :ReciprocalFloatFunction

{!boost b=recip(ms(NOW,mydatefield),3.16e-11,1,1)}foo

Field Query Parser

The extends the and creates a field query from the input value, applying text analysis and constructing aFieldQParser QParserPlugin
phrase query if appropriate. The parameter is the field to be queried.f

Example:

187Apache Solr Reference Guide 4.4

{!field f=myfield}Foo Bar

This example creates a phrase query with "foo" followed by "bar" (assuming the analyzer for is a text field with an analyzer that splits onmyfield
whitespace and lowercase terms). This is generally equivalent to the Lucene query parser expression .myfield:"Foo Bar"

Function Query Parser

The extends the and creates a function query from the input value. This is only one way to use functionFunctionQParser QParserPlugin
queries in Solr; for another, more integrated, approach, see the section on .Function Queries

Example:

{!func}log(foo)

Function Range Query Parser

The extends the and creates a range query over a function. This is also referred to as , asFunctionRangeQParser QParserPlugin frange
seen in the examples below.

Other parameters:

Parameter Description

l The lower bound, optional

u The upper bound, optional

incl Include the lower bound: true/false, optional, default=true

incu Include the upper bound: true/false, optional, default=true

Examples:

{!frange l=1000 u=50000}myfield

 fq={!frange l=0 u=2.2} sum(user_ranking,editor_ranking)

Both of these examples are restricting the results by a range of values found in a declared field or a function query. In the second example, we're
doing a sum calculation, and then defining only values between 0 and 2.2 should be returned to the user.

For more information about range queries over functions, see Yonik Seeley's introductory blog post , hosted atRanges over Functions in Solr 1.4
SearchHub.org.

Join Query Parser

JoinQParser extends the . It allows normalizing relationships between documents with a join operation. This is different fromQParserPlugin
in concept of a join in a relational database because no information is being truly joined. An appropriate SQL analogy would be an "inner query".

Examples:

Find all products containing the word "ipod", join them against manufacturer docs and return the list of manufacturers:

{!join+from=manu_id_s+to=id}ipod

Find all manufacturer docs named "belkin", join them against product docs, and filter the list to only products with a price less than $12:

http://searchhub.org/2009/07/06/ranges-over-functions-in-solr-14/

188Apache Solr Reference Guide 4.4

{!join+from=id+to=manu_id_s}compName_s:Belkin&fq=price:[*+TO+12]

For more information about join queries, see the Solr Wiki page on . Erick Erickson has also written a blog post about join performanceJoins
called , hosted by SearchHub.org.Solr and Joins

Lucene Query Parser

The extends the by parsing Solr's variant on the Lucene QueryParser syntax. This is effectively the sameLuceneQParser QParserPlugin
query parser that is used in Lucene. It uses the operators , the default operator ("OR" or "AND") and , the default field name.q.op df

Example:

{!lucene q.op=AND df=text}myfield:foo +bar -baz

For more information about the syntax for the Lucene Query Parser, see the .Lucene javadocs

Max Score Query Parser

The extends the but returns the Max score from the clauses. It does this by wrapping all clausesMaxScoreQParser LuceneQParser SHOULD
in a with tie=1.0. Any or clauses are passed through as-is. Non-boolean queries, e.g.DisjunctionMaxQuery MUST PROHIBITED
NumericRange falls-through to the parser behavior.LuceneQParser

Example:

{!maxscore tie=0.01}C OR (D AND E)

Nested Query Parser

The extends the and creates a nested query, with the ability for that query to redefine its type via localNestedParser QParserPlugin
parameters. This is useful in specifying defaults in configuration and letting clients indirectly reference them.

Example:

{!query defType=func v=$q1}

If the parameter is price, then the query would be a function query on the price field. If the parameter is {!lucene}inStock:true}} then a termq1 q1
query is created from the Lucene syntax string that matches documents with . These parameters would be defined in inStock=true

, in the section:solrconfig.xml defaults

<lst name="defaults"
 <str name="q1">{!lucene}inStock:true</str>
</lst>

For more information about the possibilities of nested queries, see Yonik Seeley's blog post , hosted by SearchHub.org.Nested Queries in Solr

Old Lucene Query Parser

OldLuceneQParser extends the by parsing Solr's variant of Lucene's QueryParser syntax, including the deprecated sortQParserPlugin
specification after the query.

Example:

http://wiki.apache.org/solr/Join
http://searchhub.org/2012/06/20/solr-and-joins/
http://lucene.apache.org/core/4_0_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
http://searchhub.org/2009/03/31/nested-queries-in-solr/

189Apache Solr Reference Guide 4.4

{!lucenePlusSort} myfield:foo +bar -baz;price asc

Prefix Query Parser

PrefixQParser extends the by creating a prefix query from the input value. Currently no analysis or value transformation isQParserPlugin
done to create this prefix query. The parameter is , the field. The string after the prefix declaration is treated as a wildcard query.f

Example:

{!prefix f=myfield}foo

This would be generally equivalent to the Lucene query parser expression .myfield:foo*

Raw Query Parser

RawQParser extends the by creating a term query from the input value without any text analysis or transformation. This isQParserPlugin
useful in debugging, or when raw terms are returned from the terms component (this is not the default). The only parameter is , which definesf
the field to search.

Example:

{!raw f=myfield}Foo Bar

This example constructs the query: .TermQuery(Term("myfield","Foo Bar"))

For easy filter construction to drill down in faceting, the is recommended. For full analysis on all fields, including text fields,TermQParserPlugin
you may want to use the .FieldQParserPlugin

Spatial Filter Query Parser

SpatialFilterQParser extends the by creating a spatial Filter based on the type of spatial point used. The field mustQParserPlugin
implement . All units are in Kilometers.SpatialQueryable

This query parser takes the following parameters:

Parameter Description

sfield The field on which to filter. Required.

pt The point to use as a reference. Must match the dimension of the field. Required.

d The distance in km. Required.

The distance measure used currently depends on the FieldType. defaults to using haversine, defaults to EuclideanLatLonType PointType
(2-norm).

This example shows the syntax:

{!geofilt sfield=<location_field> pt=<lat,lon> d=<distance>}

Here are some examples with values configured:

fq={!geofilt sfield=store pt=10.312,-20.556 d=3.5}

http://lucene.apache.org/solr/api-4_0_0-BETA/org/apache/solr/schema/SpatialQueryable.html

190Apache Solr Reference Guide 4.4

fq={!geofilt sfield=store}&pt=10.312,-20&d=3.5

fq={!geofilt}&sfield=store&pt=10.312,-20&d=3.5

If using with , it is capable of producing scores equal to the computed distance from the point to the field, making it usefulgeofilt LatLonType
as a component of the main query or a boosting query.

There is more information about spatial searches available in the section .Spatial Search

Surround Query Parser

SurroundQParser extends the . This provides support for the Surround query syntax, which provides proximity searchQParserPlugin
functionality. There are two operators: creates an ordered span query and creates an unordered one. Both operators take a numeric value tow n
indicate distance between two terms. The default is 1, and the maximum is 99. Note that the query string is not analyzed in any way.

Example:

{!surround 3w(foo, bar)}

This example would find documents where the terms "foo" and "bar" were no more than 3 terms away from each other (i.e., no more than 2 terms
between them).

This query parser will also accept boolean operators (AND, OR, and NOT, in either upper- or lowercase), wildcards, quoting for phrase searches,
and boosting. The and operators can also be expressed in upper- or lowercase.w n

More information about Surround queries can be found at .http://wiki.apache.org/solr/SurroundQueryParser

Switch Query Parser

SwitchQParser is a that acts like a "switch" or "case" statement.QParserPlugin

The primary input string is trimmed and then prefixed with for use as a key to lookup a "switch case" in the parser's local params. If acase.
matching local param is found the resulting param value will then be parsed as a subquery, and returned as the parse result.

The local param can be optionally be specified as a switch case to match missing (or blank) input strings. The local param cancase default
optionally be specified as a default case to use if the input string does not match any other switch case local params. If default is not specified,
then any input which does not match a switch case local param will result in a syntax error.

In the examples below, the result of each query is "XXX":

{!switch case.foo=XXX case.bar=zzz case.yak=qqq}foo

{!switch case.foo=qqq case.bar=XXX case.yak=zzz} bar // extra whitespace is trimmed

{!switch case.foo=qqq case.bar=zzz default=XXX}asdf // fallback to the default

{!switch case=XXX case.bar=zzz case.yak=qqq} // blank input uses 'case'

A practical usage of this , is in specifying fq params in the configuration of a SearchHandler, to provide a fixed set ofQParsePlugin appends
filter options for clients using custom parameter names. Using the example configuration below, clients can optionally specify the custom

http://wiki.apache.org/solr/SurroundQueryParser

191Apache Solr Reference Guide 4.4

parameters and to override the default filtering behavior, but are limited to the specific set of legal valuesin_stock shipping
(shipping=any|free, in_stock=yes|no|all).

 <requestHandler name="/select" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="in_stock">yes</str>
 <str name="shipping">any</str>
 </lst>
 <lst name="appends">
 <str name="fq">{!switch case.all='*:*'
 case.yes='inStock:true'
 case.no='inStock:false'
 v=$in_stock}</str>
 <str name="fq">{!switch case.any='*:*'
 case.free='shipping_cost:0.0'
 v=$shipping}</str>
 </lst>
 </requestHandler>

Term Query Parser

TermQParser extends the by creating a single term query from the input value equivalent to . This isQParserPlugin readableToIndexed()
useful for generating filter queries from the external human readable terms returned by the faceting or terms components. The only parameter is f
, for the field.

Example:

{!term f=weight}1.5

For text fields, no analysis is done since raw terms are already returned from the faceting and terms components. To apply analysis to text fields
as well, see the , above.Field Query Parser

If no analysis or transformation is desired for any type of field, see the , above.Raw Query Parser

Highlighting

Solr provides a collection of highlighting utilities which can be called by various Request Handlers to include "highlighted" matches in field values.
These highlighting utilities may be used with the , , or query parsers.DisMax Extended DisMax standard

Some parameters may be overridden on a per-field basis with the following syntax:
. For example: f.<fieldName>.<originalParam>=<value> f.contents.hl.snippets=2

The table below describes Solr's parameters for highlighting.

Parameter Description

hl When set to "true", enables highlighted snippets to be generated in the query response. If set to "false" or to a
blank or missing value, disables highlighting.

The default value is blank, which disables highlighting.

hl.q Specifies an overriding query term for highlighting. If is specified, the highlighter will use that term ratherhl.q
than the main query term.

192Apache Solr Reference Guide 4.4

hl.fl Specifies a list of fields to highlight. Accepts a comma- or space-delimited list of fields for which Solr should
generate highlighted snippets. If left blank, highlights the defaultSearchField (or the field specified the df
parameter if used) for the StandardRequestHandler. For the DisMaxRequestHandler, the fields are used asqf
defaults.

A '*' can be used to match field globs, such as 'text_*' or even '*' to highlight on all fields where highlighting is
possible. When using '*', consider adding .hl.requireFieldMatch=true

The default value is blank.

hl.snippets Specifies maximum number of highlighted snippets to generate per field. Note: it is possible for any number of
snippets from zero to this value to be generated. This parameter accepts per-field overrides.

The default value is "1".

hl.fragsize Specifies the size, in characters, of fragments to consider for highlighting. "0" indicates that the whole field
value should be used (no fragmenting). This parameter accepts per-field overrides.

The default value is "100".

hl.mergeContinuous Instructs Solr to collapse contiguous fragments into a single fragment. "true" indicates contiguous fragments
will be collapsed into single fragment. This parameter accepts per-field overrides.

The default value is "false", which is also the backward-compatible setting.

hl.requireFieldMatch If set to true, highlights terms only if they appear in the specified field. Normally, terms are highlighted in all
requested fields regardless of which field matched the query.

The default value is "false".

hl.maxAnalyzedChars Specifies the number of characters into a document that Solr should look for suitable snippets.

The default value is "51200".

hl.maxMultiValuedToExamine Specifies the maximum number of entries in a multi-valued field to examine before stopping. This can
potentially return zero results if the limit is reached before any matches are found. If used with the

, whichever limit is reached first will determine when to stop looking. maxMultiValuedToMatch

The default value is .integer.MAX_VALUE

hl.maxMultiValuedToMatch Specifies the maximum number of matches in a multi-valued field that are found before stopping. If
 is also defined, whichever limit is reached first will determine when to stophl.maxMultiValuedToExamine

looking.

The default value is .integer.MAX_VALUE

hl.alternateField Specifies a field to be used as a backup default summary if Solr cannot generate a snippet (because no terms
match). This parameter accepts per-field overrides.

By default, Solr does not select a field for a backup summary.

hl.maxAlternateFieldLength Specifies the maximum number of characters of the field to return. Any value less than or equal to 0 means the
field's length is unlimited.

The default value is unlimited.

Requires the use of the parameter.hl.alternateField

hl.formatter Selects a formatter for the highlighted output. Currently the only legal value is "simple", which surrounds a
highlighted term with a customizable pre- and post-text snippet. This parameter accepts per-field overrides.

The default value is "simple".

hl.simple.pre hl.simple.post Specifies the text that should appear before and after a highlighted term when using the simple formatter. This
parameter accepts per-field overrides.

The default values are "" and "".

hl.fragmenter Specifies a text snippet generator for highlighted text. The standard fragmenter is (which is so calledgap
because it creates fixed-sized fragments with gaps for multi-valued fields). Another option is , which triesregex
to create fragments that resemble a specified regular expression.

The hl.fragmenter parameter accepts per-field overrides.

The default value is gap.

193Apache Solr Reference Guide 4.4

hl.useFastVectorHighlighter The FastVectorHighlighter is a TermVector-based highlighter that offers higher performance than the standard
highlighter in many cases. To use the FastVectorHighlighter, set this parameter to . You must also turn ontrue

, , and for each field that will be highlighted. Lastly, you shouldtermVectors termPositions termOffsets
use a boundary scanner to prevent the FastVectorHighlighter from truncating your terms. In most cases, using
the boundary scanner will give you excellent results. See the section breakIterator Using Boundary

 for more details about boundary scanners.Scanners with the Fast Vector Highlighter

hl.phraseLimit To improve the performance of the FastVectorHighlighter, you can set a limit on the number (int) of phrases to
be analyzed for highlighting.

The default value for this parameter is .integer.MAX_VALUE

hl.boundaryScanner Specifies one of two boundary scanners to use with the FastVectorHighlighter: or .simple breakIterator
See the section for more information about theUsing Boundary Scanners with the Fast Vector Highlighter
boundary scanners.

hl.usePhraseHighlighter If set to "true," instructs Solr to use the Lucene SpanScorer class to highlight phrase terms only when they
appear within the query phrase in the document.

The default is "true."

hl.highlightMultiTerm If set to "true," instructs Solr to highlight phrase terms that appear in multi-term queries.

The default is "true."

hl.regex.slop Specifies the factor by which the fragmenter can stray from the ideal fragment size (given by regex
) to accommodate a regular expression. For instance, a slop of 0.2 with of 100hl.fragsize fragsize

should yield fragments between 80 and 120 characters in length. It is usually good to provide a slightly smaller
 when using the fragmenter.fragsize regex

The default value is 0.6.

hl.regex.pattern Specifies the regular expression for fragmenting. This could be used to extract sentences.

hl.regex.maxAnalyzedChars Instructs Solr to analyze only this many characters from a field when using the fragmenter (after which,regex
the fragmenter produces fixed-sized fragments). Applying a complicated to a huge field isregex
computationally expensive.

The default value is "10000".

hl.preserveMulti If , multi-valued fields will return all values in the order they were saved in the index. If , the default,true false
only values that match the highlight request will be returned.

Using Boundary Scanners with the Fast Vector Highlighter

The Fast Vector Highlighter will occasionally truncate highlighted words. To prevent this, implement a boundary scanner in ,solrconfig.xml
then use the parameter to specify the boundary scanner for highlighting.hl.boundaryScanner

Solr supports two boundary scanners: and .breakIterator simple

The Boundary ScannerbreakIterator

The boundary scanner offers excellent performance right out of the box by taking locale and boundary type into account. InbreakIterator
most cases you will want to use the boundary scanner. To implement the boundary scanner, add this code tobreakIterator breakIterator
the section of your file, adjusting the type, language, and country values as appropriate to your application:highlighting solrconfig.xml

<boundaryScanner name="breakIterator"
class="solr.highlight.BreakIteratorBoundaryScanner">
 <lst name="defaults">
 <str name="hl.bs.type">WORD</str>
 <str name="hl.bs.language">en</str>
 <str name="hl.bs.country">US</str>
 </lst>
</boundaryScanner>

Possible values for the parameter are WORD, LINE, SENTENCE, and CHARACTER.hl.bs.type

The Boundary Scannersimple

194Apache Solr Reference Guide 4.4

The boundary scanner scans term boundaries for a specified maximum character value and for common delimiters such as punctuationsimple
marks. The boundary scanner may be useful for some custom To implement the boundary scanner, add this code to the simple simple

 section of your file, adjusting the values as appropriate to your application:highlighting solrconfig.xml

<boundaryScanner name="simple" class="solr.highlight.SimpleBoundaryScanner"
default="true">
<lst name="defaults">
 <str name="hl.bs.maxScan">10</str>
 <str name="hl.bs.chars">.,!?\t\n</str>
 </lst>
</boundaryScanner>

MoreLikeThis

The search component enables users to query for documents similar to a document in their result list. It does this by using termsMoreLikeThis
from the original document to find similar documents in the index.

There are three ways to use MoreLikeThis. The first, and most common, is to use it as a request handler. In this case, you would send text to the
MoreLikeThis request handler as needed (as in when a user clicked on a "similar documents" link). The second is to use it as a search
component. This is less desirable since it performs the MoreLikeThis analysis on every document returned. This may slow search results. The
final approach is to use it as a request handler but with externally supplied text. This case, also referred to as the MoreLikeThisHandler, will
supply information about similar documents in the index based on the text of the input document.

Covered in this section:

How MoreLikeThis Works
Common Parameters for MoreLikeThis
Parameters for the MoreLikeThisComponent.
Parameters for the MoreLikeThisHandler
Related Topics

How MoreLikeThis Works

MoreLikeThis constructs a Lucene query based on terms in a document. It does this by pulling terms from the defined list of fields (see the
 parameter, below). For best results, the fields should have stored term vectors in . For example:mlt.fl schema.xml

<field name="cat" ... termVectors="true" />

If term vectors are not stored, will generate terms from stored fields. A must also be stored in order for MoreLikeThisMoreLikeThis uniqueKey
to work properly.

The next phase filters terms from the original document using thresholds defined with the MoreLikeThis parameters. Finally, a query is run with
these terms, and any other query parameters that have been defined (see the parameter, below) and a new document set is returned.mlt.qf

In Solr 4.1, MoreLikeThis supports distributed search.

Common Parameters for MoreLikeThis

The table below summarizes the parameters supported by Lucene/Solr. These parameters can be used with any of the threeMoreLikeThis
possible MoreLikeThis approaches.

Parameter Description

mlt.fl Specifies the fields to use for similarity. If possible, these should have stored .termVectors

mlt.mintf Specifies the Minimum Term Frequency, the frequency below which terms will be ignored in the source document.

195Apache Solr Reference Guide 4.4

mlt.mindf Specifies the Minimum Document Frequency, the frequency at which words will be ignored which do not occur in at least this
many documents.

mlt.maxdf Specifies the Maximum Document Frequency, the frequency at which words will be ignored which occur in more than this many
documents. New in Solr 4.1

mlt.minwl Sets the minimum word length below which words will be ignored.

mlt.maxwl Sets the maximum word length above which words will be ignored.

mlt.maxqt Sets the maximum number of query terms that will be included in any generated query.

mlt.maxntp Sets the maximum number of tokens to parse in each example document field that is not stored with TermVector support.

mlt.boost Specifies if the query will be boosted by the interesting term relevance. It can be either "true" or "false".

mlt.qf Query fields and their boosts using the same format as that used by the DisMaxRequestHandler. These fields must also be
specified in .mlt.fl

Parameters for the MoreLikeThisComponent.

Using MoreLikeThis as a search component returns similar documents for each document in the response set. In addition to the common
parameters, these additional options are available:

Parameter Description

mlt If set to true, activates the component and enables Solr to return results.MoreLikeThis MoreLikeThis

mlt.count Specifies the number of similar documents to be returned for each result. The default value is 5.

Parameters for the MoreLikeThisHandler

The table below summarizes parameters accessible through the . It supports faceting, paging, and filtering usingMoreLikeThisHandler
common query parameters, but does not work well with alternate query parsers.

Parameter Description

mlt.match.include Specifies whether or not the response should include the matched document. If set to false, the response will look like a
normal select response.

mlt.match.offset Specifies an offset into the main query search results to locate the document on which the query shouldMoreLikeThis
operate. By default, the query operates on the first result for the q parameter.

mlt.interestingTerms Controls how the component presents the "interesting" terms (the top TF/IDF terms) for the query.MoreLikeThis
Supports three settings. The setting list lists the terms. The setting none lists no terms. The setting details lists the terms
along with the boost value used for each term. Unless , all terms will have .mlt.boost=true boost=1.0

Related Topics

RequestHandlers and SearchComponents in SolrConfig

Faceting

As described in the section , faceting is the arrangement of search results into categories based on indexed terms.Overview of Searching in Solr
Searchers are presented with the indexed terms, along with numerical counts of how many matching documents were found were each term.
Faceting makes it easy for users to explore search results, narrowing in on exactly the results they are looking for.

Topics covered on this page:

General Parameters
Field-Value Faceting Parameters
Range Faceting
Date Faceting Parameters
Local Parameters for Faceting
Pivot (Decision Tree) Faceting
Facets and Time Zone
Related Topics

196Apache Solr Reference Guide 4.4

General Parameters

The table below summarizes the general parameters for controlling faceting.

Parameter Description

facet If set to true, enables faceting.

facet.query Specifies a Lucene query to generate a facet count.

These parameters are described in the sections below.

The Parameterfacet

If set to "true," this parameter enables facet counts in the query response. If set to "false" to a blank or missing value, this parameter disables
faceting. None of the other parameters listed below will have any effect unless this parameter is set to "true." The default value is blank.

The Parameterfacet.query

This parameter allows you to specify an arbitrary query in the Lucene default syntax to generate a facet count. By default, Solr's faceting feature
automatically determines the unique terms for a field and returns a count for each of those terms. Using , you can override thisfacet.query
default behavior and select exactly which terms or expressions you would like to see counted. In a typical implementation of faceting, you will
specify a number of parameters. This parameter can be particularly useful for numeric-range-based facets or prefix-based facets.facet.query

You can set the parameter multiple times to indicate that multiple queries should be used as separate facet constraints.facet.query

To use facet queries in a syntax other than the default syntax, prefix the facet query with the name of the query notation. For example, to use the
hypothetical query parser, you could set the parameter like so:myfunc facet.query

facet.query={!myfunc}name~fred

Field-Value Faceting Parameters

Several parameters can be used to trigger faceting based on the indexed terms in a field.

When using this parameter, it is important to remember that "term" is a very specific concept in Lucene: it relates to the literal field/value pairs that
are indexed after any analysis occurs. For text fields that include stemming, lowercasing, or word splitting, the resulting terms may not be what
you expect. If you want Solr to perform both analysis (for searching) and faceting on the full literal strings, use the directive in the copyField

 file to create two versions of the field: one Text and one String. Make sure both are . (For more information aboutschema.xml indexed="true"
the directive, see .)copyField Documents, Fields, and Schema Design

The table below summarizes Solr's field value faceting parameters.

Parameter Description

facet.field Identifies a field to be treated as a facet.

facet.prefix Limits the terms used for faceting to those that begin with the specified prefix.

facet.sort Controls how faceted results are sorted.

facet.limit Controls how many constraints should be returned for each facet.

facet.offset Specifies an offset into the facet results at which to begin displaying facets.

facet.mincount Specifies the minimum counts required for a facet field to be included in the response.

facet.missing Controls whether Solr should compute a count of all matching results which have no value for the field, in addition to
the term-based constraints of a facet field.

facet.method Selects the algorithm or method Solr should use when faceting a field.

facet.enum.cache.minDF Specifies the minimum document frequency (the number of documents matching a term) for which the
 should be used when determining the constraint count for that term.filterCache

These parameters are described in the sections below.

The Parameterfacet.field

The parameter identifies a field that should be treated as a facet. It iterates over each Term in the field and generate a facet countfacet.field

197Apache Solr Reference Guide 4.4

using that Term as the constraint. This parameter can be specified multiple times in a query to select multiple facet fields.

If you do not set this parameter to at least one field in the schema, none of the other parameters described in this section will
have any effect.

The Parameterfacet.prefix

The parameter limits the terms on which to facet to those starting with the given string prefix. This does not limit the query in anyfacet.prefix
way, only the facets that would be returned in response to the query.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.prefix

The Parameterfacet.sort

This parameter determines the ordering of the facet field constraints.

The true/false values for this parameter were deprecated in Solr 1.4.

facet.sort
Setting

Results

count Sort the constraints by count (highest count first).

index Return the constraints sorted in their index order (lexicographic by indexed term). For terms in the ASCII range, this will be
alphabetically sorted.

The default is if is greater than 0, otherwise, the default is .count facet.limit index

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.sort

The Parameterfacet.limit

This parameter specifies the maximum number of constraint counts (essentially, the number of facets for a field that are returned) that should be
returned for the facet fields. A negative value means that Solr will return unlimited number of constraint counts.

The default value is 100.

This parameter can be specified on a per-field basis to apply a distinct limit to each field with the syntax of .f.<fieldname>.facet.limit

The Parameterfacet.offset

The parameter indicates an offset into the list of constraints to allow paging.facet.offset

The default value is 0.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.offset

The Parameterfacet.mincount

The parameter specifies the minimum counts required for a facet field to be included in the response. If a field's counts arefacet.mincount
below the minimum, the field's facet is not returned.

The default value is 0.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.mincount

The Parameterfacet.missing

If set to true, this parameter indicates that, in addition to the Term-based constraints of a facet field, a count of all results that match the query but
which have no facet value for the field should be computed and returned in the response.

The default value is false.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.missing

198Apache Solr Reference Guide 4.4

The Parameterfacet.method

The facet.method parameter selects the type of algorithm or method Solr should use when faceting a field.

Setting Results

enum Enumerates all terms in a field, calculating the set intersection of documents that match the term with documents that match the
query. This method is recommended for faceting multi-valued fields that have only a few distinct values. The average number of
values per document does not matter. For example, faceting on a field with U.S. States such as Alabama, Alaska, ...

 would lead to fifty cached filters which would be used over and over again. The should be large enough toWyoming filterCache
hold all the cached filters.

fc Calculates facet counts by iterating over documents that match the query and summing the terms that appear in each document. This
is currently implemented using an cache if the field either is multi-valued or is tokenized (according to UnInvertedField

). Each document is looked up in the cache to see what terms/values it contains, and a tally isFieldType.isTokened()
incremented for each value. This method is excellent for situations where the number of indexed values for the field is high, but the
number of values per document is low. For multi-valued fields, a hybrid approach is used that uses term filters from the

 for terms that match many documents. The letters stand for field cache.filterCache fc

fcs Per-segment field faceting for single-valued string fields. Enable with and control the number of threads usedfacet.method=fcs
with the local parameter. This parameter allows faceting to be faster in the presence of rapid index changes.threads

The default value is (except for fields using the field type) since it tends to use less memory and is faster when a field has manyfc BoolField
unique terms in the index.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.method

The Parameterfacet.enum.cache.minDf

This parameter indicates the minimum document frequency (the number of documents matching a term) for which the filterCache should be used
when determining the constraint count for that term. This is only used with the method of faceting.facet.method=enum

A value greater than zero decreases the filterCache's memory usage, but increases the time required for the query to be processed. If you are
faceting on a field with a very large number of terms, and you wish to decrease memory usage, try setting this parameter to a value between 25
and 50, and run a few tests. Then, optimize the parameter setting as necessary.

The default value is 0, causing the filterCache to be used for all terms in the field.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.enum.cache.minDF

Range Faceting

You can use Range Faceting on any date field or any numeric field that supports range queries. This is particularly useful for stitching together a
series of range queries (as facet by query) for things like prices. As of Solr 3.1, Range Faceting is preferred over (described below).Date Faceting

Parameter Description

facet.range Specifies the field to facet by range.

facet.range.start Specifies the start of the facet range.

facet.range.end Specifies the end of the facet range.

facet.range.gap Specifies the span of the range as a value to be added to the lower bound.

facet.range.hardend A boolean parameter that specifies how Solr handles a range gap that cannot be evenly divided between the range start
and end values. If true, the last range constraint will have the value an upper bound. If false, the lastfacet.range.end
range will have the smallest possible upper bound greater then such that the range is the exactfacet.range.end
width of the specified range gap. The default value for this parameter is false.

facet.range.include Specifies inclusion and exclusion preferences for the upper and lower bounds of the range. See the
 topic for more detailed information.facet.range.include

facet.range.other Specifies counts for Solr to compute in addition to the counts for each facet range constraint.

The Parameterfacet.range

The parameter defines the field for which Solr should create range facets. For example:facet.range

facet.range=price&facet.range=age

199Apache Solr Reference Guide 4.4

The Parameterfacet.range.start

The parameter specifies the lower bound of the ranges. You can specify this parameter on a per field basis with thefacet.range.start
syntax of . For example:f.<fieldname>.facet.range.start

f.price.facet.range.start=0.0&f.age.facet.range.start=10

The facet.range.end Parameter

The facet.range.end specifies the upper bound of the ranges. You can specify this parameter on a per field basis with the syntax of
. For example:f.<fieldname>.facet.range.end

f.price.facet.range.end=1000.0&f.age.facet.range.start=99

The Parameterfacet.range.gap

The span of each range expressed as a value to be added to the lower bound. For date fields, this should be expressed using the
 (such as,). You can specify this parameter on a per-field basis with the syntaxDateMathParser facet.range.gap=%2B1DAY ... '+1DAY'

syntax of . For example:f.<fieldname>.facet.range.gap

f.price.facet.range.gap=100&f.age.facet.range.gap=10

Gaps can also be variable width by passing in a comma separated list of the gap size to be used. The last gap specified will be used to fill out all
remaining gaps if the number of gaps given does not go evenly into the range. Variable width gaps are useful, for example, in spatial applications
where one might want to facet by distance into three buckets: walking (0-5KM), driving (5-100KM), or other (100KM+). For example:

facet.date.gap=1,2,3,10

This creates 4+ buckets of size, 1, 2, 3 and then 0 or more buckets of 10 days each, depending on the start and end values.

The Parameterfacet.range.hardend

The parameter is a Boolean parameter that specifies how Solr should handle cases where the facet.range.hardend facet.range.gap
does not divide evenly between and . If , the last range constraint will have the facet.range.start facet.range.end true

 value as an upper bound. If , the last range will have the smallest possible upper bound greater then facet.range.end false
 such that the range is the exact width of the specified range gap. The default value for this parameter is false. Thisfacet.range.end

parameter can be specified on a per field basis with the syntax .f.<fieldname>.facet.range.hardend

The Parameterfacet.range.include

By default, the ranges used to compute range faceting between and are inclusive of their lowerfacet.range.start facet.range.end
bounds and exclusive of the upper bounds. The "before" range defined with the parameter is exclusive and the "after"facet.range.other
range is inclusive. This default, equivalent to "lower" below, will not result in double counting at the boundaries. You can use the

 parameter to modify this behavior using the following options:facet.range.include

Option Description

lower All gap-based ranges include their lower bound.

upper All gap-based ranges include their upper bound.

edge The first and last gap ranges include their edge bounds (lower for the first one, upper for the last one) even if the corresponding
upper/lower option is not specified.

outer The "before" and "after" ranges will be inclusive of their bounds, even if the first or last ranges already include those boundaries.

all Includes all options: lower, upper, edge, outer.

You can specify this parameter on a per field basis with the syntax of , and you can specify it multiplef.<fieldname>.facet.range.include
times to indicate multiple choices.

To ensure you avoid double-counting, do not choose both and , do not choose , and do not choose .lower upper outer all

The Parameterfacet.range.other

The parameter specifies that in addition to the counts for each range constraint between and facet.range.other facet.range.start
, counts should also be computed for these options:facet.range.end

http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html

200Apache Solr Reference Guide 4.4

Option Description

before All records with field values lower then lower bound of the first range.

after All records with field values greater then the upper bound of the last range.

between All records with field values between the start and end bounds of all ranges.

none Do not compute any counts.

all Compute counts for before, between, and after.

This parameter can be specified on a per field basis with the syntax of . In addition to the option,f.<fieldname>.facet.range.other all
this parameter can be specified multiple times to indicate multiple choices, but will override all other options.none

facet.range.hardend

A Boolean parameter instructing Solr what to do in the event that does not divide evenly between facet.range.gap facet.range.start
and . If this is true, the last range constraint will have an upper bound of ; if false, the last range will havefacet.range.end facet.range.end
the smallest possible upper bound greater then such that the range is exactly wide.facet.range.end facet.range.gap

The default is false.

This parameter can be specified on a per field basis.

facet.range.other

This param indicates that in addition to the counts for each range constraint between and , countsfacet.range.start facet.range.end
should also be computed for...

before all records with field values lower then lower bound of the first range
after all records with field values greater then the upper bound of the last range
between all records with field values between the start and end bounds of all ranges
none compute none of this information
all shortcut for , , and before between after

This parameter can be specified on a per field basis.

In addition to the option, this parameter can be specified multiple times to indicate multiple choices -- but will override all other options.all none

facet.range.include

By default, the ranges used to compute range faceting between facet.range.start and facet.range.end are inclusive of their lower bounds and
exclusive of the upper bounds. The "before" range is exclusive and the "after" range is inclusive. This default, equivalent to below, will lower not
result in double counting at the boundaries. This behavior can be modified by the param, which can be any combinationfacet.range.include
of the following options...

lower = all gap based ranges include their lower bound
upper = all gap based ranges include their upper bound
edge = the first and last gap ranges include their edge bounds (i.e., lower for the first one, upper for the last one) even if the
corresponding upper/lower option is not specified
outer = the "before" and "after" ranges will be inclusive of their bounds, even if the first or last ranges already include those boundaries.
all = shorthand for lower, upper, edge, outer

This parameter can be specified on a per field basis.

This parameter can be specified multiple times to indicate multiple choices.

If you want to ensure you don't double-count, don't choose both lower & upper, don't choose outer, and don't choose all.

Date Faceting Parameters

As of Solr 3.1, date faceting has been deprecated in favor of , which provides more flexibility with dates and numeric fields. DateRange Faceting
Faceting can be used, however. The response structure is slightly different, but the functionality is equivalent (except that it supports numeric
fields as well as dates).

Several parameters can be used to trigger faceting based on Date ranges computed using simple expressions.DateMathParser

When using Date Faceting, the , , , and parameters are all mandatory.facet.date facet.date.start facet.date.end facet.date.gap

Name What it does

http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html

201Apache Solr Reference Guide 4.4

facet.date Allows you to specify names of fields (of type , described in the section,) whichDateField Field Types Included with Solr
should be treated as date facets. Can be specified multiple times to indicate multiple date facet fields.

facet.date.start The lower boundary for the first date range for all Date Faceting on this field. This should be a single date expression which
may use the syntax. Can be specified on a per field basis.DateMathParser

facet.date.end The minimum upper boundary for the last date range for all Date Faceting on this field. This should be a single date
expression which may use the syntax. Can be specified on a per field basis.DateMathParser

facet.date.gap The size of each date range expressed as an interval to be added to the lower bound using the syntax.DateMathParser
Can be specified on a per field basis. Example: (+1DAY)facet.date.gap=%2B1DAY

facet.date.other Indicates that in addition to the counts for each date range constraint between and facet.date.start
, counts should also be computed for:facet.date.end

before: all records with field values lower then lower bound of the first range
after: all records with field values greater then the upper bound of the last range
between: all records with field values between the start and end bounds of all ranges
none: compute none of this information
all: shortcut for , , and . before between after

Can be specified on a per field basis. In addition to the option, this parameter can be specified multiple timesall
to indicate multiple choices, but will override all other options.none

facet.date.include By default, the ranges used to compute date faceting between and are allfacet.date.start facet.date.end
inclusive of both endpoints, while the "before" and "after" ranges are not inclusive. This behavior can be modified by the

 parameter, which can be any combination of the following options:facet.date.include

lower = all gap based ranges include their lower bound
upper = all gap based ranges include their upper bound
edge = the first and last gap ranges include their edge bounds (ie: lower for the first one, upper for the last one)
even if the corresponding upper/lower option is not specified
outer = the "before" and "after" ranges will be inclusive of their bounds, even if the first or last ranges already
include those boundaries.
all = shorthand for lower, upper, edge, outer

This parameter can be specified on a per field basis, and can be specified multiple times to indicate multiple
choices.

Local Parameters for Faceting

The allows overriding global settings. It can also provide a method of adding metadata to other parameter values, much likeLocalParams syntax
XML attributes.

Tagging and Excluding Filters

You can tag specific filters and exclude those filters when faceting. This is useful when doing multi-select faceting.

Consider the following example query with faceting:

q=mainquery&fq=status:public&fq=doctype:pdf&facet=on&facet.field=doctype

Because everything is already constrained by the filter , the facet command is currently redundant anddoctype:pdf facet.field=doctype
will return 0 counts for everything except .doctype:pdf

To implement a multi-select facet for doctype, a GUI may want to still display the other doctype values and their associated counts, as if the
 constraint had not yet been applied. For example:doctype:pdf

=== Document Type ===
 [] Word (42)
 [x] PDF (96)
 [] Excel(11)
 [] HTML (63)

To return counts for doctype values that are currently not selected, tag filters that directly constrain doctype, and exclude those filters when
faceting on doctype.

http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html

202Apache Solr Reference Guide 4.4

q=mainquery&fq=status:public&fq={!tag=dt}doctype:pdf&facet=on&facet.field={!ex=dt}doctype

Filter exclusion is supported for all types of facets. Both the and local parameters may specify multiple values by separating them withtag ex
commas.

Changing the Output Key

To change the output key for a faceting command, specify a new name with the local parameter. For example:key

facet.field={!ex=dt key=mylabel}doctype

The parameter setting above causes the results to be returned under the key "mylabel" rather than "doctype" in the response. This can be helpful
when faceting on the same field multiple times with different exclusions.

Pivot (Decision Tree) Faceting

Pivoting is a summarization tool that lets you automatically sort, count, total or average data stored in a table. It displays the results in a second
table showing the summarized data. Pivot faceting lets you create a summary table of the results from a query across numerous documents. With
Solr 4, pivot faceting supports nested facet queries, not just facet fields.

Another way to look at it is that the query produces a Decision Tree, in that Solr tells you "for facet A, the constraints/counts are X/N, Y/M, etc. If
you were to constrain A by X, then the constraint counts for B would be S/P, T/Q, etc.". In other words, it tells you in advance what the "next" set
of facet results would be for a field if you apply a constraint from the current facet results.

facet.pivot

The parameter defines the fields to use for the pivot. Multiple values will create multiple "facet_pivot" sections infacet.pivot facet.pivot
the response. Separate each list of fields with a comma.

As of Solr 4.1, local parameters can be used in pivot facet queries.

facet.pivot.mincount

The parameter defines the minimum number of documents that need to match in order for the facet to be included infacet.pivot.mincount
results. The default is 1.

For example, we can use Solr's example data set to make a query like this:

http://localhost:8983/solr/select?q=*:*&facet.pivot=cat,popularity,inStock&facet.pivot=popularity,cat
&facet=true&facet.field=cat&facet.limit=5&rows=0&wt=json&indent=true&facet.pivot.mincount=2

This query will returns the data below, with the pivot faceting results found in the section "facet_pivot":

203Apache Solr Reference Guide 4.4

 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{
 "cat":[
 "electronics",14,
 "currency",4,
 "memory",3,
 "connector",2,
 "graphics card",2]},
 "facet_dates":{},
 "facet_ranges":{},
 "facet_pivot":{
 "cat,popularity,inStock":[{
 "field":"cat",
 "value":"electronics",
 "count":14,
 "pivot":[{
 "field":"popularity",
 "value":6,
 "count":5,
 "pivot":[{
 "field":"inStock",
 "value":true,
 "count":5}]},
...

Pivot faceting supports distributed searching.

Facets and Time Zone

You can construct your query to use the parameter, which overrides the time zone used when rounding dates in expressions fortz DateMath
the entire request. This applies to all date range queries and date faceting.

For instance, a request that does not include date parameters, like this:

http://localhost:8983/solr/select?indent=on&version=2.2&q=*%3A*&fq=&start=0&rows=10&fl=*%2Cscore
&qt=&wt=&explainOther=&hl.fl=&

can be modified by adding facet parameters for dates:

&facet=true&facet.date=manufacturedate_dt&facet.date.start=2005-01-31T15:00:00Z

&facet.date.end=2006-05-31T15:00:00Z&facet.date.gap=%2B1MONTH/DAY&facet.date.tz=Asia/Tokyo

The result would be a date facet request with monthly gap in Tokyo time (GMT+9:00).

One problem may be that some time zones observe Daylight Savings Time, and some don't. For instance, consider this query:

http://localhost:8983/solr/select?indent=on&version=2.2&q=*%3A*&fq=&start=0&rows=10&fl=*%2Cscore&qt=&wt=
&explainOther=&hl.fl=&start = 2007-07-30T00:00:00.000Z/DAY&end =
2007-07-31T00:00:00.000Z/DAY
 &gap = \+1DAY&tz=Asia/Singapore

204Apache Solr Reference Guide 4.4

The way to make sure that your return reflects Daylight Savings Time is to simply add '/DAY' to the end of each parameter, which will round the
times to the beginning of the day. Since the rounding takes into account, this query will come out to 8:00 (the difference between GMT andtz
Singapore time).

&start=2007-07-30T00:00:00.000Z/DAY&end=2007-07-31T00:00:00.000Z/DAY
 &gap=+1DAY&tz=Asia/Singapore

Related Topics

SimpleFacetParameters from the Solr Wiki.

Result Grouping

Result Grouping groups documents with a common field value into groups and returns the top documents for each group. For example, if you
searched for "DVD" on an electronic retailer's e-commerce site, you might be returned three categories such as "TV and Video," "Movies," and
"Computers," with three results per category. In this case, the query term "DVD" appeared in all three categories, so Solr groups them together in
order to increase relevancy for the user.

Result Grouping is separate from . Though it is conceptually similar, faceting returns all relevant results and allows the user to refine theFaceting
results based on the facet category. For example, if you searched for "shoes" on a footwear retailer's e-commerce site, you would be returned all
results for that query term, along with selectable facets such as "size," "color," "brand," and so on.

However, with Solr 4 you can also group facets. The grouped faceting works with the first parameter, and other group.field group.field
parameters are ignored. Grouped faceting only supports for string based fields that are not tokenized and are not multivalued.facet.field

Grouped faceting currently doesn't support date and pivot faceting, but it does support range faceting.

Grouped faceting differs from non grouped facets (sum of all facets) == (total of products with that property) as shown in the following example:

Object 1

name: Phaser 4620a
ppm: 62
product_range: 6

Object 2

name: Phaser 4620i
ppm: 65
product_range: 6

Object 3

name: ML6512
ppm: 62
product_range: 7

If you ask Solr to group these documents by "product_range", then the total amount of groups is 2, but the facets for ppm are 2 for 62 and 1 for
65.

Request Parameters

Result Grouping takes the following request parameters. Any number of these request parameters can be included in a single request:

Parameter Type Description

group Boolean If true, query results will be grouped.

group.field string The name of the field by which to group results. The field be single-valued, and either be indexed or a
field type that has a value source and works in a function query, such as . ItExternalFileField
must also be a string-based field, such as or StrField TextField

group.func query Group based on the unique values of a function query. Supported only in Sol4r 4.0.

group.query query Return a single group of documents that match the given query.

rows integer The number of groups to return. The default value is 10.

http://wiki.apache.org/solr/SimpleFacetParameters

205Apache Solr Reference Guide 4.4

start integer Specifies an initial offset for the list of groups.

group.limit integer Specifies the number of results to return for each group. The default value is 1.

group.offset integer Specifies an initial offset for the document list of each group.

sort sortspec Specifies how Solr sorts the groups relative to each other. For example, sort=popularity desc
will cause the groups to be sorted according to the highest popularity document in each group. The
default value is .score desc

group.sort sortspec Specifies how Solr sorts documents within a single group. The default value is .score desc

group.format grouped/simple If this parameter is set to , the grouped documents are presented in a single flat list, and the simple
 and parameters affect the numbers of documents instead of groups.start rows

group.main Boolean If true, the result of the first field grouping command is used as the main result list in the response,
using .group.format=simple

group.ngroups Boolean If true, Solr includes the number of groups that have matched the query in the results. The default
value is false.

group.truncate Boolean If true, facet counts are based on the most relevant document of each group matching the query. The
default value is false.

group.facet Boolean Determines whether to compute grouped facets for the field facets specified in facet.field parameters.
Grouped facets are computed based on the first specified group. As with normal field faceting, fields
shouldn't be tokenized (otherwise counts are computed for each token). Grouped faceting supports
single and multivalued fields. Default is false. New with Solr 4.

group.cache.percent integer
between 0 and
100

Setting this parameter to a number greater than 0 enables caching for result grouping. Result
Grouping executes two searches; this option caches the second search. The default value is 0. Testing
has shown that group caching only improves search time with Boolean, wildcard, and fuzzy queries.
For simple queries like term or "match all" queries, group caching degrades performance.

Any number of group commands (, ,) may be specified in a single request.group.field group.func group.query

Grouping is also supported for distributed searches. Currently and are the only parameters that aren't supportedgroup.truncate group.func
for distributed searches.

Examples

All of the following examples work with the data provided in the Solr Example directory.

Grouping Results by Field

In this example, we will group results based on the field, which specifies the manufacturer of the items in the sample dataset.manu_exact

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name&q=solr+memory&group=true&group.field=manu_exact

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name&q=solr+memory&group=true&group.field=manu_exact

206Apache Solr Reference Guide 4.4

{
...
"grouped":{
 "manu_exact":{
 "matches":6,
 "groups":[{
 "groupValue":"Apache Software Foundation",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"SOLR1000",
 "name":"Solr, the Enterprise Search Server"}]
 }},
 {
 "groupValue":"Corsair Microsystems Inc.",
 "doclist":{"numFound":2,"start":0,"docs":[
 {
 "id":"VS1GB400C3",
 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC
3200) System Memory - Retail"}]
 }},
 {
 "groupValue":"A-DATA Technology Inc.",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"VDBDB1A16",
 "name":"A-DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC
3200) System Memory - OEM"}]
 }},
 {
 "groupValue":"Canon Inc.",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"0579B002",
 "name":"Canon PIXMA MP500 All-In-One Photo Printer"}]
 }},
 {
 "groupValue":"ASUS Computer Inc.",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"EN7800GTX/2DHTV/256M",
 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)"}]
 }
 }
]
 }
 }

The response indicates that there are six total matches for our query. For each unique value of , Solr returns a with thegroup.field docList
top scoring document. The also includes the total number of matches in that group as the value. The groups are sorted bydocList numFound
the score of the top document within each group.

We can run the same query with the request parameter . This will format the results as a single flat document list. This flatgroup.main=true
format does not include as much information as the normal result grouping query results, but it may be easier for existing Solr clients to parse.

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true

207Apache Solr Reference Guide 4.4

{
 "responseHeader":{
 "status":0,
 "QTime":1,
 "params":{
 "fl":"id,name,manufacturer",
 "indent":"true",
 "q":"solr memory",
 "group.field":"manu_exact",
 "group.main":"true",
 "group":"true",
 "wt":"json"}},
 "grouped":{},
 "response":{"numFound":6,"start":0,"docs":[
 {
 "id":"SOLR1000",
 "name":"Solr, the Enterprise Search Server"},
 {
 "id":"VS1GB400C3",
 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200)
System Memory - Retail"},
 {
 "id":"VDBDB1A16",
 "name":"A-DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200)
System Memory - OEM"},
 {
 "id":"0579B002",
 "name":"Canon PIXMA MP500 All-In-One Photo Printer"},
 {
 "id":"EN7800GTX/2DHTV/256M",
 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)"}]
 }
}

Grouping by Query

In this example, we will use the parameter to find the top three results for "memory" in two different price ranges: 0.00 to 99.99,group.query
and over 100.

http://localhost:8983/solr/select?wt=json&indent=true&fl=name,price&q=memory&group=true&group.query=price:[0+TO+99.99]&group.query=price:[100+TO+*]&group.limit=3

http://localhost:8983/solr/select?wt=json&indent=true&fl=name,price&q=memory&group=true&group.query=price:\[0+TO+99.99\]&group.query=price:\[100+TO+*\]&group.limit=3

208Apache Solr Reference Guide 4.4

{
 "responseHeader":{
 "status":0,
 "QTime":42,
 "params":{
 "fl":"name,price",
 "indent":"true",
 "q":"memory",
 "group.limit":"3",
 "group.query":["price:[0 TO 99.99]",
 "price:[100 TO *]"],
 "group":"true",
 "wt":"json"}},
 "grouped":{
 "price:[0 TO 99.99]":{
 "matches":5,
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC
3200) System Memory - Retail",
 "price":74.99}]
 }},
 "price:[100 TO *]":{
 "matches":5,
 "doclist":{"numFound":3,"start":0,"docs":[
 {
 "name":"CORSAIR XMS 2GB (2 x 1GB) 184-Pin DDR SDRAM Unbuffered DDR 400
(PC 3200) Dual Channel
 Kit System Memory - Retail",
 "price":185.0},
 {
 "name":"Canon PIXMA MP500 All-In-One Photo Printer",
 "price":179.99},
 {
 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)",
 "price":479.95}]
 }
 }
 }
 }

In this case, Solr found five matches for "memory," but only returns four results grouped by price. This is because one result for "memory" did not
have a price assigned to it.

Distributed Result Grouping

Solr also supports result grouping on distributed indexes. If you are using result grouping on the "/select" request handler, you must provide the
 parameter described here. If you are using result grouping on a request handler other than "/select", you must also provide the shards

 parameter:shards.qt

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information about distributed indexing, see Distributed
Search with Index Sharding

shards.qt Specifies the request handler Solr uses for requests to shards. This parameter is not required for the request handler./select

For example:
http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true&shards=solr-shard1:8983/solr,solr-shard2:8983/solr

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true&shards=solr-shard1:8983/solr,solr-shard2:8983/solr

209Apache Solr Reference Guide 4.4

Spell Checking

The SpellCheck component is designed to provide inline query suggestions based on other, similar, terms. The basis for these suggestions can
be terms in a field in Solr, externally created text files, or fields in other Lucene indexes.

Topics covered in this section:

Configuring the SpellCheckComponent
Spell Check Parameters
Distributed SpellCheck

Configuring the SpellCheckComponent

Define Spell Check in solrconfig.xml

The first step is to specify the source of terms in . There are three approaches to spell checking in Solr, discussed below.solrconfig.xml

IndexBasedSpellChecker

The uses a Solr index as the basis for a parallel index used for spell checking. It requires defining a field as theIndexBasedSpellChecker
basis for the index terms; a common practice is to copy terms from some fields (such as , , etc.) to another field created for spelltitle body
checking. Here is a simple example of configuring with the :solrconfig.xml IndexBasedSpellChecker

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="classname">solr.IndexBasedSpellChecker</str>
 <str name="spellcheckIndexDir">./spellchecker</str>
 <str name="field">content</str>
 <str name="buildOnCommit">true</str>
 </lst>
</searchComponent>

The first element defines the to use the . The is the specific implementation ofsearchComponent solr.SpellCheckComponent classname
the SpellCheckComponent, in this case . Defining the is optional; if not defined, it will default to solr.IndexBasedSpellChecker classname

.IndexBasedSpellChecker

The defines the location of the directory that holds the spellcheck index, while the defines the source fieldspellcheckIndexDir field
(defined in) for spell check terms. When choosing a field for the spellcheck index, it's best to avoid a heavily processed field to getschema.xml
more accurate results. If the field has many word variations from processing synonyms and/or stemming, the dictionary will be created with those
variations in addition to more valid spelling data.

Finally, defines whether to build the spell check index at every commit (that is, every time new documents are added to thebuildOnCommit
index). It is optional, and can be omitted if you would rather set it to .false

DirectSolrSpellChecker

The uses terms from the Solr index without building a parallel index like the . It isDirectSolrSpellChecker IndexBasedSpellChecker
considered experimental and still in development, but is being used widely. This spell checker has the benefit of not having to be built regularly,
meaning that the terms are always up-to-date with terms in the index. Here is how this might be configured in solrconfig.xml

210Apache Solr Reference Guide 4.4

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="name">default</str>
 <str name="field">name</str>
 <str name="classname">solr.DirectSolrSpellChecker</str>
 <str name="distanceMeasure">internal</str>
 <float name="accuracy">0.5</float>
 <int name="maxEdits">2</int>
 <int name="minPrefix">1</int>
 <int name="maxInspections">5</int>
 <int name="minQueryLength">4</int>
 <float name="maxQueryFrequency">0.01</float>
 <float name="thresholdTokenFrequency">.01</float>
 </lst>
</searchComponent>

When choosing a to query for this spell checker, you want one which has relatively little analysis performed on it (particularly analysis suchfield
as stemming). Note that you need to specify a field to use for the suggestions, so like the , you may want to copyIndexBasedSpellChecker
data from fields like , , etc., to a field dedicated to providing spelling suggestions.title body

Many of the parameters relate to how this spell checker should query the index for term suggestions. The defines the metricdistanceMeasure
to use during the spell check query. The value "internal" uses the default Levenshtein metric, which is the same metric used with the other spell
checker implementations.

Because this spell checker is querying the main index, you may want to limit how often it queries the index to be sure to avoid any performance
conflicts with user queries. The setting defines the threshold for a valid suggestion, while defines the number of changes toaccuracy maxEdits
the term to allow. Since most spelling mistakes are only 1 letter off, setting this to 1 will reduce the number of possible suggestions (the default,
however, is 2); the value can only be 1 or 2. defines the minimum number of characters the terms should share. Setting this to 1minPrefix
means that the spelling suggestions will all start with the same letter, for example.

The parameter defines the maximum number of possible matches to review before returning results; the default is 5. maxInspections
 defines how many characters must be in the query before suggestions are provided; the default is 4. minQueryLength maxQueryFrequency

sets the maximum threshold for the number of documents a term must appear in before being considered as a suggestion. This can be a
percentage (such as .01, or 1%) or an absolute value (such as 4). A lower threshold is better for small indexes. Finally,

 sets the minimum number of documents a term must appear in, and can also be expressed as a percentage or antresholdTokenFrequency
absolute value.

FileBasedSpellChecker

The uses an external file as a spelling dictionary. This can be useful if using Solr as a spelling server, or if spellingFileBasedSpellChecker
suggestions don't need to be based on actual terms in the index. In , you would define the searchComponent as so:solrconfig.xml

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="classname">solr.FileBasedSpellChecker</str>
 <str name="name">file</str>
 <str name="sourceLocation">spellings.txt</str>
 <str name="characterEncoding">UTF-8</str>
 <str name="spellcheckIndexDir">./spellcheckerFile</str>
 </lst>
</searchComponent>

The differences here are the use of the to define the location of the file of terms and the use of tosourceLocation characterEncoding
define the encoding of the terms file.

In the previous example, is used to name this specific definition of the spellchecker. Multiple definitions can co-exist in aname
single , and the helps to differentiate them when they are defined in the . If only definingsolrconfig.xml name schema.xml
one spellchecker, no name is required.

211Apache Solr Reference Guide 4.4

WordBreakSolrSpellChecker

A parallel implementation, offers suggestions by combining adjacent query terms and/or breaking terms intoWordBreakSolrSpellChecker
multiple words. It is a enhancement, leveraging Lucene's . It can detect spelling errorsSpellCheckComponent WordBreakSpellChecker
resulting from misplaced whitespace without the use of shingle-based dictionaries and provides collation support for word-break errors, including
cases where the user has a mix of single-word spelling errors and word-break errors in the same query. It also provides shard support.

Here is how it might be configured in :solrconfig.xml

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="name">wordbreak</str>
 <str name="classname">solr.WordBreakSolrSpellChecker</str>
 <str name="field">lowerfilt</str>
 <str name="combineWords">true</str>
 <str name="breakWords">true</str>
 <int name="maxChanges">10</int>
 </lst>
</searchComponent>

Some of the parameters will be familiar from the discussion of the other spell checkers, such as , , and . New for this spellname classname field
checker is , which defines whether words should be combined in a dictionary search (default is true); , which definescombineWords breakWords
if words should be broken during a dictionary search (default is true); and , an integer which defines how many times the spellmaxChanges
checker should check collation possibilities against the index (default is 10).

The spellchecker can be configured with a traditional checker (ie:). The results are combined and collations canDirectSolrSpellChecker
contain a mix of corrections from both spellcheckers.

Add It to a Request Handler

Queries will be sent to a . If every request should generate a suggestion, then you would add the following to the RequestHandler
 that you are using:requestHandler

<str name="spellcheck">true</str>

One of the possible parameters is the to use, and multiples can be defined. With multiple dictionaries, all specifiedspellcheck.dictionary
dictionaries are consulted and results are interleaved. Collations are created with combinations from the different spellcheckers, with care taken
that multiple overlapping corrections do not occur in the same collation.

Here is an example with multiple dictionaries:

<requestHandler name="spellCheckWithWordbreak"
class="org.apache.solr.handler.component.SearchHandler">
<lst name="defaults">
<str name="spellcheck.dictionary">default</str>
<str name="spellcheck.dictionary">wordbreak</str>
<str name="spellcheck.count">20</str>
</lst>
<arr name="last-components">
<str>spellcheck</str>
</arr>
</requestHandler>

Spell Check Parameters

The SpellCheck component accepts the parameters described in the table below. All of these parameters can be overridden by specifying
 where is the parameter you are overriding.spellcheck.collateParam.xx xx

212Apache Solr Reference Guide 4.4

Parameter Description

spellcheck Turns on or off SpellCheck suggestions for the request. If , then spelling suggestions will betrue
generated.

spellcheck.q or q Selects the query to be spellchecked.

spellcheck.build Instructs Solr to build a dictionary for use in spellchecking.

spellcheck.collate Causes Solr to build a new query based on the best suggestion for each term in the submitted query.

spellcheck.maxCollations This parameter specifies the maximum number of collations to return.

spellcheck.maxCollationTries This parameter specifies the number of collation possibilities for Solr to try before giving up.

spellcheck.maxCollationEvaluations This parameter specifies the maximum number of word correction combinations to rank and evaluate
prior to deciding which collation candidates to test against the index.

spellcheck.collateExtendedResult If true, returns an expanded response detailing the collations found. If is false,spellcheck.collate
this parameter will be ignored.

spellcheck.collateMaxCollectDocs The maximum number of documents to collect when testing potential Collations

spellcheck.count Specifies the maximum number of spelling suggestions to be returned.

spellcheck.dictionary Specifies the dictionary that should be used for spellchecking.

spellcheck.extendedResults Causes Solr to return additional information about spellcheck results, such as the frequency of each
original term in the index (origFreq) as well as the frequency of each suggestion in the index (frequency).
Note that this result format differs from the non-extended one as the returned suggestion for a word is
actually an array of lists, where each list holds the suggested term and its frequency.

spellcheck.onlyMorePopular Limits spellcheck responses to queries that are more popular than the original query.

spellcheck.maxResultsForSuggest The maximum number of hits the request can return in order to both generate spelling suggestions and
set the "correctlySpelled" element to "false".

spellcheck.alternativeTermCount The count of suggestions to return for each query term existing in the index and/or dictionary.

spellcheck.reload Reloads the spellchecker.

spellcheck.accuracy Specifies an accuracy value to help decide whether a result is worthwhile.

spellcheck.<DICT_NAME>.key Specifies a key/value pair for the implementation handling a given dictionary.

The Parameterspellcheck

This parameter turns on SpellCheck suggestions for the request. If , then spelling suggestions will be generated.true

The or Parameterspellcheck.q q

This parameter specifies the query to spellcheck. If is defined, then it is used; otherwise the original input query is used. The spellcheck.q
 parameter is intended to be the original query, minus any extra markup like field names, boosts, and so on. If the parameter isspellcheck.q q

specified, then the class is used to parse it into tokens; otherwise the is used. The choiceSpellingQueryConverter WhitespaceTokenizer
of which one to use is up to the application. Essentially, if you have a spelling "ready" version in your application, then it is probably better to use

. Otherwise, if you just want Solr to do the job, use the parameter.spellcheck.q q

The SpellingQueryConverter class does not deal properly with non-ASCII characters. In this case, you have either to use
, or implement your own QueryConverter.spellcheck.q

The Parameterspellcheck.build

If set to , this parameter creates the dictionary that the SolrSpellChecker will use for spell-checking. In a typical search application, you willtrue
need to build the dictionary before using the SolrSpellChecker. However, it's not always necessary to build a dictionary first. For example, you can
configure the spellchecker to use a dictionary that already exists.

The dictionary will take some time to build, so this parameter should not be sent with every request.

The Parameterspellcheck.reload

If set to true, this parameter reloads the spellchecker. The results depend on the implementation of . In a typicalSolrSpellChecker.reload()

213Apache Solr Reference Guide 4.4

implementation, reloading the spellchecker means reloading the dictionary.

The Parameterspellcheck.count

This parameter specifies the maximum number of suggestions that the spellchecker should return for a term. If this parameter isn't set, the value
defaults to 1. If the parameter is set but not assigned a number, the value defaults to 5. If the parameter is set to a positive integer, that number
becomes the maximum number of suggestions returned by the spellchecker.

The Parameterspellcheck.onlyMorePopular

If , Solr will to return suggestions that result in more hits for the query than the existing query. Note that this will return more populartrue
suggestions even when the given query term is present in the index and considered "correct".

The Parameterspellcheck.maxResultsForSuggest

For example, if this is set to 5 and the user's query returns 5 or fewer results, the spellchecker will report "correctlySpelled=false" and also offer
suggestions (and collations if requested). Setting this greater than zero is useful for creating "did-you-mean?" suggestions for queries that return a
low number of hits.

The Parameterspellcheck.alternativeTermCount

Specify the number of suggestions to return for each query term existing in the index and/or dictionary. Presumably, users will want fewer
suggestions for words with docFrequency>0. Also setting this value turns "on" context-sensitive spell suggestions.

The Parameterspellcheck.extendedResults

This parameter causes to Solr to include additional information about the suggestion, such as the frequency in the index.

The Parameterspellcheck.collate

If , this parameter directs Solr to take the best suggestion for each token (if one exists) and construct a new query from the suggestions. Fortrue
example, if the input query was "jawa class lording" and the best suggestion for "jawa" was "java" and "lording" was "loading", then the resulting
collation would be "java class loading".

The spellcheck.collate parameter only returns collations that are guaranteed to result in hits if re-queried, even when applying original fq
parameters. This is especially helpful when there is more than one correction per query.

This only returns a query to be used. It does not actually run the suggested query.

The Parameterspellcheck.maxCollations

The maximum number of collations to return. The default is . This parameter is ignored if is false.1 spellcheck.collate

The Parameterspellcheck.maxCollationTries

This parameter specifies the number of collation possibilities for Solr to try before giving up. Lower values ensure better performance. Higher
values may be necessary to find a collation that can return results. The default value is , which maintains backwards-compatible (Solr 1.4)0
behavior (do not check collations). This parameter is ignored if is false.spellcheck.collate

The Parameterspellcheck.maxCollationEvaluations

This parameter specifies the maximum number of word correction combinations to rank and evaluate prior to deciding which collation candidates
to test against the index. This is a performance safety-net in case a user enters a query with many misspelled words. The default is 10,000
combinations, which should work well in most situations.

The Parameterspellcheck.collateExtendedResult

If , this parameter returns an expanded response format detailing the collations Solr found. The default value is and this is ignored if true false
 is false.spellcheck.collate

The Parameterspellcheck.collateMaxCollectDocs

This parameter specifies the maximum number of documents that should be collect when testing potential collations against the index. A value of
 indicates that all documents should be collected, resulting in exact hit-counts. Otherwise an estimation is provided as a performance0

optimization in cases where exact hit-counts are unnecessary – the higher the value specified, the more precise the estimation.

214Apache Solr Reference Guide 4.4

The default value for this parameter is , but when is , the optimization is always used as if a 0 spellcheck.collateExtendedResults false 1
had been specified.

The Parameterspellcheck.dictionary

This parameter causes Solr to use the dictionary named in the parameter's argument. The default setting is "default". This parameter can be used
to invoke a specific spellchecker on a per request basis.

The Parameterspellcheck.accuracy

Specifies an accuracy value to be used by the spell checking implementation to decide whether a result is worthwhile or not. The value is a float
between 0 and 1. Defaults to .Float.MIN_VALUE

The Parameterspellcheck.<DICT_NAME>.key

Specifies a key/value pair for the implementation handling a given dictionary. The value that is passed through is just (key=value
 is stripped off.spellcheck.<DICT_NAME>.

For example, given a dictionary called , would result in being passed through to thefoo spellcheck.foo.myKey=myValue myKey=myValue
implementation handling the dictionary .foo

Example

This example shows the results of a simple query that defines a query using the parameter. The query also includes a spellcheck.q
 parameter, which is needs to be called only once in order to build the index. should not bespellcheck.build=true spellcheck.build

specified with for each request.

http://localhost:8983/solr/spellCheckCompRH?q=:
&spellcheck.q=hell%20ultrashar&spellcheck=true&spellcheck.build=true

Results:

<lst name="spellcheck">
 <lst name="suggestions">
 <lst name="hell">
 <int name="numFound">1</int>
 <int name="startOffset">0</int>
 <int name="endOffset">4</int>
 <arr name="suggestion">
 <str>dell</str>
 </arr>
 </lst>
 <lst name="ultrashar">
 <int name="numFound">1</int>
 <int name="startOffset">5</int>
 <int name="endOffset">14</int>
 <arr name="suggestion">
 <str>ultrasharp</str>
 </arr>
 </lst>
 </lst>
</lst>

Distributed SpellCheck

The also supports spellchecking on distributed indexes. If you are using the SpellCheckComponent on a requestSpellCheckComponent
handler other than "/select", you must provide the following two parameters:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information about distributed indexing, see Distributed
Search with Index Sharding

http://localhost:8983/solr/spellCheckCompRH?q=*:*&spellcheck.q=hell%20ultrashar&spellcheck=true&spellcheck.build=true
http://localhost:8983/solr/spellCheckCompRH?q=*:*&spellcheck.q=hell%20ultrashar&spellcheck=true&spellcheck.build=true

215Apache Solr Reference Guide 4.4

shards.qt Specifies the request handler Solr uses for requests to shards. This parameter is not required for the request handler./select

For example: http://localhost:8983/solr/select?q=:
&spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=spell&shards.qt=spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr

In case of a distributed request to the SpellCheckComponent, the shards are requested for at least five suggestions even if the
 parameter value is less than five. Once the suggestions are collected, they are ranked by the configured distance measurespellcheck.count

(Levenstein Distance by default) and then by aggregate frequency.

Suggester

Solr includes an autosuggest component called Suggester, which is built on the . The autocomplete suggestionsSpellCheck search component
that Suggester provides come from a dictionary that is either based on the main index or on a dictionary file that you provide. It is common to
provide only the top-N suggestions, either ranked alphabetically or according to their usefulness for an average user (such as popularity or the
number of returned results).

Because this feature is based on the , configuring Suggester is similar to configuring spell checking. Unlike theSpellCheck search component
SpellCheck Component, however, Suggester has no direct indexing option at this time.

In , we need to add a search component and a request handler.solrconfig.xml

Covered in this section:

Adding the Suggest Search Component
Adding the Suggest Request Handler
Defining a Field for Suggester
Related Topics

Adding the Suggest Search Component

The first step is to add a search component to to extend the SpellChecker. Here is some sample code that could be used.solrconfig.xml

<searchComponent class="solr.SpellCheckComponent" name="suggest">
 <lst name="spellchecker">
 <str name="name">suggest</str>
 <str name="classname">org.apache.solr.spelling.suggest.Suggester</str>
 <str name="lookupImpl">org.apache.solr.spelling.suggest.tst.TSTLookup</str>
 <str name="field">name</str> <!-- the indexed field to derive suggestions from
-->
 <float name="threshold">0.005</float>
 <str name="buildOnCommit">true</str>
<!--
 <str name="sourceLocation">american-english</str>
-->
 </lst>
</searchComponent>

One of the most important parameters is the , which is described in more detail below. In this example, the islookupImpl sourceLocation
commented out, which means that a dictionary file will not be used. Instead, the field defined with the parameter will be used as thefield
dictionary. We've included the unused in the example to demonstrate it's usage.sourceLocation

Suggester Search Component Parameters

The Suggester search component takes the following configuration parameters:

Parameter Description

searchComponent
name

Arbitrary name for the search component.

http://localhost:8983/solr/select?q=*:*&spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=spell&shards.qt=spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr
http://localhost:8983/solr/select?q=*:*&spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=spell&shards.qt=spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr

216Apache Solr Reference Guide 4.4

name A symbolic name for this spellchecker. You can refer to this name in the URL parameters and in the SearchHandler
configuration.

classname The full class name of the component: org.apache.solr.spelling.Suggester

lookupImpl Lookup implementation. Choose one of these four:

: automaton-based lookup. This implementation is slower to build, butorg.apache.solr.suggest.fst.FSTLookup
provides the lowest memory cost. We recommend using this implementation unless you need more sophisticated matching
results, in which case you should use the Jaspell implementation.

: weighted automaton representation; an alternative to FSTLookup fororg.apache.solr.suggest.wfst.WFSTLookup
more fine-grained ranking. WFSTLookup does not use buckets, but instead a shortest path algorithm. Note that it expects
weights to be whole numbers. If weight is missing it's assumed to be 1.0. Weights affect the sorting of matching
suggestions when is selected: weights are treated as "popularity" score, withspellcheck.onlyMorePopular=true
higher weights preferred over suggestions with lower weights.

: a more complex lookup based on a ternary trie from the org.apache.solr.suggest.jaspell.JaspellLookup
 project. Use this implementation if you need more sophisticated matching results. JaSpell

: a simple compact ternary trie based lookup.org.apache.solr.suggest.tst.TSTLookup

All four implementations will likely run at similar speed when requests are made through HTTP. Direct benchmarks of
these classes indicate that FSTLookup provides better performance compared to the other three methods, and at a much
lower memory cost. We recommend using the FSTLookup implementation unless you need more sophisticated matching,
in which case you should use the JaspellLookup implementation or FSTLookupFactory.

buildOnCommit or
buildOnOptimize

 by default. If then the lookup data structure will be rebuilt after commit. If , then the lookup data will be builtFalse true false
only when requested by URL parameter . Use to rebuild the dictionary withspellcheck.build=true buildOnCommit
every commit, or to build the dictionary only when the index is optimized.buildOnOptimize

Currently implemented lookups keep their data in memory, so unlike spellchecker data, this data is
discarded on core reload and not available until you invoke the build command, either explicitly or
implicitly during a commit.

queryConverter Allows defining an alternate converter that can parse phrases in dictionary files. It passes the whole string to the query
analyzer rather than analyzing it for spelling. Define it in as solrconfig.xml <queryConverter

.name="queryConverter" class="org.apache.solr.spelling.SuggestQueryConverter"/>

sourceLocation The path to the dictionary file. If this value is empty then the main index will be used as a source of terms and weights.

field If is empty then terms from this field in the index will be used when building the trie.sourceLocation

threshold A value between zero and one representing the minimum fraction of the total documents where a term should appear in
order to be added to the lookup dictionary.

When you use the index as the dictionary, you may encounter many invalid or uncommon terms. The threshold
parameter addresses this issue. By setting the parameter to a value just above zero, you can greatly reducethreshold
the number of unusable terms in your dictionary while maintaining most of the common terms. The example above sets the

 value to 0.5%. The parameter does not affect file-based dictionaries.threshold threshold

Using a Dictionary File

If using a dictionary file, it should be a plain text file in UTF-8 encoding. Blank lines and lines that start with a '#' are ignored. The remaining lines
must consist of either a string without literal TAB (\u0007) characters, or a string and a TAB separated floating-point weight. You can use both
single terms and phrases in a dictionary file.

This is a sample dictionary file.

acquire
accidentally\t2.0
accommodate\t3.0

Adding the Suggest Request Handler

After adding the search component, a request handler must be added to . This request handler will set a number of parameterssolrconfig.xml

http://jaspell.sourceforge.net/

217Apache Solr Reference Guide 4.4

for serving suggestion requests and incorporate the "suggest" search component defined in the previous step. Because the Suggester is based
on the SpellCheckComponent, the request handler shares many of the same parameters.

<requestHandler class="org.apache.solr.handler.component.SearchHandler"
name="/suggest">
 <lst name="defaults">
 <str name="spellcheck">true</str>
 <str name="spellcheck.dictionary">suggest</str>
 <str name="spellcheck.onlyMorePopular">true</str>
 <str name="spellcheck.count">5</str>
 <str name="spellcheck.collate">true</str>
 </lst>
 <arr name="components">
 <str>suggest</str>
 </arr>
</requestHandler>

Suggester Request Handler Parameters

The Suggester request handler takes the following configuration parameters:

Parameter Description

spellcheck=true This parameter should always be true, because we always want to run the Suggester for queries submitted to
this handler.

spellcheck.dictionary The name of the dictionary component configured in the search component.

spellcheck.onlyMorePopular If true, then suggestions will be sorted by weight ("popularity"), which is the recommended setting. The count
parameter will effectively limit this to a top-N list of best suggestions. If false, suggestions are sorted
alphabetically.

spellcheck.count Specifies the number of suggestions for Solr to return.

spellcheck.collate If true, Solr provides a query collated with the first matching suggestion.

Defining a Field for Suggester

Any field can be used as the basis of the dictionary (if not using an explicit dictionary file). You may want to create a custom field for this purpose,
and use the copy fields feature to copy text from various fields to the dedicated "suggester" field.

 <field indexed="true" multiValued="true" name="suggestions" stored="false"
type="textSpell"/>

You may want to define a custom in to prevent over-analysis of the content of a field for use in suggestions. ForfieldType schema.xml
example, if you have some analysis that stems terms, you wouldn't want the stemmed terms in the suggestion list, since the stemmed forms of
words would be presented to users. Here is an example that could be used:

<fieldType class="solr.TextField" name="textSpell" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

Related Topics

218Apache Solr Reference Guide 4.4

RequestHandlers and SearchComponents in SolrConfig
Solr Field Types
Copying Fields

Function Queries

Function queries enable you to generate a relevancy score using the actual value of one or more numeric fields. Function queries are supported
by the , , and query parsers.DisMax Extended DisMax standard

Function queries use . The functions can be a constant (numeric or string literal), a field, another function or a parameter substitutionfunctions
argument. You can use these functions to modify the ranking of results for users. These could be used to change the ranking of results based on
a user's location, or some other calculation.

Function query topics covered in this section:

Using Function Query
Available Functions
Example Function Queries
Sort By Function
Related Topics

Using Function Query

Functions must be expressed as function calls (for example, instead of simply).sum(a,b) a+b

There are three principal ways of including function queries in a Solr query:

Introduce a function query with the keyword. For example: _val_

val:mynumericfield _val_:"recip(rord(myfield),1,2,3)"

Use a parameter that has an explicit type of FunctionQuery, such as the DisMax query parser's . Note that (boost function) parameterbf
the parameter actually takes a list of function queries separated by white space and each with an optional boost. Make sure youbf
eliminate any internal white space in single function queries when using . For example: bf

q=dismax&bf="ord(popularity)^0.5 recip(rord(price),1,1000,1000)^0.3"

Add the results of FunctionQueries as fields to a document. For instance, for:

&fl=sum(x, y),id,a,b,c,score

the output would be:

...
<str name="id">foo</str>
<float name="sum(x,y)">40</float>
<float name="score">0.343</float>
...

Only functions with fast random access are recommended.

Available Functions

The table below summarizes the functions available for function queries.

219Apache Solr Reference Guide 4.4

Function Description Syntax Examples

abs Returns the absolute value of the specified value or
function.

 abs(x)
abs(-5)

and Returns a value of true if and only if both of its operands
are true.

 is true only if the sky is blue.and("blue","sky")

constant Specifies a floating point constant. 1.5
val:1.5

def is short for default. Returns the value of field "field",def
or if the field does not exist, returns the default value
specified. and yields the first value where

.)exists()==true

 This function returns the rating, or ifdef(rating,5): def()
no rating specified in the doc, returns 5

 equivalent to def(myfield, 1.0):
if(exists(myfield),myfield,1.0)

div Divides one value or function by another. div(x,y) divides
x by y.

 div(1,y)
div(sum(x,100),max(y,1))

dist Return the distance between two vectors (points) in an
n-dimensional space. Takes in the power, plus two or
more ValueSource instances and calculates the
distances between the two vectors. Each ValueSource
must be a number. There must be an even number of
ValueSource instances passed in and the method
assumes that the first half represent the first vector and
the second half represent the second vector.

 calculates the Euclidean distancedist(2, x, y, 0, 0):
between (0,0) and (x,y) for each document

: calculates the Manhattan (taxicab)dist(1, x, y, 0, 0)
distance between (0,0) and (x,y) for each document

 Euclidean distance between (0,0,0)dist(2, x,y,z,0,0,0):
and (x,y,z) for each document.

: Euclidean distance between (x,y,z)dist(1,x,y,z,e,f,g)
and (e,f,g) where each letter is a field name

docfreq(field,val) Returns the number of documents that contain the term
in the field. This is a constant (the same value for all
documents in the index).

You can quote the term if it's more complex, or do
parameter substitution for the term value.

 docfreq(text,solr)

 docfreq(text,'solr')

&
defType=func&q=docfreq(text,$myterm)&myterm=solr

exists Returns TRUE if any member of the field exists. returns TRUE for any document has a valueexists(author)
in the "author" field.

 returns TRUE if "price"exists(query(price:5.00))
contains "5.00".

field Returns the numeric field value of an indexed (not
multi-valued) field with a maximum of one value per
document. The syntax is simply the field name by itself.
0 is returned for documents without a value in the field.

val:myFloatField

hsin The Haversine distance calculates the distance between
two points on a sphere when traveling along the sphere.
The values must be in radians. also take ahsin
Boolean argument to specify whether the function should
convert its output to radians.

hsin(2, true, x, y, 0, 0)

fl Defines the fields of a document that are returned in
response to a query. You need to specify as onescore
of the fields to return if you want any calculated values to
be returned in the score.

 fl=*,score

idf Inverse document frequency; a measure of whether the
term is common or rare across all documents. Obtained
by dividing the total number of documents by the
number of documents containing the term, and then
taking the logarithm of that quotient. See also . tf

: measures the inverse of the frequencyidf(list1,326.55)
of the occurrence of the number 326.55 in .list1

220Apache Solr Reference Guide 4.4

if Enables conditional function queries. IF(test;
 where: value1; value2)

test is or refers to a logical value or expression
that returns a logical value (TRUE or FALSE).
value1 is the value that is returned by the
function if test yields TRUE.
value2 is the value that is returned by the
function if test yields FALSE.
If is omitted it is assumed to be FALSE;value2
if is also omitted it is assumed to bevalue1
TRUE.
An expression can be any function which
outputs boolean values, or even functions
returning numeric values, in which case value 0
will be interpreted as false, or strings, in which
case empty string is interpreted as false.

if(color=="red"; 100; if(color=="green"; 50;
 : 25))

This function checks the document field "color", and if it is "red"
returns 100, if it is "green" returns 50, else returns 25.

linear Implements where and are constants and m*x+c m c x
is an arbitrary function. This is equivalent to

, but slightly more efficient as itsum(product(m,x),c)
is implemented as a single function.

 linear(x,m,c)
 returns linear(x,2,4) 2*x+4

log Returns the log base 10 of the specified function. log(x)log(sum(x,100))

map Maps any values of the function x that fall within min and
max inclusive to the specified target. The arguments
min,max,target are constants. The function outputs the
field's value if it does not fall between min and max.

 map(x,min,max,target)
 - changes any values of 0 to 1. This can bemap(x,0,0,1)

useful in handling default 0 values.
 map(x,min,max,target,altarg)

 - changes any values of 0 to 1 and if themap(x,0,0,1,0)
value is not zero it can be set to the value of the 5th argument
instead of defaulting to the field's value.

max Returns the max of another function and a constant,
which are specified as arguments: . The maxmax(x,c)
function is useful for "bottoming out" another function at
some constant.

max(myfield,0)

maxdoc Returns the number of documents in the index, including
those that are marked as deleted but have not yet been
purged. This is a constant (the same value for all
documents in the index).

maxdoc(list1)

ms Returns milliseconds of difference between its
arguments. Dates are relative to the Unix or POSIX time
epoch, midnight, January 1, 1970 UTC. Arguments may
be numerically indexed date fields such as TrieDate (the
default in 1.4), or date math based on a constant date or
NOW.

: Equivalent to , number of millisecondsms() ms(NOW)
since the epoch.

 Returns the number of milliseconds since thems(a):
epoch that the argument represents.

 ms(NOW/DAY)
 ms(2000-01-01T00:00:00Z)

 ms(mydatefield)
 : Returns the number of milliseconds that b occursms(a,b)

before a (that is, a - b) Examples:
 ms(NOW,mydatefield)

 ms(mydatefield,2000-01-01T00:00:00Z)
ms(datefield1,datefield2)

norm()field Returns the "norm" stored in the index, the product of
the index time boost and the length normalization factor,
according to the for the field.Similarity

norm(text)

not A logically negative value. : TRUE only when isif (NOT value1) [...] value1
false.

numdocs Returns the number of documents in the index, not
including those that are marked as deleted but have not
yet been purged. This is a constant (the same value for
all documents in the index).

numdocs(list1)

or A logical disjunction. TRUE if either or is(value1 OR value2): value1 value2
true.

http://lucene.apache.org/java/3_0_0/api/core/org/apache/lucene/search/Similarity.html%7CSimilarity

221Apache Solr Reference Guide 4.4

ord Returns the ordinal of the indexed field value within the
indexed list of terms for that field in Lucene index order
(lexicographically ordered by unicode value), starting at
1. In other words, for a given field, all values are ordered
lexicographically; this function then returns the offset of
a particular value in that ordering. The field must have a
maximum of one value per document (not multi-valued).
0 is returned for documents without a value in the field.

ord() depends on the position in an
index and can change when other
documents are inserted or deleted.

See also below.rord

 ord(myIndexedField)
 val:"ord(myIndexedField)"

Example: If there were only three values
("apple","banana","pear") for a particular field, then:
ord("apple")=1ord("banana")=2ord("pear")=3

pow Raises the specified base to the specified power.
 raises x to the power of y.pow(x,y)

 pow(x,y)
 pow(x,log(y))

 the same as pow(x,0.5): sqrt

product Returns the product of multiple values or functions,
which are specified in a comma-separated list.

 product(x,y,...)
 product(x,2)

product(x,y)

query Returns the score for the given subquery, or the default
value for documents not matching the query. Any type of
subquery is supported through either parameter
de-referencing or direct specification of$otherparam
the query string in the through the Local Parameters v
key.

 query(subquery, default)

q=product(popularity, query({!dismax v='solr
: returns the product of the popularity and the score ofrocks'})

the DisMax query.

q=product(popularity,
: equivalent to thequery($qq))&qq={!dismax}solr rocks

previous query, using parameter de-referencing.

q=product(popularity,
: specifies aquery($qq,0.1))&qq={!dismax}solr rocks

default score of 0.1 for documents that don't match the DisMax
query.

recip Performs a reciprocal function with
 implementing . recip(myfield,m,a,b) a/(m*x+b)

 are constants, and is any arbitrarily complexm,a,b x
function.
When a and b are equal, and x>=0, this function has a
maximum value of 1 that drops as x increases.
Increasing the value of a and b together results in a
movement of the entire function to a flatter part of the
curve. These properties can make this an ideal function
for boosting more recent documents when x is

.rord(datefield)

 recip(myfield,m,a,b)
recip(rord(creationDate),1,1000,1000)

rord Returns the reverse ordering of that returned by .ord rord(myDateField)
 val:"rord(myDateField)"

: a metric for how old a document is. Therord(myDateField)
youngest document will return 1. The oldest document will return
the total number of documents.

222Apache Solr Reference Guide 4.4

scale Scales values of the function x such that they fall
between the specified and minTarget maxTarget
inclusive. The current implementation traverses all of the
function values to obtain the min and max, so it can pick
the correct scale.

The current implementation cannot distinguish when
documents have been deleted or documents that have
no value. It uses 0.0 values for these cases. This means
that if values are normally all greater than 0.0, one can
still end up with 0.0 as the min value to map from. In
these cases, an appropriate map() function could be
used as a workaround to change 0.0 to a value in the
real range, as shown here:
scale(map(x,0,0,5),1,2)

 scale(x,minTarget,maxTarget)
: scales the values of x such that all values willscale(x,1,2)

be between 1 and 2 inclusive.

sqedist The Square Euclidean distance calculates the 2-norm
(Euclidean distance) but does not take the square root,
thus saving a fairly expensive operation. It is often the
case that applications that care about Euclidean
distance do not need the actual distance, but instead
can use the square of the distance. There must be an
even number of ValueSource instances passed in and
the method assumes that the first half represent the first
vector and the second half represent the second vector.

sqedist(x_td, y_td, 0, 0)

sqrt Returns the square root of the specified value or
function.

sqrt(x)sqrt(100)sqrt(sum(x,100))

strdist Calculate the distance between two strings. Uses the
Lucene spell checker interface andStringDistance
supports all of the implementations available in that
package, plus allows applications to plug in their own via
Solr's resource loading capabilities. takesstrdist
(string1, string2, distance measure). Possible values for
distance measure are:

jw: Jaro-Winkler

edit: Levenstein or Edit distance

ngram: The NGramDistance, if specified, can optionally
pass in the ngram size too. Default is 2.

FQN: Fully Qualified class Name for an implementation
of the StringDistance interface. Must have a no-arg
constructor.

strdist("SOLR",id,edit)

sub Returns x-y from sub(x,y). sub(myfield,myfield2)
sub(100,sqrt(myfield))

sum Returns the sum of multiple values or functions, which
are specified in a comma-separated list.

 sum(x,y,...) sum(x,1)
 sum(x,y)

sum(sqrt(x),log(y),z,0.5)

sumtotaltermfreq Returns the sum of values for alltotaltermfreq
terms in the field in the entire index (i.e., the number of
indexed tokens for that field). (Aliases

 to .)sumtotaltermfreq sttf

If doc1:(fieldX:A B C) and doc2:(fieldX:A A A A):
 = 2 (A appears in 2 docs) docFreq(fieldX:A)

 = 4 (A appears 4 times in doc 2) freq(doc1, fieldX:A)
 = 5 (A appears 5 times acrosstotalTermFreq(fieldX:A)

all docs)
 = 7 in , there are 5 As,sumTotalTermFreq(fieldX) fieldX

1 B, 1 C

termfreq Returns the number of times the term appears in the
field for that document.

termfreq(text,'memory')

tf Term frequency; returns the term frequency factor for the
given term, using the for the field. The Similarity tf-idf
value increases proportionally to the number of times a
word appears in the document, but is offset by the
frequency of the word in the document, which helps to
control for the fact that some words are generally more
common than others. See also . idf

tf(text,'solr')

http://lucene.apache.org/java/3_0_0/api/core/org/apache/lucene/search/Similarity.html

223Apache Solr Reference Guide 4.4

top Causes the function query argument to derive its values
from the top-level IndexReader containing all parts of an
index. For example, the ordinal of a value in a single
segment will be different from the ordinal of that same
value in the complete index.
The and functions implicitly use ,ord() rord() top()
and hence is equivalent to .ord(foo) top(ord(foo))

Totaltermfreq Returns the number of times the term appears in the
field in the entire index. (Aliases to totaltermfreq

.)ttf

ttf(text,'memory')

xor() Logical exclusive disjunction, or one or the other but not
both.

 returns TRUE if either or xor(field1,field2) field1
 is true; FALSE if both are true.field2

Example Function Queries

To give you a better understanding of how function queries can be used in Solr, suppose an index stores the dimensions in meters x,y,z of some
hypothetical boxes with arbitrary names stored in field . Suppose we want to search for box matching name but rankedboxname findbox
according to volumes of boxes. The query parameters would be:

q=boxname:findbox_val_:"product(product(x,y),z)

This query will rank the results based on volumes. In order to get the computed volume, you will need to request the , which will contain thescore
resultant volume:

&fl=*, score

Suppose that you also have a field storing the weight of the box as . To sort by the density of the box and return the value of the density inweight
score, you would submit the following query:

http://localhost:8983/solr/select/?q=boxname:findbox_val_div(weight,product(product(x,y),z))"&fl=boxname
x y z weight score

Sort By Function

You can sort your query results by the output of a function. For example, to sort results by distance, you could enter:

http://localhost:8983/solr/select?q=*:*&sort=dist(2, point1, point2) desc

Sort by function also supports pseudo-fields: fields can be generated dynamically and return results as though it was normal field in the index. For
example,

&fl=id,sum(x, y),score

would return:

<str name="id">foo</str>
<float name="sum(x,y)">40</float>
<float name="score">0.343</float>

Related Topics

FunctionQuery

Spatial Search

Solr supports location data for use in spatial/geospatial searches. Using spatial search, you can:

https://wiki.apache.org/solr/FunctionQuery

224Apache Solr Reference Guide 4.4

Index points or other shapes
Filter search results by a bounding box or circle or by other shapes
Sort or boost scoring by distance
Index and search multi-value time or other numeric durations

With Solr 4, there are two field types for spatial search: (or its non-geodetic twin), or LatLonType PointType
 (RPT for short). RPT is new in Solr 4, offering more features than LatLonType, althoughSpatialRecursivePrefixTreeFieldType

LatLonType is still more appropriate when efficient distance sorting/boosting is desired. They can both be used simultaneously.

For more information on Solr spatial search, see .http://wiki.apache.org/solr/SpatialSearch

Indexing and Configuration

For indexing geodetic points (latitude and longitude), supply the pair of numbers as a string with a comma separating them in latitude then
longitude order. For non-geodetic points, the order is x,y for PointType, and for RPT you must use a space instead of a comma.

See the bottom of this page for RPT configuration specifics.

Spatial Filters

The following parameters are used for spatial search:

Parameter Description

d distance, in kilometers

pt a lat/lon coordinate point

sfield a spatial field, by default a (lat/lon) field type.location

geofilt

The filter allows you to retrieve results based on the distance from a given point. For example, to find all results for a product searchgeofilt
within five kilometers of the lat/lon point, you could enter . This filter&q=*:*&fq={!geofilt sfield=store}&pt=45.15,-93.85&d=5
returns all results within a circle of the given radius around the initial point:

bbox

bbox allows you to filter results based on a specified area around a given point. takes the same parameters as , but rather thanbbox geofilt
calculating all points in a circle within the given radius from the initial point, it only calculates the lower left and upper right corners of a square that
would enclose a circle with the given radius. To return all results within five kilometers of a give point, you could enter ...&q=:&fq={!bbox

. The resulting bounding box would encompass all points within a five kilometer circle around thesfield=store}&pt=45.15,-93.85&d=5
initial point, but it would also include some extra points in the corners of the bounding box that fall outside the five kilometer radius. Bounding box
filters therefore can return results that fall outside your desired parameters, but they are much less "expensive" to implement.

http://wiki.apache.org/solr/SpatialSearch

225Apache Solr Reference Guide 4.4

When a bounding box includes a pole, the field type produces a "bounding bowl" (a spherical cap) that includes alllocation
values that are north or south of the latitude of the bounding box corner (the lower left and the upper right) that is closer to the
equator. In other words, Solr still calculates what the coordinates of the upper right corner and the lower left corner of the box
would be just as in all other filtering cases, but it then take the corner that is closest to the equator (since it goes over the pole it
may not be the lower left, despite the name) and filters by latitude only. This returns more matches than a pure bounding box
match, but the query is both faster and easier to construct.

Post filtering

Post filtering is an option available for spatial queries qualifying and with , which specifies latitude and longitude.bbox geofilt LatLonType
LatLonType is passed as numbers in the query, as shown in Example 1 below.

Filtering is usually done in parallel with or before the main query. Post filters are applied after the main query. This is important when the filter
itself is very time-consuming, so it's better to always apply it to matching documents instead of all documents.

Distance Function Queries

There are three function queries that support spatial search: , to determine the distance between two points; , to calculate the distancedist hsin
between two points on a sphere; and , to calculate the square Euclidean distance between two points. For more information about thesesqedist
function queries, see the section on .Function Queries

geodist

geodist is a distance function that takes three optional parameters: . You can use the function to(sfield,latitude,longitude) geodist
sort results by distance or score return results.

For example, to sort your results by ascending distance, enter
....&q=*:*&fq={!geofilt}&sfield=store&pt=45.15,-93.85&d=50&sort=geodist asc

To return the distance as the document score, enter&q={!func}geodist()&sfield=store&pt=45.15,-93.85&sort=score+asc

More Examples

Here are a few more useful examples of what you can do with spatial search in Solr.

Use as a Sub-Query to Expand Search Results

Here we will query for results in Jacksonville, Florida, or within 50 kilometers of 45.15,-93.85 (near Buffalo, Minnesota):

&q=*:*&fq=(state:"FL" AND city:"Jacksonville") OR
query:"{!geofilt}"&sfield=store&pt=45.15,-93.85&d=50&sort=geodist()+asc

Facet by Distance

To facet by distance, use the Frange query parser:

&q=*:*&sfield=store&pt=45.15,-93.85&facet.query={!frange l=0 u=5}geodist()&facet.query={!frange l=5.001
u=3000}geodist()

Boost Nearest Results

Using the or , you can combine spatial search with the boost function to boost the nearest results:DisMax Extended DisMax

&q.alt=*:*&fq={!geofilt}&sfield=store&pt=45.15,-93.85&d=50&bf=recip(geodist(),2,200,20)&sort=score desc

SpatialRecursivePrefixTreeFieldType (abbreviated as RPT)

Solr 4's new spatial field offers several new features and improvements over the former approach:

New shapes: polygons, line strings, and other new shapes
Multi-valued indexed fields
Ability to index non-point shapes as well as point shapes
Rectangles with user-specified corners. The Solr 3 approach only supports bounding box of a circle
Multi-value distance sort and score boosting
Well-Known-Text support when JTS is used (for polygons, etc.)

http://wiki.apache.org/solr/FunctionQuery#dist
http://wiki.apache.org/solr/FunctionQuery#hsin.2C_ghhsin_-_Haversine_Formula
https://wiki.apache.org/solr/FunctionQuery#sqedist_-_Squared_Euclidean_Distance

226Apache Solr Reference Guide 4.4

RPT incorporates the basic features of LatLonType and PointType, such as lat-lon bounding boxes and circles.

Schema configuration

The first step to using RPT is to register a field type in . There are several options for this field type.schema.xml

Setting Description

name The name of the field type.

class For most use cases, using will be sufficient. Since the newsolr.SpatialRecursivePrefixTreeFieldType
spatial module in Lucene is meant to be a framework for different spatial "strategies", another class may be used. See
the for more information.Spatial4J project

spatialContextFactory If polygons or other shapes beyond a point, rectangle or circle are used, the is a requiredJTS Topology Suite
dependency. If you intend to use those shapes, defined the class here.

units This is required, and currently can only be "degrees".

distErrPct Defines the default precision of non-point shapes, as a fraction between 0.0 (fully precise) to 0.5. The closer this
number is to zero, the more accurate the shape will be. However, more precise indexed shapes use more disk space
and take longer to index.

maxDistErr Defines the highest level of detail required for indexed data. If left blank, the default is one meter, just a bit less than
0.000009 degrees.

geo If , the default, latitude and longitude coordinates will be based on WGS84 instead of Euclidean/Cartesian based. Iftrue
false, the coordinates will be Euclidean/Cartesian-based.

worldBounds Defines the valid numerical ranges for x and y, in the format of "minX minY maxX maxY". If , this is assumedgeo=true
"-180 -90 180 90". If , you should define your boundaries for non-geospatial uses.geo=false

distCalculator Defines the distance calculation algorithm. If , "haversine" is the default. If , "cartesian" will begeo=true geo=false
the default. Other possible values are "lawOfCosines", "vincentySphere" and "cartesian^2".

prefixTree Defines the spatial grid implementation. Since a PrefixTree (such as RecursivePrefixTree) maps the world as a grid,
each grid cell is decomposed to another set of grid cells at the next level. Using a "geohash" implementation, there are
32 children at each level. If , "geohash" is the only option. If , "quad" could be used for geo=true geo=false

, which has 4 children at each level.prefixTree

maxLevels Sets the maximum grid depth for indexed data. It may be simpler to use to calculate real distances.maxDistErr

<fieldType name="location_rpt" class="solr.SpatialRecursivePrefixTreeFieldType"

spatialContextFactory="com.spatial4j.core.context.jts.JtsSpatialContextFactory"
 distErrPct="0.025"
 maxDistErr="0.000009"
 units="degrees" />

Once the field type has been defined, use it to define a field.

Because RPT has more advanced features, some of which are new and experimental, please review the Solr Wiki at
 for more information about using this field type.http://wiki.apache.org/solr/SolrAdaptersForLuceneSpatial4

As of Solr 4.1, RPT supports the { } and { } query parsers. The function query will be supported in!geofilt !bbox geodist()
Solr 4.5.

The Terms Component

The Terms Component provides access to the indexed terms in a field and the number of documents that match each term. This can be useful for
building an auto-suggest feature or any other feature that operates at the term level instead of the search or document level. Retrieving terms in
index order is very fast since the implementation directly uses Lucene's TermEnum to iterate over the term dictionary.

In a sense, this component provides fast field-faceting over the whole index, not restricted by the base query or any filters. The document
frequencies returned are the number of documents that match the term, including any documents that have been marked for deletion but not yet
removed from the index.

https://github.com/spatial4j/spatial4j
http://sourceforge.net/projects/jts-topo-suite/
http://wiki.apache.org/solr/SolrAdaptersForLuceneSpatial4

227Apache Solr Reference Guide 4.4

To use the Terms Component, users can pass in a variety of options to control what terms are returned. These parameters are:

Parameter Description Syntax

terms If set to true, terms on the Terms Component. By default, the Terms Component is
turned off.

terms={true|false}

terms.fl Specifies the field from which to retrieve terms. terms.fl=field

terms.lower Specifies the term at which to start. If not specified, the empty string is used, causing
Solr to start at the beginning of the field.

terms.lower=term

terms.lower.incl If set to true, includes the lower-bound term in the result set. By default, this
parameter is set to true.

terms.lower.incl={true|false
}

terms.mincount Specifies the minimum document frequency to return in order for a term to be
included in a query response. Results are inclusive of the mincount (that is, >=
mincount). This parameter is optional.

terms.mincount=integer

terms.maxcount Specifies the maximum document frequency a term must have in order to be
included in a query response. The default setting is -1, which sets no upper bound.
Results are inclusive of the maxcount (that is, <= maxcount). This parameter is
optional.

terms.maxcount=integer

terms.prefix Restricts matches to terms that begin with the specified string. terms.prefix={string}

terms.limit Specifies the maximum number of terms to return. The default is 10. If the limit is set
to a number less than 0, then no maximum limit is enforced.

terms.limit=integer

terms.upper Specifies the term to stop at. Any application using the Terms component must set
either or .terms.limit terms.upper

terms.upper=upper_term

terms.upper.incl If set to true, includes the upper bound term in the result set. The default is false. terms.upper.incl={true|false
}

terms.raw If set to true, returns the raw characters of the indexed term, regardless of whether it
is human-readable. For instance, the indexed form of numeric numbers is not
human-readable. The default is false.

terms.raw={true|false}

The output is a list of the terms and their document frequency values.

Examples

The following examples use the sample Solr configuration located in the directory.<Solr>/example

The query below requests the first ten terms in the name field.

http://localhost:8983/solr/terms?terms.fl=name

Results:

http://localhost:8983/solr/terms?terms.fl=name

228Apache Solr Reference Guide 4.4

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
</lst>
<lst name="terms">
 <lst name="name">
 <int name="0">5</int>
 <int name="1">15</int>
 <int name="11">5</int>
 <int name="120">5</int>
 <int name="133">5</int>
 <int name="184">15</int>
 <int name="19">5</int>
 <int name="1900">5</int>
 <int name="2">15</int>
 <int name="20">5</int>
 </lst>
</lst>
</response>

The query below requests the first ten terms in the name field, beginning with the first term that begins with the letter a.

http://localhost:8983/solr/terms?terms.fl=name&terms.lower=a

Results:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
</lst>
<lst name="terms">
 <lst name="name">
 <int name="a">8</int>
 <int name="adata">5</int>
 <int name="all">5</int>
 <int name="allinon">5</int>
 <int name="amber">1</int>
 <int name="appl">5</int>
 <int name="asus">5</int>
 <int name="ata">5</int>
 <int name="ati">5</int>
 <int name="b">5</int>
 </lst>
</lst>
</response>

Using the Terms Component for an Auto-Suggest Feature

If the doesn't suit your needs, you can use the Terms component in Solr to build a similar feature for your own search application.Suggester
Simply submit a query specifying whatever characters the user has typed so far as a prefix. For example, if the user has typed "at", the search
engine's interface would submit the following query:

http://localhost:8983/solr/terms?terms.fl=name&terms.lower=a

229Apache Solr Reference Guide 4.4

http://localhost:8983/solr/terms?terms.fl=name&terms.prefix=at

Result:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">120</int>
</lst>
<lst name="terms">
 <lst name="name">
 <int name="ata">5</int> <int name="ati">5</int>
 </lst>
</lst>
</response>

You can use the parameter to omit the response header from the query response, like so:omitHeader=true

http://localhost:8983/solr/terms?terms.fl=name&terms.prefix=at&indent=true&wt=json&omitHeader=true

Result:

{
 "terms":[
 "name",[
 "ata",1,
 "ati",1]]}

Distributed Search Support

The TermsComponent also supports distributed indexes. For the request handler, you must provide the following two parameters:/terms

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information about distributed indexing, see Distributed
.Search with Index Sharding

shards.qt Specifies the request handler Solr uses for requests to shards.

The Term Vector Component

The Term Vector Component (TVC) is a search component designed to return information about documents. For each document, the TVC can
return the term vector, the term frequency, inverse document frequency, position, and offset information. The TVC is stored when setting the

 attribute on a field:termVector

<field name="features"
 type="text"
 indexed="true"
 stored="true"
 multiValued="true"
 termVectors="true"
 termPositions="true"
 termOffsets="true"/>

As with most components, there are a number of options that are outlined in the samples below. All examples are based on the Solr example.

http://localhost:8983/solr/terms?terms.fl=name&terms.prefix=at
http://localhost:8983/solr/terms?terms.fl=name&terms.prefix=at&indent=true&wt=json&omitHeader=true

230Apache Solr Reference Guide 4.4

Enabling the TermVectorComponent

Changes for solrconfig.xml

To enable the TermVectorComponent, you need to configure a element in your file, like so:searchComponent solrconfig.xml

<searchComponent name="tvComponent" class="org.apache.solr.handler.component.TermVectorComponent"/>

A request handler configuration using this component could look like this:

<requestHandler name="tvrh" class="org.apache.solr.handler.component.SearchHandler">
 <lst name="defaults">
 <bool name="tv">true</bool>
 </lst>
 <arr name="last-components">
 <str>tvComponent</str>
 </arr>
</requestHandler>

Invoking the Term Vector Component

The example below shows an invocation of this component:

http://localhost:8983/solr/select/?q= &version=2.2&start=0&rows=10&indent=on&qt=tvrh&tv=true%3A

In the example, the component is associated with a request handler named , but you can associate it with any request handler. To turn ontvrh
the component for a request, add the parameter (or add it to your RequestHandler defaults configuration).tv=true

Example output: See http://wiki.apache.org/solr/TermVectorComponentExampleEnabled

Optional Parameters

The example below shows optional parameters for this component:

http://localhost:8983/solr/select/?q=%3A
&version=2.2&start=0&rows=10&indent=on&qt=tvrh&tv=true&tv.tf=true&tv.df=true&tv.positions&tv.offsets=true

Boolean
Parameters

Description

tv.all A shortcut that invokes all the parameters listed below.

tv.df Returns the Document Frequency (DF) of the term in the collection. This can be computationally expensive.

tv.offsets Returns offset information for each term in the document.

tv.positions Returns position information.

tv.tf Returns document term frequency info per term in the document.

tv.tf_idf Calculates TF*IDF for each term. Requires the parameters and to be "true". This can be computationallytv.tf tv.df
expensive. (The results are not shown in example output)

To learn more about TermVector component output, see the Wiki page: http://wiki.apache.org/solr/TermVectorComponentExampleOptions

For schema requirements, see the Wiki page: http://wiki.apache.org/solr/FieldOptionsByUseCase

The Term Vector component also accepts these optional parameters:

Parameters Description

tv.docIds Returns term vectors for the specified list of Lucene document IDs (not the Solr Unique Key).

tv.fl Returns term vectors for the specified list of fields. If not specified, the parameter is used.fl

http://localhost:8983/solr/select/?q=*%3A*&version=2.2&start=0&rows=10&indent=on&qt=tvrh&tv=true
http://wiki.apache.org/solr/TermVectorComponentExampleEnabled
http://localhost:8983/solr/select/?q=*%3A*&version=2.2&start=0&rows=10&indent=on&qt=tvrh&tv=true&tv.tf=true&tv.df=true&tv.positions&tv.offsets=true
http://localhost:8983/solr/select/?q=*%3A*&version=2.2&start=0&rows=10&indent=on&qt=tvrh&tv=true&tv.tf=true&tv.df=true&tv.positions&tv.offsets=true
http://wiki.apache.org/solr/TermVectorComponentExampleOptions
http://wiki.apache.org/solr/FieldOptionsByUseCase

231Apache Solr Reference Guide 4.4

SolrJ and the Term Vector Component

Neither the SolrQuery class nor the QueryResponse class offer specific method calls to set Term Vector Component parameters or get the
"termVectors" output. However, there is a patch for it: .SOLR-949

The Stats Component

The Stats component returns simple statistics for numeric, string, and date fields within the document set.

Stats Component Parameters

The Stats Component accepts the following parameters:

Parameter Description

stats If , then invokes the Stats component.true

stats.field Specifies a field for which statistics should be generated. This parameter may be invoked multiple times in a query in order to
request statistics on multiple fields. (See the example below.)

stats.facet Returns sub-results for values within the specified facet.

Statistics Returned

The table below describes the statistics returned by the Stats component.

Name Description

min The minimum value in the field.

max The maximum value in the field.

sum The sum of all values in the field.

count The number of non-null values in the field.

missing The number of null values in the field.

sumOfSquares Sum of all values squared (useful for).stddev

mean The average (v1 + v2 + vN)/N

stddev Standard deviation, measuring how widely spread the values in the data set are.

Example

The query below:

http://localhost:8983/solr/select?q=:
&stats=true&stats.field=price&stats.field=popularity&rows=0&indent=true

Would produce the following results:

https://issues.apache.org/jira/browse/SOLR-949
http://localhost:8983/solr/select?q=*:*&stats=true&stats.field=price&stats.field=popularity&rows=0&indent=true
http://localhost:8983/solr/select?q=*:*&stats=true&stats.field=price&stats.field=popularity&rows=0&indent=true

232Apache Solr Reference Guide 4.4

<lst name="stats">
 <lst name="stats_fields">
 <lst name="price">
 <double name="min">0.0</double>
 <double name="max">2199.0</double>
 <double name="sum">5251.2699999999995</double>
 <long name="count">15</long>
 <long name="missing">11</long>
 <double name="sumOfSquares">6038619.160300001</double>
 <double name="mean">350.08466666666664</double>
 <double name="stddev">547.737557906113</double>
 </lst>
 <lst name="popularity">
 <double name="min">0.0</double>
 <double name="max">10.0</double>
 <double name="sum">90.0</double>
 <long name="count">26</long>
 <long name="missing">0</long>
 <double name="sumOfSquares">628.0</double>
 <double name="mean">3.4615384615384617</double>
 <double name="stddev">3.5578731762756157</double>
 </lst>
 </lst>
</lst>

Here are the same results with faceting requested for the field , using the parameter .inStock &stats.facet=inStock

233Apache Solr Reference Guide 4.4

<lst name="{*}stats{*}">
 <lst name="{*}stats{*}_fields">
 <lst name="price">
 <double name="min">0.0</double>
 <double name="max">2199.0</double>
 <double name="sum">5251.2699999999995</double>
 <long name="count">15</long>
 <long name="missing">11</long>
 <double name="sumOfSquares">6038619.160300001</double>
 <double name="mean">350.08466666666664</double>
 <double name="stddev">547.737557906113</double>
 <lst name="facets">
 <lst name="inStock">
 <lst name="false">
 <double name="min">11.5</double>
 <double name="max">649.99</double>
 <double name="sum">1161.39</double>
 <long name="count">4</long>
 <long name="missing">0</long>
 <double name="sumOfSquares">653369.2551</double>
 <double name="mean">290.3475</double>
 <double name="stddev">324.63444676281654</double>
 </lst>
 <lst name="true">
 <double name="min">0.0</double>
 <double name="max">2199.0</double>
 <double name="sum">4089.879999999999</double>
 <long name="count">11</long>
 <long name="missing">0</long>
 <double name="sumOfSquares">5385249.905200001</double>
 <double name="mean">371.8072727272727</double>
 <double name="stddev">621.6592938755265</double>
 </lst>
 </lst>
 </lst>
 </lst>
</lst>

The Stats Component and Faceting

The facet field can be selectively applied. That is if you want stats on field "A" and "B", you can facet a on "X" and B on "Y" using the parameters:

&stats.field=A&f.A.stats.facet=X&stats.field=B&f.B.stats.facet=Y

All facet results are returned, so be careful what fields you ask for.

Multi-valued fields and facets may be slow.

Multi-value fields rely on for implementation. This is like a FieldCache, so be aware of your memory footprint.UnInvertedField.java

The Query Elevation Component

The lets you configure the top results for a given query regardless of the normal Lucene scoring. This is sometimesQuery Elevation Component
called "sponsored search," "editorial boosting," or "best bets." This component matches the user query text to a configured map of top results. The
text can be any string or non-string IDs, as long as it's indexed. Although this component will work with any QueryParser, it makes the most sense
to use with or .DisMax eDisMax

https://wiki.apache.org/solr/QueryElevationComponent

234Apache Solr Reference Guide 4.4

The is supported by distributed searching.Query Elevation Component

Configuring the Query Elevation Component

You can configure the Query Elevation Component in the file. The default configuration looks like this:solrconfig.xml

<searchComponent name="elevator" class="solr.QueryElevationComponent" >
 <!-- pick a fieldType to analyze queries -->
 <str name="queryFieldType">string</str>
 <str name="config-file">elevate.xml</str>
</searchComponent>

<requestHandler name="/elevate" class="solr.SearchHandler" startup="lazy">
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 </lst>
 <arr name="last-components">
 <str>elevator</str>
 </arr>
</requestHandler>

Optionally, in the Query Elevation Component configuration you can also specify the following to distinguish editorial results from "normal" results:

<str name="editorialMarkerFieldName">foo</str>

The Query Elevation Search Component takes the following arguments:

Argument Description

queryFieldType Specifies which fieldType should be used to analyze the incoming text. For example, it may be appropriate to use a fieldType
with a LowerCaseFilter.

config-file Path to the file that defines query elevation. This file must exist in or $<instanceDir>/conf/<config-file>
. $<dataDir>/<config-file>

If the file exists in the /conf/ directory it will be loaded once at startup. If it exists in the data directory, it will be reloaded for
each IndexReader.

forceElevation By default, this component respects the requested parameter: if the request asks to sort by date, it will order the resultssort
by date. If (the default), results will first return the boosted docs, then order by date.forceElevation=true

elevate.xml

Elevated query results are configured in an external XML file specified in the argument. An file might look like this:config-file elevate.xml

https://wiki.apache.org/solr/QueryElevationComponent

235Apache Solr Reference Guide 4.4

<elevate>
 <query text="AAA">
 <doc id="A" />
 <doc id="B" />
 </query>

 <query text="ipod">
 <doc id="A" />

 <!-- you can optionally exclude documents from a query result -->

 <doc id="B" exclude="true" />
 </query>
</elevate>

In this example, the query "AAA" would first return documents A and B, then whatever normally appears for the same query. For the query "ipod",
it would first return A, and would make sure that B is not in the result set.

Using the Query Elevation Component

The ParameterenableElevation

For debugging it may be useful to see results with and without the elevated docs. To hide results, use :enableElevation=false

http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=true

http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=false

The ParameterforceElevation

You can force elevation during runtime by adding to the query URL:forceElevation=true

http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=true&forceElevation=true

The Parameterexclusive

You can force Solr to return only the results specified in the elevation file by adding to the URL:exclusive=true

http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&exclusive=true

The Parameterfq

Query elevation respects the standard filter query () parameter. That is, if the query contains the parameter, all results will be within thatfq fq
filter even if adds other documents to the result set.elevate.xml

Response Writers

A Response Writer generates the formatted response of a search. Solr supports a variety of Response Writers to ensure that query responses
can be parsed by the appropriate language or application.

The parameter selects the Response Writer to be used. The table below lists the most common settings for the parameter.wt wt

 Parameter Settingwt Response Writer Selected

csv CSVResponseWriter

json JSONResponseWriter

php PHPResponseWriter

phps PHPSerializedResponseWriter

http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=true
http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=false
http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=true&forceElevation=true
http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&exclusive=true

236Apache Solr Reference Guide 4.4

python PythonResponseWriter

ruby RubyResponseWriter

velocity VelocityResponseWriter

xml XMLResponseWriter

xslt XSLTResponseWriter

The Standard XML Response Writer

The XML Response Writer is the most general purpose and reusable Response Writer currently included with Solr. It is the format used in most
discussions and documentation about the response of Solr queries.

Note that the XSLT Response Writer can be used to convert the XML produced by this writer to other vocabularies or text-based formats.

The behavior of the XML Response Writer can be driven by the following query parameters.

The Parameterversion

The parameter determines the XML protocol used in the response. Clients are strongly encouraged to specify the protocolversion always
version, so as to ensure that the format of the response they receive does not change unexpectedly when the Solr server is upgraded.

XML
Version

Notes Comments

2.0 An tag was used for multiValued fields only if there was more then one value.<arr> Not supported in Solr
4.

2.1 An tag is used for multiValued fields even if there is only one value.<arr> Not supported in Solr
4.

2.2 The format of the responseHeader changed to use the same structure as the rest of the<lst>
response.

Supported in Solr 4.

The default value is the latest supported.

The Parameterstylesheet

The parameter can be used to direct Solr to include a declaration instylesheet <?xml-stylesheet type="text/xsl" href="..."?>
the XML response it returns.

The default behavior is not to return any stylesheet declaration at all.

Use of the parameter is discouraged, as there is currently no way to specify external stylesheets, and nostylesheet
stylesheets are provided in the Solr distributions. This is a legacy parameter, which may be developed further in a future
release.

The Parameterindent

If the parameter is used, and has a non-blank value, then Solr will make some attempts at indenting its XML response to make it moreindent
readable by humans.

The default behavior is not to indent.

The XSLT Response Writer

The XSLT Response Writer applies an XML stylesheet to output. It can be used for tasks such as formatting results for an RSS feed.

tr Parameter

The XSLT Response Writer accepts one parameter: the parameter, which identifies the XML transformation to use. The transformation musttr
be found in the Solr directory.conf/xslt

The Content-Type of the response is set according to the statement in the XSLT transform, for example: <xsl:output> <xsl:output
media-type="text/html"/>

237Apache Solr Reference Guide 4.4

Configuration

The example below, from the default file, shows how the XSLT Response Writer is configured.solrconfig.xml

<!--
 Changes to XSLT transforms are taken into account
 every xsltCacheLifetimeSeconds at most.
-->
<queryResponseWriter
 name="xslt"
 class="org.apache.solr.request.XSLTResponseWriter"
>
 <int name="xsltCacheLifetimeSeconds">5</int>
</queryResponseWriter>

A value of 5 for is good for development, to see XSLT changes quickly. For production you probably want axsltCacheLifetimeSeconds
much higher value.

JSON Response Writer

A very commonly used Response Writer is the , which formats output in JavaScript Object Notation (JSON), a lightweightJsonResponseWriter
data interchange format specified in specified in RFC 4627. Setting the parameter to invokes this Response Writer.wt json

With Solr 4, the has been changed:JsonResponseWriter

The default mime type for the writer is now .application/json
The example solrconfig.xml has been updated to explicitly use this parameter to set the type to :text/plain

<queryResponseWriter name="json" class="solr.JSONResponseWriter">
 <!-- For the purposes of the tutorial, JSON response are written as
 plain text so that it's easy to read in *any* browser.
 If you are building applications that consume JSON, just remove
 this override to get the default "application/json" mime type.
 -->
 <str name="content-type">text/plain</str>
</queryResponseWriter>

Python Response Writer

Solr has an optional Python response format that extends its JSON output in the following ways to allow the response to be safely evaluated by
the python interpreter:

true and false changed to True and False
Python unicode strings are used where needed
ASCII output (with unicode escapes) is used for less error-prone interoperability
newlines are escaped
null changed to None

PHP Response Writer and PHP Serialized Response Writer

Solr has a PHP response format that outputs an array (as PHP code) which can be evaluated. Setting the parameter to invokes the PHPwt php
Response Writer.

Example usage:

238Apache Solr Reference Guide 4.4

$code = file_get_contents('http://localhost:8983/solr/select?q=iPod&wt=*php*');
eval("$result = " . $code . ";");
print_r($result);

Solr also includes a PHP Serialized Response Writer that formats output in a serialized array. Setting the parameter to invokes the PHPwt phps
Serialized Response Writer.

Example usage:

$serializedResult =
file_get_contents('http://localhost:8983/solr/select?q=iPod&wt=*php{*}s');
$result = unserialize($serializedResult);
print_r($result);

Before you use either the PHP or Serialized PHP Response Writer, you may first need to un-comment these two lines in :solrconfig.xml

<queryResponseWriter name="php" class="org.apache.solr.request.PHPResponseWriter"/>
<queryResponseWriter name="phps"
class="org.apache.solr.request.PHPSerializedResponseWriter"/>

Ruby Response Writer

Solr has an optional Ruby response format that extends its JSON output in the following ways to allow the response to be safely evaluated by
Ruby's interpreter:

Ruby's single quoted strings are used to prevent possible string exploits.
\ and ' are the only two characters escaped.
Unicode escapes are not used. Data is written as raw UTF-8.
nil used for null.
=> is used as the key/value separator in maps.

Here is a simple example of how one may query Solr using the Ruby response format:

require 'net/http'
h = Net::HTTP.new('localhost', 8983)
hresp, data = h.get('/solr/select?q=iPod&wt=ruby', nil)
rsp = eval(data)
puts 'number of matches = ' + rsp['response']['numFound'].to_s
#print out the name field for each returned document
rsp['response']['docs'].each { |doc| puts 'name field = ' + doc['name'\] }

CSV Response Writer

The CSV response writer returns a list of documents in comma-separated values (CSV) format. Other information that would normally be included
in a response, such as facet information, is excluded.

The CSV response writer supports multi-valued fields, and the output of this CSV format is compatible with Solr's . As of SolrCSV update format
4.3, it can also support pseudo-fields.

CSV Parameters

These parameters specify the CSV format that will be returned. You can accept the default values or specify your own.

Parameter Default Value

https://wiki.apache.org/solr/UpdateCSV

239Apache Solr Reference Guide 4.4

csv.encapsulator "

csv.escape None

csv.separator ,

csv.header Defaults to true. If false, Solr does not print the column headers

csv.newline \n

csv.null Defaults to a zero length string. Use this parameter when a document has no value for a particular field.

Multi-Valued Field CSV Parameters

These parameters specify how multi-valued fields are encoded. Per-field overrides for these values can be done using
.f.<fieldname>.csv.separator=|

Parameter Default Value

csv.mv.encapsulator None

csv.mv.escape \

csv.mv.separator Defaults to the valuecsv.separator

Example

http://localhost:8983/solr/select?q=ipod&fl=id,cat,name,popularity,price,score&wt=csv returns:

id,cat,name,popularity,price,score
IW-02,"electronics,connector",iPod & iPod Mini USB 2.0 Cable,1,11.5,0.98867977
F8V7067-APL-KIT,"electronics,connector",Belkin Mobile Power Cord for iPod w/
Dock,1,19.95,0.6523595
MA147LL/A,"electronics,music",Apple 60 GB iPod with Video Playback
Black,10,399.0,0.2446348

Velocity Response Writer

The VelocityResponseWriter (also known as Solritas) is an optional plugin available in the directory. It is used to power the contrib/velocity
 in the example configuration.Velocity Search UI

Its jar and dependencies must be added (via <lib> or solr/home lib inclusion), and must be registered in solrconfig.xml like this:

<queryResponseWriter name="velocity" class="solr.VelocityResponseWriter"/>

For more information about the Velocity Response Writer, see .https://wiki.apache.org/solr/VelocityResponseWriter

Binary Response Writer

Solr also includes a Response Writer that outputs binary format for use with a Java client. See for more details.Client APIs

Near Real Time Searching

Near Real Time (NRT) search means that documents are available for search almost immediately after being indexed: additions and updates to
documents are seen in 'near' real time. Solr 4 no longer blocks updates while a commit is in progress. Nor does it wait for background merges to
complete before opening a new search of indexes and returning.

With NRT, you can modify a command to be a , which avoids parts of a standard commit that can be costly. You will stillcommit soft commit
want to do standard commits to ensure that documents are in stable storage, but let you see a very near real time view of the indexsoft commits
in the meantime. However, pay special attention to cache and autowarm settings as they can have a significant impact on NRT performance.

http://localhost:8983/solr/select?q=ipod&fl=id,cat,name,popularity,price,score&wt=csv
https://wiki.apache.org/solr/VelocityResponseWriter

240Apache Solr Reference Guide 4.4

Commits and Optimizing

A commit operation makes index changes visible to new search requests. A uses the transaction log to get the id of the latesthard commit
document changes, and also calls on the index files to ensure they have been flushed to stable storage and no data loss will result from afsync
power failure.

A is much faster since it only makes index changes visible and does not index files or write a new index descriptor. If thesoft commit fsync
JVM crashes or there is a loss of power, changes that occurred after the last will be lost. Search collections that have NRThard commit
requirements (that want index changes to be quickly visible to searches) will want to soft commit often but hard commit less frequently. A
softCommit may be "less expensive" in terms of time, but not free, since it can slow throughput.

An is like a except that it forces all of the index segments to be merged into a single segment first. Depending on the use,optimize hard commit
this operation should be performed infrequently (e.g., nightly), if at all, since it involves reading and re-writing the entire index. Segments are
normally merged over time anyway (as determined by the merge policy), and optimize just forces these merges to occur immediately.

Soft commit takes uses two parameters: and .maxDocs maxTime

Parameter Description

maxDocs Integer. Defines the number of documents to queue before pushing them to the index. It works in conjunction with the
 parameter in that if either limit is reached, the documents will be pushed toupdate_handler_autosoftcommit_max_time

the index.

maxTime The number of milliseconds to wait before pushing documents to the index. It works in conjunction with the
 parameter in that if either limit is reached, the documents will be pushed toupdate_handler_autosoftcommit_max_docs

the index.

Use and judiciously to fine-tune your commit strategies.maxDocs maxTime

AutoCommits

An autocommit also uses the parameters and . However it's useful in many strategies to use both a hard and maxDocs maxTime autocommit
 to achieve more flexible commits.autosoftcommit

A common configuration is to do a hard every 1-10 minutes and a every second. With this configuration, newautocommit autosoftcommit
documents will show up within about a second of being added, and if the power goes out, soft commits are lost unless a hard commit has been
done.

For example:

<autoSoftCommit>
 <maxTime>1000</maxTime>
</autoSoftCommit>

It's better to use rather than to modify an , especially when indexing a large number of documents throughmaxTime maxDocs autoSoftCommit
the commit operation. It's also better to turn off for bulk indexing.autoSoftCommit

Optional Attributes for and commit optimize

Parameter Valid
Attributes

Description

waitSearcher true, false Block until a new searcher is opened and registered as the main query searcher, making the changes
visible. Default is true.

softCommit true, false Perform a soft commit. This will refresh the view of the index faster, but without guarantees that the
document is stably stored. Default is false.

expungeDeletes true, false Valid for only. This parameter purges deleted data from segments. The default is false.commit

maxSegments =
N

integer Valid for only. Optimize down to at most this number of segments. The default is 1.optimize

Example of and with optional attributes:commit optimize

241Apache Solr Reference Guide 4.4

<commit waitSearcher="false"/>
<commit waitSearcher="false" expungeDeletes="true"/>
<optimize waitSearcher="false"/>

Passing and parameters as part of the URLcommit commitWithin

Update handlers can also get -related parameters as part of the update URL. This example adds a small test document and causes ancommit
explicit commit to happen immediately afterwards:

http://localhost:8983/solr/update?stream.body=<add><doc>
 <field name="id">testdoc</field></doc></add>&commit=true

Alternately, you may want to use this:

http://localhost:8983/solr/update?stream.body=<optimize/>

This example causes the index to be optimized down to at most 10 segments, but won't wait around until it's done ():waitFlush=false

curl 'http://localhost:8983/solr/update?optimize=true&maxSegments=10&waitFlush=false'

This example adds a small test document with a instruction that tells Solr to make sure the document is committed no later thancommitWithin
10 seconds later (this method is generally preferred over explicit commits):

curl http://localhost:8983/solr/update?commitWithin=10000
 -H "Content-Type: text/xml" --data-binary
 '<add><doc><field name="id">testdoc</field></doc></add>'

Changing default BehaviorcommitWithin

The settings allow forcing document commits to happen in a defined time period. This is used most frequently with commitWithin Near Real
, and for that reason the default is to perform a soft commit. This does not, however, replicate new documents to slave servers inTime Searching

a master/slave environment. If that's a requirement for your implementation, you can force a hard commit by adding a parameter, as in this
example:

<commitWithin>
 <softCommit>false</softCommit>
</commitWithin>

With this configuration, when you call as part of your update message, it will automatically perform a hard commit every time.commitWithin

RealTime Get

For index updates to be visible (searchable), some kind of commit must reopen a searcher to a new point-in-time view of the index. The realtime
 feature allows retrieval (by) of the latest version of any documents without the associated cost of reopening a searcher. This isget unique-key

primarily useful when using Solr as a NoSQL data store and not just a search index.

Realtime Get currently relies on the update log feature, which is enabled by default. It relies on an update log, which is configured in
, in a section like:solrconfig.xml

242Apache Solr Reference Guide 4.4

<updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
</updateLog>

The latest should also have a request handler named already defined.example solrconfig.xml /get

Start (or restart) the Solr server, and then index a document:

curl 'http://localhost:8983/solr/update/json?commitWithin=10000000'
 -H 'Content-type:application/json' -d '[{"id":"mydoc","title":"realtime-get
test!"}]'

If you do a normal search, this document should not be found:

http://localhost:8983/solr/select?q=id:mydoc
...
"response":
{"numFound":0,"start":0,"docs":[]}

However if you use the realtime get handler exposed at , you should be able to retrieve that document:/get

http://localhost:8983/solr/get?id=mydoc
...
{"doc":{"id":"mydoc","title":"realtime-get test!"]}}

You can also specify multiple documents at once via the parameter and a comma separated list of ids, or by using multiple parameters. Ifids id
you specify multiple ids, or use the parameter, the response will mimic a normal query response to make it easier for existing clients to parse.ids
Since you've only indexed one document, the following equivalent examples just repeat the same id.

http://localhost:8983/solr/get?ids=mydoc,mydoc
http://localhost:8983/solr/get?id=mydoc&id=mydoc
...
{"response":
 {"numFound":2,"start":0,"docs":
 [{ "id":"mydoc", "title":["realtime-get test!"]},
 { "id":"mydoc", "title":["realtime-get test!"]}]
 }
}

243Apache Solr Reference Guide 4.4

The Well-Configured Solr Instance
This section tells you how to fine-tune your Solr instance for optimum performance. This section covers the following topics:

Configuring solrconfig.xml: Describes how to work with the main configuration file for Solr.

Solr Cores and solr.xml: Describes how to configure your Solr core, or multiple Solr cores within a single instance.

Lucene IndexWriters: Describes how to configure the index writers in the underlying Lucene engine.

HTTP Request Dispatcher: Describes how to configure Solr's response to HTTP requests

JVM Settings: Gives some guidance on best practices for working with Java Virtual Machines.

The focus of this section is on configuring a single Solr instance. To scale a Solr implementation in a cluster environment, see
. There are also options to scale through sharding or replication, described in the section SolrCloud Legacy Scaling and

.Distribution

For more information about factors affecting Solr performance, see .http://wiki.apache.org/solr/SolrPerformanceFactors

Configuring solrconfig.xml

The file is the configuration file with the most parameters affecting Solr itself. While configuring Solr, you'll work with solrconfig.xml
 often. The file comprises a series of XML statements that set configuration values. In , you configuresolrconfig.xml solrconfig.xml

important features such as:

request handlers

listeners (processes that "listen" for particular query-related events; listeners can be used to trigger the execution of special code, such as
invoking some common queries to warm-up caches)

the Request Dispatcher for managing HTTP communications

the Admin Web interface

parameters related to replication and duplication (these parameters are covered in detail in)Legacy Scaling and Distribution

The file is found in the directory. The example file is well-commented, and includes information on best practicessolrconfig.xml solr/conf/
for most installations.

We've covered the options in the following sections:

DataDir and DirectoryFactory in SolrConfig
Lib Directives in SolrConfig
Managed Schema Definition in SolrConfig
IndexConfig in SolrConfig
UpdateHandlers in SolrConfig
Query Settings in SolrConfig
RequestDispatcher in SolrConfig
RequestHandlers and SearchComponents in SolrConfig

Substituting System Properties in Solr Config Files

Solr supports substitution of system properties, which allow the JVM to specify substitutions within and . The syntaxsolrconfig.xml solr.xml
is }. This allows defining a default that can be overridden when Solr is launched. For example, in the example ${property:[default value]

, you will see this value which defines the locking type to use:solrconfig.xml

 <lockType>${solr.lock.type:native}</lockType>

When starting Solr's example application, you could launch it with:

http://wiki.apache.org/solr/SolrPerformanceFactors

244Apache Solr Reference Guide 4.4

java -Dsolr.lock.type=simple -jar start.jar

The properties can also be added to a file called in the directory. The file should be formatted like this example:solrcore.properties conf

#solrcore.properties
lock.type=native

Then the property can be used in like this:solrconfig.xml

 <lockType>${lock.type}</lockType>

More Information

The Solr Wiki has a comprehensive page on , at .solrconfig.xml http://wiki.apache.org/solr/SolrConfigXml
6 Sins of solrconfig.xml modifications from solr.pl.

DataDir and DirectoryFactory in SolrConfig

Specifying a Location for Index Data with the ParameterdataDir

By default, Solr stores its index data in a directory called under the Solr home. If you would like to specify a different directory for storing/data
index data, use the parameter in the file. You can specify another directory either with a full pathname or a<dataDir> solrconfig.xml
pathname relative to the current working directory of the servlet container. For example:

<dataDir>/var/data/solr/</dataDir>

If you are using replication to replicate the Solr index (as described in), then the directory shouldLegacy Scaling and Distribution <dataDir>
correspond to the index directory used in the replication configuration.

Specifying the DirectoryFactory For Your Index

The default is filesystem based, and tries to pick the best implementation for the current JVM andsolr.StandardDirectoryFactory
platform. You can force a particular implementation by specifying , , or solr.MMapDirectoryFactory solr.NIOFSDirectoryFactory

.solr.SimpleFSDirectoryFactory

<directoryFactory name="DirectoryFactory"
 class="${solr.directoryFactory:solr.StandardDirectoryFactory}"/>

The is memory based, not persistent, and does not work with replication. Use this DirectoryFactory to store yoursolr.RAMDirectoryFactory
index in RAM.

<directoryFactory class="org.apache.solr.core.RAMDirectoryFactory"/>

Lib Directives in SolrConfig

Solr allows loading plugins by defining directives in .<lib/> solrconfig.xml

The plugins are loaded in the order they appear in . If there are dependencies, list the lowest level dependency jar first.solrconfig.xml

http://wiki.apache.org/solr/SolrConfigXml
http://solr.pl/en/2010/09/13/6-sins-of-solrconfig-xml-modifications/

245Apache Solr Reference Guide 4.4

Regular expressions can be used to provide control loading jars with dependencies on other jars in the same directory. All directories are resolved
as relative to the Solr .instanceDir

 <lib dir="../../../contrib/extraction/lib" regex=".*\.jar" />
 <lib dir="../../../dist/" regex="apache-solr-cell-\d.*\.jar" />

 <lib dir="../../../contrib/clustering/lib/" regex=".*\.jar" />
 <lib dir="../../../dist/" regex="apache-solr-clustering-\d.*\.jar" />

 <lib dir="../../../contrib/langid/lib/" regex=".*\.jar" />
 <lib dir="../../../dist/" regex="apache-solr-langid-\d.*\.jar" />

 <lib dir="../../../contrib/velocity/lib" regex=".*\.jar" />
 <lib dir="../../../dist/" regex="apache-solr-velocity-\d.*\.jar" />

Managed Schema Definition in SolrConfig

The enables modifications through a REST interface. (Read-only access to all schema elements is also supported.)Schema API schema

There are challenges with allowing programmatic access to a configuration file that is also open to manual edits: system-generated and manual
edits may overlap and the system-generated edits may remove comments or other customizations that are critical for the organization to
understand why fields, field types, etc., are defined the way they are. You may want to version the file with source control, or limit manual edits
altogether.

solrconfig.xml allows the Solr schema to be defined as a "managed index schema": schema modification is only possible through the
.Schema API

From the example :solrconfig.xml

<!-- To enable dynamic schema REST APIs, use the following for <schemaFactory>:

 <schemaFactory class="ManagedIndexSchemaFactory">
 <bool name="mutable">true</bool>
 <str name="managedSchemaResourceName">managed-schema</str>
 </schemaFactory>

 When ManagedIndexSchemaFactory is specified, Solr will load the schema from
 the resource named in 'managedSchemaResourceName', rather than from schema.xml.
 Note that the managed schema resource CANNOT be named schema.xml. If the
managed
 schema does not exist, Solr will create it after reading schema.xml, then
rename
 'schema.xml' to 'schema.xml.bak'.

 Do NOT hand edit the managed schema - external modifications will be ignored
and
 overwritten as a result of schema modification REST API calls.

 When ManagedIndexSchemaFactory is specified with mutable = true, schema
 modification REST API calls will be allowed; otherwise, error responses will be
 sent back for these requests.
-->

 <schemaFactory class="ClassicIndexSchemaFactory"/>

In the example above, is actually configured to use the , which treats the filesolrconfig.xml ClassicIndexSchemaFactory schema.xml
the same as it always has, which is that it can be edited manually. This setting disallows Schema
API methods that modify the schema.

246Apache Solr Reference Guide 4.4

In the commented out sample, however, you can see configuration for the managed schema. In order for schema modifications to be possible via
the , the will need to be used. The parameter must also be set to . The Schema API ManagedIndexSchemaFactory mutable true

, which defaults to "managed-schema", may also be defined, and can be anything other than "schema.xml".managedSchemaResourceName
Once Solr is restarted, the existing file is renamed to and the contents are written to a file with the name definedschema.xml schema.xml.bak
as the . If you look at the resulting file, you'll see this at the top of the page:managedSchemaResourceName

<!-- Solr managed schema - automatically generated - DO NOT EDIT -->

Note that the example at uses the to allow automaticSchemaless Mode example/example-schemaless/ ManagedIndexSchemaFactory
schema field additions based on document updates' field values.

IndexConfig in SolrConfig

The section of defines low-level behavior of the Lucene index writers. By default, the settings are<indexConfig> solrconfig.xml
commented out in the sample included with Solr, which means the defaults are used. In most cases, the defaults are fine.solrconfig.xml

<indexConfig>
 ...
</indexConfig>

Prior to Solr 4, many of these settings were contained in sections called and . In Solr 4, thosemainIndex indexDefaults
sections are deprecated and removed. Any settings that used to be in those sections, now belong in .<indexConfig>

Parameters covered in this section:

Sizing Index Segments
Merging Index Segments
Index Locks
Other Indexing Settings

Sizing Index Segments

ramBufferSizeMB

Once accumulated document updates exceed this much memory space (defined in megabytes), then the pending updates are flushed. This can
also create new segments or trigger a merge. Using this setting is generally preferable to . If both and maxBufferedDocs maxBufferedDocs

 are set in , then a flush will occur when either limit is reached. The default is 100Mb (raised from 32Mb forramBufferSizeMB solrconfig.xml
Solr 4.1).

<ramBufferSizeMB>100</ramBufferSizeMB>

maxBufferedDocs

Sets the number of document updates to buffer in memory before flushed to disk and added to the current index segment. If the segment fills up,
a new one may be created, or a merge may be started. The default Solr configuration leaves this value undefined.

<maxBufferedDocs>1000</maxBufferedDocs>

maxIndexingThreads

The maximum number of simultaneous threads used to index documents. Once this threshold is reached, additional threads will wait for the
others to finish. The default is 8. This parameter is new for Solr 4.1.

247Apache Solr Reference Guide 4.4

<maxIndexingThreads>8</maxIndexingThreads>

UseCompoundFile

Setting to combines the various files of a segment into a single file, although the default is . On systems where<useCompoundFile> true false
the number of open files allowed per process is limited, setting this to may avoid hitting that limit (the open files limit might also be tunablefalse
for your OS with the Linux/Unix command, or something similar for other operating systems). In some cases, other internal factors mayulimit
set a segment to "compound=false", even if this is setting is explicitly set to true, so the compounding of the files in a segment may not always
happen.

Updating a compound index may incur a minor performance hit for various reasons, depending on the runtime environment. For example,
filesystem buffers are typically associated with open file descriptors, which may limit the total cache space available to each index.

This setting may also affect how much data needs to be transferred during index replication operations.

The default is .false

<useCompoundFile>false</useCompoundFile>

Merging Index Segments

mergeFactor

The controls how many segments a Lucene index is allowed to have before it is coalesced into one segment. When an update ismergeFactor
made to an index, it is added to the most recently opened segment. When that segment fills up (see and maxBufferedDocs

 in the next section), a new segment is created and subsequent updates are placed there.ramBufferSizeMB

If creating a new segment would cause the number of lowest-level segments to exceed the value, then all those segments aremergeFactor
merged together to form a single large segment. Thus, if the merge factor is ten, each merge results in the creation of a single segment that is
roughly ten times larger than each of its ten constituents. When there are settings for these larger segments, then they in turn aremergeFactor
merged into an even larger single segment. This process can continue indefinitely.

Choosing the best merge factor is generally a trade-off of indexing speed vs. searching speed. Having fewer segments in the index generally
accelerates searches, because there are fewer places to look. It also can also result in fewer physical files on disk. But to keep the number of
segments low, merges will occur more often, which can add load to the system and slow down updates to the index.

Conversely, keeping more segments can accelerate indexing, because merges happen less often, making an update is less likely to trigger a
merge. But searches become more computationally expensive and will likely be slower, because search terms must be looked up in more index
segments. Faster index updates also means shorter commit turnaround times, which means more timely search results.

The default value in the example is 10, which is a reasonable starting point.solrconfig.xml

<mergeFactor>10</mergeFactor>

mergePolicy

Defines how merging segments is done. The default in Solr is the . This default policy merges segments of approximatelyTieredMergePolicy
equal size, subject to an allowed number of segments per tier. Other policies available are the , LogMergePolicy LogByteSizeMergePolicy
and . For more information on these policies, please see the Lucene javadocs at LogDocMergePolicy

.http://lucene.apache.org/core/4_0_0/core/index.html?org/apache/lucene/index/MergePolicy.html

<mergePolicy class="org.apache.lucene.index.TieredMergePolicy">
 <int name="maxMergeAtOnce">10</int>
 <int name="segmentsPerTier">10</int>
</mergePolicy>

http://lucene.apache.org/core/4_0_0/core/index.html?org/apache/lucene/index/MergePolicy.html

248Apache Solr Reference Guide 4.4

When using , the setting is not needed. Since this is the default in Solr, the setting isTieredMergePolicy maxMergeDocs
effectively removed. However, if using another policy, this setting may be useful.

mergeScheduler

The merge scheduler controls how merges are performed. The default performs merges in the background usingConcurrentMergeScheduler
separate threads. The alternative, , does not perform merges with separate threads.SerialMergeScheduler

<mergeScheduler class="org.apache.lucene.index.ConcurrentMergeScheduler"/>

mergedSegmentWarmer

When using Solr in for a merged segment warmer can be configured to warm the reader on the newly mergedNear Real Time Searching
segment, before the merge commits. This is not required for near real-time search, but will reduce search latency on opening a new near real-time
reader after a merge completes.

<mergedSegmentWarmer class="org.apache.lucene.index.SimpleMergedSegmentWarmer"/>

Index Locks

lockType

The LockFactory options specify its implementation.

lockType=single uses SingleInstanceLockFactory, and is for a read-only index or when there is no possibility of another process trying to
modify the index.

lockType=native uses NativeFSLockFactory to specify native OS file locking. Do not use when multiple Solr web applications in the same
JVM are attempting to share a single index.

lockType=simple uses SimpleFSLockFactory to specify a plain file for locking.

native is the default for Solr3.6 and later versions; otherwise is the default.simple

For more information on the nuances of each LockFactory, see .http://wiki.apache.org/lucene-java/AvailableLockFactories

<lockType>native</lockType>

unlockOnStartup

If , any write or commit locks that have been held will be unlocked on system startup. This defeats the locking mechanism that allows multipletrue
processes to safely access a Lucene index. The default is , and changing this should only be done with care. This parameter is not used iffalse
the is "none" or "single".lockType

<unlockOnStartup>false</unlockOnStartup>

writeLockTimeout

The maximum time to wait for a write lock on an IndexWriter. The default is 1000, expressed in milliseconds.

<writeLockTimeout>1000</writeLockTimeout>

http://wiki.apache.org/lucene-java/AvailableLockFactories

249Apache Solr Reference Guide 4.4

Other Indexing Settings

There are a few other parameters that may be important to configure for your implementation. These settings affect how or when updates are
made to an index.

Setting Description

termIndexInterval Controls how often terms are loaded into memory. The default is 128.

reopenReaders Controls if IndexReaders will be re-opened, instead of closed and then opened, which is often less efficient. The default is
true.

deletionPolicy Controls how commits are retained in case of rollback. The default is , which has sub-parametersSolrDeletionPolicy
for the maximum number of commits to keep (), the maximum number of optimized commits to keep (maxCommitsToKeep

), and the maximum age of any commit to keep (), which supports maxOptimizedCommitsToKeep maxCommitAge
 syntax.DateMathParser

infoStream The InfoStream setting instructs the underlying Lucene classes to write detailed debug information from the indexing
process as Solr log messages.

<termIndexInterval>128</termIndexInterval>
<reopenReaders>true</reopenReaders>
<deletionPolicy class="solr.SolrDeletionPolicy">
 <str name="maxCommitsToKeep">1</str>
 <str name="maxOptimizedCommitsToKeep">0</str>
 <str name="maxCommitAge">1DAY</str>
</deletionPolicy>
<infoStream>false</infoStream>

The parameter was removed in Solr 4. If restricting the length of fields is important to you, you can getmaxFieldLength
similar behavior with the , which can be defined for the fields you'd like to limit. For example, LimitTokenCountFactory

 would limit the field to<filter class="solr.LimitTokenCountFilterFactory" maxTokenCount="10000"/>
10,000 characters.

UpdateHandlers in SolrConfig

The settings in this section are configured in the element in and may affect the performance of index<updateHandler> solrconfig.xml
updates. These settings affect how updates are done internally. configurations do not affect the higher level configuration of <updateHandler>

 that process client update requests.RequestHandlers

<updateHandler class="solr.DirectUpdateHandler2">
 ...
</updateHandler>

Topics covered in this section:

Commits
Event Listeners
Transaction Log

Commits

Data sent to Solr is not searchable until it has been to the index. The reason for this is that in some cases commits can be slow andcommitted
they should be done in isolation from other possible commit requests to avoid overwriting data. So, it's preferable to provide control over when
data is committed. Several options are available to control the timing of commits.

commit and softCommit

250Apache Solr Reference Guide 4.4

With Solr 4, is generally used only as a boolean flag sent with a client update request. The command would perform acommit commit=true
commit as soon as the data as finished loading to Solr.

You can also set the flag to do a 'soft' commit, meaning that Solr will commit your changes quickly but not guarantee thatsoftCommit=true
documents are in stable storage. This is an implementation of Near Real Time storage, a feature that boosts document visibility, since you don't
have to wait for background merges and storage (to ZooKeeper, if using) to finish before moving on to something else. A full commitSolrCloud
means that, if a server crashes, Solr will know exactly where your data was stored; a soft commit means that the data is stored, but the location
information isn't yet stored. The tradeoff is that a soft commit gives you faster visibility because it's not waiting for background merges to finish.

For more information about Near Real Time operations, see .Near Real Time Searching

autoCommit

These settings control how often pending updates will be automatically pushed to the index. An alternative to is to use autoCommit
, which can be defined when making the update request to Solr (i.e., when pushing documents), or in an update RequestHandler.commitWithin

Setting Description

maxDocs The number of updates that have occurred since the last commit.

maxTime The number of milliseconds since the oldest uncommitted update.

openSearcher Whether to open a new searcher when performing a commit. If this is , the default, the commit will flush recent indexfalse
changes to stable storage, but does not cause a new searcher to be opened to make those changes visible

If either of these or limits are reached, Solr automatically performs a commit operation. If the tag is missing,maxDocs maxTime autoCommit
then only explicit commits will update the index. The decision whether to use auto-commit or not depends on the needs of your application.

Determining the best auto-commit settings is a tradeoff between performance and accuracy. Settings that cause frequent updates will improve the
accuracy of searches because new content will be searchable more quickly, but performance may suffer because of the frequent updates. Less
frequent updates may improve performance but it will take longer for updates to show up in queries.

<autoCommit>
 <maxDocs>10000</maxDocs>
 <maxTime>1000</maxTime>
 <openSearcher>false</openSearcher>
</autoCommit>

You can also specify 'soft' autoCommits in the same way that you can specify 'soft' commits, except that instead of using you setautoCommit
the tag.autoSoftCommit

<autoSoftCommit>
 <maxTime>1000</maxTime>
</autoSoftCommit>

commitWithin

The settings allow forcing document commits to happen in a defined time period. This is used most frequently with commitWithin Near Real
, and for that reason the default is to perform a soft commit. This does not, however, replicate new documents to slave servers inTime Searching

a master/slave environment. If that's a requirement for your implementation, you can force a hard commit by adding a parameter, as in this
example:

<commitWithin>
 <softCommit>false</softCommit>
</commitWithin>

With this configuration, when you call as part of your update message, it will automatically perform a hard commit every time.commitWithin

maxPendingDeletes

251Apache Solr Reference Guide 4.4

This value sets a limit on the number of deletions that Solr will buffer during document deletion. This can affect how much memory is used during
indexing.

<maxPendingDeletes>100000</maxPendingDeletes>

Event Listeners

The UpdateHandler section is also where update-related event listeners can be configured. These can be triggered to occur after a commit or
optimize event, or after only an optimize event.

The listener is called with the , which runs an external executable with the defined set of instructions. The availableRunExecutableListener
commands are:

Setting Description

event If , the will be run after every commit or optimize. If , the postCommit RunExecutableListener postOptimize
 will be run every optimize only.RunExecutableListener

exe The name of the executable to run. It should include the path to the file, relative to Solr home.

dir The directory to use as the working directory. The default is ".".

wait Forces the calling thread to wait until the executable returns a response. The default is .true

args Any arguments to pass to the program. The default is none.

env Any environment variables to set. The default is none.

Below is the example from , which shows an example from script-based replication described at solrconfig.xml
:http://wiki.apache.org/solr/CollectionDistribution

<listener event="postCommit" class="solr.RunExecutableListener">
 <str name="exe">solr/bin/snapshooter</str>
 <str name="dir">.</str>
 <bool name="wait">true</bool>
 <arr name="args"> <str>arg1</str> <str>arg2</str> </arr>
 <arr name="env"> <str>MYVAR=val1</str> </arr>
</listener>

Transaction Log

As described in the section , a transaction log is required for that feature. It is configured in the section of RealTime Get updateHandler
.solrconfig.xml

Realtime Get currently relies on the update log feature, which is enabled by default. It relies on an update log, which is configured in
, in a section like:solrconfig.xml

<updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
</updateLog>

Query Settings in SolrConfig

The settings in this section affect the way that Solr will process and respond to queries. These settings are all configured in child elements of the
 element in .<query> solrconfig.xml

http://wiki.apache.org/solr/CollectionDistribution

252Apache Solr Reference Guide 4.4

<query>
 ...
</query>

Topics covered in this section:

Caches
Query Sizing and Warming
Query-Related Listeners

Caches

Solr caches are associated with a specific instance of an Index Searcher, a specific view of an index that doesn't change during the lifetime of that
searcher. As long as that Index Searcher is being used, any items in its cache will be valid and available for reuse. Caching in Solr differs from
caching in many other applications in that cached Solr objects do not expire after a time interval; instead, they remain valid for the lifetime of the
Index Searcher.

When a new searcher is opened, the current searcher continues servicing requests while the new one auto-warms its cache. The new searcher
uses the current searcher's cache to pre-populate its own. When the new searcher is ready, it is registered as the current searcher and begins
handling all new search requests. The old searcher will be closed once it has finished servicing all its requests.

In Solr, there are three cache implementations: , and .solr.search.LRUCache solr.search.FastLRUCache, solr.search.LFUCache

The acronym LRU stands for Least Recently Used. When an LRU cache fills up, the entry with the oldest last-accessed timestamp is evicted to
make room for the new entry. The net effect is that entries that are accessed frequently tend to stay in the cache, while those that are not
accessed frequently tend to drop out and will be re-fetched from the index if needed again.

The , which was introduced in Solr 1.4, is designed to be lock-free, so it is well suited for caches which are hit several times in aFastLRUCache
request.

Both and use an auto-warm count that supports both integers and percentages which get evaluated relative to theLRUCache FastLRUCache
current size of the cache when warming happens.

The refers to the Least Frequently Used cache. This works in a way similar to the LRU cache, except that when the cache fills up, theLFUCache
entry that has been used the least is evicted.

The Statistics page in the Solr Admin UI will display information about the performance of all the active caches. This information can help you
fine-tune the sizes of the various caches appropriately for your particular application. When a Searcher terminates, a summary of its cache usage
is also written to the log.

Each cache has settings to define it's initial size (), maximum size () and number of items to use for during warming (initialSize size
). The LRU and FastLRU cache implementations can take a percentage instead of an absolute value for .autowarmCount autowarmCount

Details of each cache are described below.

filterCache

This cache is used by for filters (DocSets) for unordered sets of all documents that match a query. The numeric attributesSolrIndexSearcher
control the number of entries in the cache.

Solr uses the to cache results of queries that use the search parameter. Subsequent queries using the same parameter settingfilterCache fq
result in cache hits and rapid returns of results. See for a detailed discussion of the parameter.Searching fq

Solr also makes this cache for faceting when the configuration parameter is set to . For a discussion of faceting, see facet.method fc
.Searching

<filterCache class="solr.LRUCache"
 size="512"
 initialSize="512"
 autowarmCount="128"/>

queryResultCache

253Apache Solr Reference Guide 4.4

This cache holds the results of previous searches: ordered lists of document IDs (DocList) based on a query, a sort, and the range of documents
requested.

<queryResultCache class="solr.LRUCache"
 size="512"
 initialSize="512"
 autowarmCount="128"/>

documentCache

This cache holds Lucene Document objects (the stored fields for each document). Since Lucene internal document IDs are transient, this cache is
not auto-warmed. The size for the should always be greater than times the , todocumentCache max_results max_concurrent_queries
ensure that Solr does not need to refetch a document during a request. The more fields you store in your documents, the higher the memory
usage of this cache will be.

<documentCache class="solr.LRUCache"
 size="512"
 initialSize="512"
 autowarmCount="0"/>

User Defined Caches

You can also define named caches for your own application code to use. You can locate and use your cache object by name by calling the
 methods , and . If you want auto-warming of your cache, include a SolrIndexSearcher getCache() cacheLookup() cacheInsert()

 attribute with the fully qualified name of a class that implements .regenerator solr.search.CacheRegenerator

<cache name="myUserCache" class="solr.LRUCache"
 size="4096"
 initialSize="1024"
 autowarmCount="1024"
 regenerator="org.mycompany.mypackage.MyRegenerator" />

Query Sizing and Warming

maxBooleanClauses

This sets the maximum number of clauses allowed in a boolean query. This can affect range or prefix queries that expand to a query with a large
number of boolean terms. If this limit is exceeded, an exception is thrown.

<maxBooleanClauses>1024</maxBooleanClauses>

This option modifies a global property that effects all Solr cores. If multiple files disagree on this property, thesolrconfig.xml
value at any point in time will be based on the last Solr core that was initialized.

enableLazyFieldLoading

If this parameter is set to true, then fields that are not directly requested will be loaded lazily as needed. This can boost performance if the most
common queries only need a small subset of fields, especially if infrequently accessed fields are large in size.

254Apache Solr Reference Guide 4.4

<enableLazyFieldLoading>true</enableLazyFieldLoading>

useFilterForSortedQuery

This parameter configures Solr to use a filter to satisfy a search. If the requested sort does not include "score", the will be checkedfilterCache
for a filter matching the query. For most situations, this is only useful if the same search is requested often with different sort options and none of
them ever use "score".

<useFilterForSortedQuery>true</useFilterForSortedQuery>

queryResultWindowSize

Used with the , this will cache a superset of the requested number of document IDs. For example, if the a search inqueryResultCache
response to a particular query requests documents 10 through 19, and is 50, documents 0 through 49 will be cached.queryWindowSize

<queryResultWindowSize>20</queryResultWindowSize>

queryResultMaxDocsCached

This parameter sets the maximum number of documents to cache for any entry in the .queryResultCache

<queryResultMaxDocsCached>200</queryResultMaxDocsCached>

useColdSearcher

This setting controls whether search requests for which there is not a currently registered searcher should wait for a new searcher to warm up
(false) or proceed immediately (true). When set to "false", requests will block until the searcher has warmed its caches.

<useColdSearcher>false</useColdSearcher>

maxWarmingSearchers

This parameter sets the maximum number of searchers that may be warming up in the background at any given time. Exceeding this limit will
raise an error. For read-only slaves, a value of two is reasonable. Masters should probably be set a little higher.

<maxWarmingSearchers>2</maxWarmingSearchers>

Query-Related Listeners

As described in the section on , new Index Searchers are cached. It's possible to use the triggers for listeners to perform query-relatedCaches
tasks. The most common use of this is to define queries to further "warm" the Index Searchers while they are starting. One benefit of this
approach is that field caches are pre-populated for faster sorting.

Good query selection is key with this type of listener. It's best to choose your most common and/or heaviest queries and include not just the
keywords used, but any other parameters such as sorting or filtering requests.

There are two types of events that can trigger a listener. A event occurs when a new searcher is being prepared but there is nofirstSearcher
current registered searcher to handle requests or to gain auto-warming data from (i.e., on Solr startup). A event is fired whenevernewSearcher
a new searcher is being prepared and there is a current searcher handling requests.

255Apache Solr Reference Guide 4.4

The listener is always instantiated with the class , and followed a array. These examples aresolr.QuerySenderListener NamedList
included with :solrconfig.xml

<listener event="newSearcher" class="solr.QuerySenderListener">
 <arr name="queries">
 <!--
 <lst><str name="q">solr</str><str name="sort">price asc</str></lst>
 <lst><str name="q">rocks</str><str name="sort">weight asc</str></lst>
 -->
 </arr>
</listener>

<listener event="firstSearcher" class="solr.QuerySenderListener">
 <arr name="queries">
 <lst><str name="q">static firstSearcher warming in solrconfig.xml</str></lst>
 </arr>
</listener>

The above code sample is the default in , and a key best practice is to modify these defaults before takingsolrconfig.xml
your application to production. While the sample queries are commented out in the section for the "newSearcher", the example
is not commented out for the "firstSearcher" event. There is no point in auto-warming your Index Searcher with the query string
"static firstSearcher warming in solrconfig.xml" if that is not relevant to your search application.

RequestDispatcher in SolrConfig

The element of controls the way the Solr servlet's implementation responds torequestDispatcher solrconfig.xml RequestDispatcher
HTTP requests. Included are parameters for defining if it should handle urls (for Solr 1.1 compatibility), if it will support remote/select
streaming, the maximum size of file uploads and how it will respond to HTTP cache headers in requests.

Topics in this section:

 ElementhandleSelect
 ElementrequestParsers

 ElementhttpCaching

handleSelect Element

handleSelect is for legacy back-compatibility; those new to Solr do not need to change anything about the way this is
configured by default.

The first configurable item is the attribute on the element itself. This attribute can be set to one of twohandleSelect <requestDispatcher>
values, either "true" or "false". It governs how Solr responds to requests such as . The default value "false" will ignore requests/select?qt=XXX
to { if a requestHandler is not explicitly registered with the name . A value of "true" will route query requests to the parser/select /select
defined with the value.qt

In recent versions of Solr, a requestHandler is defined by default, so a value of "false" will work fine. See the section /select RequestHandlers
 for more information.and SearchComponents in SolrConfig

<requestDispatcher handleSelect="true" >
 ...
</requestDispatcher>

requestParsers Element

The sub-element controls values related to parsing requests. This is an empty XML element that doesn't have any content,<requestParsers>

256Apache Solr Reference Guide 4.4

only attributes.

The attribute controls whether remote streaming of content is allowed. If set to , streaming will not be allowed.enableRemoteStreaming false
Setting it to (the default) lets you specify the location of content to be streamed using or parameters.true stream.file stream.url

If you enable remote streaming, be sure that you have authentication enabled. Otherwise, someone could potentially gain access to your content
by accessing arbitrary URLs. It's also a good idea to place Solr behind a firewall to prevent it being accessed from untrusted clients.

The attribute sets an upper limit in kilobytes on the size of a document that may be submitted in a multi-partmultipartUploadLimitInKB
HTTP POST request. The value specified is multiplied by 1024 to determine the size in bytes.

The attribute sets a limit in kilobytes on the size of form data (application/x-www-form-urlencoded) submitted in aformdataUploadLimitInKB
HTTP POST request, which can be used to pass request parameters that will not fit in a URL.

The attribute can be used to indicate that the original object should be included in theaddHttpRequestToContext HttpServletRequest
context map of the using the key . This is not be used by any Solr components, butSolrQueryRequest httpRequest HttpServletRequest
may be useful when developing custom plugins.

<requestParsers enableRemoteStreaming="true"
 multipartUploadLimitInKB="2048000"
 formdataUploadLimitInKB="2048"
 addHttpRequestToContext="false"
/>

httpCaching Element

The element controls HTTP cache control headers. Do not confuse these settings with Solr's internal cache configuration. This<httpCaching>
element controls caching of HTTP responses as defined by the W3C HTTP specifications.

This element allows for three attributes and one sub-element. The attributes of the element control whether a 304 response to a<httpCaching>
GET request is allowed, and if so, what sort of response it should be. When an HTTP client application issues a GET, it may optionally specify
that a 304 response is acceptable if the resource has not been modified since the last time it was fetched.

Parameter Description

never304 If present with the value , then a GET request will never respond with a 304 code, even if the requested resource has nottrue
been modified. When this attribute is set to true, the next two attributes are ignored. Setting this to true is handy for
development, as the 304 response can be confusing when tinkering with Solr responses through a web browser or other client
that supports cache headers.

lastModFrom This attribute may be set to either (the default) or . The value indicates that last modificationopenTime dirLastMod openTime
times, as compared to the If-Modified-Since header sent by the client, should be calculated relative to the time the Searcher
started. Use if you want times to exactly correspond to when the index was last updated on disk.dirLastMod

etagSeed This value of this attribute is sent as the value of the header. Changing this value can be helpful to force clients to re-fetchETag
content even when the indexes have not changed---for example, when you've made some changes to the configuration.

<httpCaching never304="false"
 lastModFrom="openTime"
 etagSeed="Solr">
 <cacheControl>max-age=30, public</cacheControl>
</httpCaching>

cacheControl Element

In addition to these attributes, accepts one child element: . The content of this element will be sent as the<httpCaching> <cacheControl>
value of the Cache-Control header on HTTP responses. This header is used to modify the default caching behavior of the requesting client. The
possible values for the Cache-Control header are defined by the HTTP 1.1 specification in .Section 14.9

Setting the max-age field controls how long a client may re-use a cached response before requesting it again from the server. This time interval
should be set according to how often you update your index and whether or not it is acceptable for your application to use content that is
somewhat out of date. Setting will tell the client to validate with the server that its cached copy is still good before re-using it.must-revalidate
This will ensure that the most timely result is used, while avoiding a second fetch of the content if it isn't needed, at the cost of a request to the
server to do the check.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

257Apache Solr Reference Guide 4.4

RequestHandlers and SearchComponents in SolrConfig

After the section, request handlers and search components are configured.These are often referred to as "requestHandler" and<query>
"searchComponent", which is how they are defined in .solrconfig.xml

A processes requests coming to Solr. These might be query requests or index update requests. You will likely need several ofrequest handler
these defined, depending on how you want Solr to handle the various requests you will make.

A is a feature of search, such as highlighting or faceting. The search component is defined in separatesearch component solrconfig.xml
from the request handlers, and then registered with a request handler as needed.

Topics covered in this section:

Request Handlers
SearchHandlers
UpdateRequestHandlers
ShardHandlers
Other Request Handlers

Search Components
Default Components
First-Components and Last-Components
Other Useful Components

Related Topics

Request Handlers

Every request handler is defined with a name and a class. The name of the request handler is referenced with the request to Solr. For example, a
request to is the default address for Solr, which will likely bring up the Solr Admin UI.http://localhost:8983/solr/collection1
However, add "/select" to the end, you can make a query:

http://localhost:8983/solr/collection1/select?q=solr

This query will be processed by the request handler with the name "/select". We've only used the "q" parameter here, which includes our query
term, a simple keyword of "solr". If the request handler has more parameters defined, those will be used with any query we send to this request
handler unless they are over-ridden by the client (or user) in the query itself.

If you have another request handler defined, you would send your request with that name - for example, "/update" is a request handler that
handles index updates like sending new documents to the index.

SearchHandlers

The primary request handler defined with Solr by default is the "SearchHandler", which handles search queries. The request handler is defined,
and then a list of defaults for the handler are defined with a list.defaults

For example, in the default , the first request handler defined looks like this:solrconfig.xml

<requestHandler name="/select" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <int name="rows">10</int>
 <str name="df">text</str>
 </lst>
</requestHandler>

This example defines the parameter, which defines how many search results to return, to "10". The default field to search is the "text" field,rows
set with the parameter. The parameter defines that the parameters defined in the query should be returned when debugdf echoParams
information is returned. Note also that the way the defaults are defined in the list varies if the parameter is a string, an integer, or another type.

All of the parameters described in the section on can be defined as defaults for any of the SearchHandlers.searching

Besides , there are other options for the SearchHandler, which are:defaults

http://localhost:8983/solr/collection1

258Apache Solr Reference Guide 4.4

appends: This allows definition of parameters that are added to the user query. These might be , or other query rules thatfilter queries
should be added to each query. There is no mechanism in Solr to allow a client to override these additions, so you should be absolutely
sure you always want these parameters applied to queries.

<lst name="appends">
 <str name="fq">inStock:true</str>
</lst>

In this example, the filter query "inStock:true" will always be added to every query.

invariants: This allows definition of parameters that cannot be overridden by a client. The values defined in an sectioninvariants
will always be used regardless of the values specified by the user, by the client, in or in .defaults appends

<lst name="invariants">
 <str name="facet.field">cat</str>
 <str name="facet.field">manu_exact</str>
 <str name="facet.query">price:[* TO 500]</str>
 <str name="facet.query">price:[500 TO *]</str>
</lst>

In this example, facet fields have been defined which limits the facets that will be returned by Solr. If the client requests facets, the facets
defined with a configuration like this are the only facets they will see.

The final section of a request handler definition is , which defines a list of search components that can be used with a requestcomponents
handler. They are only registered with the request handler. How to define a search component is discussed further on in the section on Search

. The element can only be used with a request handler that is a SearchHandler.Components components

The file includes many other examples of SearchHandlers that can be used or modified as needed.solrconfig.xml

UpdateRequestHandlers

The UpdateRequestHandlers are request handlers which process updates to the index.

In this guide, we've covered these handlers in detail in the section .Uploading Data with Index Handlers

ShardHandlers

It is possible to configure a request handler to search across shards of a cluster, used with distributed search. More information about distributed
search and how to configure the shardHandler is in the section .Distributed Search with Index Sharding

Other Request Handlers

There are other request handlers defined in , covered in other sections of this guide:solrconfig.xml

RealTime Get
Index Replication
Ping

Search Components

The search components define the logic that is used by the SearchHandler to perform queries for users.

Default Components

There are several defaults search components that work with all SearchHandlers without any additional configuration. If no components are
defined, these are used by default.

Component Name Class Name More Information

259Apache Solr Reference Guide 4.4

query solr.QueryComponent Described in the section .Query Syntax and Parsing

facet solr.FacetComponent Described in the section .Faceting

mlt solr.MoreLikeThisComponent Described in the section .MoreLikeThis

highlight solr.HighlightComponent Described in the section .Highlighting

stats solr.StatsComponent Described in the section .The Stats Component

debug solr.DebugComponent Described in the section on .Common Query Parameters

If you register a new search component with one of these default names, the newly defined component will be used instead of the default.

First-Components and Last-Components

It's possible to define some components as being used before (with) or after (with) other namedfirst-components last-components
components. This would be useful if custom search components have been configured to process data before the regular components are used.
This is used when registering the components with the request handler.

<arr name="first-components">
 <str>mycomponent</str>
</arr>

<arr name="components">
 <str>query</str>
 <str>facet</str>
 <str>mlt</str>
 <str>highlight</str>
 <str>spellcheck</str>
 <str>stats</str>
 <str>debug</str>
</arr>

Other Useful Components

Many of the other useful components are described in sections of this Guide for the features they support. These are:

SpellCheckComponent, described in the section .Spell Checking
TermVectorComponent, described in the section .The Term Vector Component
QueryElevationComponent, described in the section .The Query Elevation Component
TermsComponent, described in the section .The Terms Component

Related Topics

SolrRequestHandler from the Solr Wiki.
SearchHandler from the Solr Wiki.
SearchComponent from the Solr Wiki.

Solr Cores and solr.xml

solr.xml has evolved from configuring one Solr core to supporting multiple Solr cores and eventually to defining parameters for SolrCloud.
Particularly with the advent of SolrCloud, the ability to cleanly define and maintain high-level configuration parameters in solr.xml Solr cores has
become more difficult so an alternative is being adopted.

Starting in Solr 4.3, Solr will maintain two distinct formats for , the and modes. The former is the format we havesolr.xml legacy discovery
become accustomed to in which all of the cores one wishes to define in a Solr instance are defined in in solr.xml

 tags. This format will continue to be supported through the entire 4.x code line.<cores><core/>...<core/></cores>

As of Solr 5.0 this form of will no longer be supported. Instead Solr will support . In brief, core discovery still definessolr.xml core discovery
some configuration parameters in , but . Instead, the solr home directory is recursively walked until a solr.xml no cores are defined in this file

 file is encountered. This file is presumed to be at the root of a core, and many of the options that were placed in the core.properties <core>
tag in legacy Solr are now defined here as simple properties, i.e. a file with entries, one to a line, like ' ', ' 'name=core1 schema=myschema.xml
and so on.

http://wiki.apache.org/solr/SolrRequestHandler
http://wiki.apache.org/solr/SearchHandler
http://wiki.apache.org/solr/SearchComponent

260Apache Solr Reference Guide 4.4

In Solr 4.x, the presence of a node determines whether Solr uses legacy or discovery mode. There are checks at initialization<solr><cores>
time. If one tries to mix legacy and discovery tags in solr.xml. Solr will refuse to initialize if "mixed mode" is discovered, and errors will be logged.

The new "core discovery mode" structure for will become mandatory as of Solr 5.0, see: .solr.xml Format of solr.xml

The following links are to pages that define these options in more detail, giving the acceptable parameters for the legacy and discovery modes.

Format of solr.xml: The new mode for , including the acceptable parameters in both the file and thediscovery solr.xml solr.xml
corresponding files.core.properties
Legacy solr.xml Configuration: The mode for and the acceptable parameters.legacy solr.xml
Moving to the New solr.xml Format: How to migrate from legacy to discovery configurations.solr.xml
CoreAdminHandler Parameters and Usage: Tools and commands for core administration, which is common to both legacy and
discovery modes.

Format of solr.xml

You can find in your Solr Home directory. The default file looks like this:solr.xml discovery solr.xml

<solr>

 <solrcloud>
 <str name="host">${host:}</str>
 <int name="hostPort">${jetty.port:8983}</int>
 <str name="hostContext">${hostContext:solr}</str>
 <int name="zkClientTimeout">${zkClientTimeout:15000}</int>
 <bool name="genericCoreNodeNames">${genericCoreNodeNames:true}</bool>
 </solrcloud>

 <shardHandlerFactory name="shardHandlerFactory"
 class="HttpShardHandlerFactory">
 <int name="socketTimeout">${socketTimeout:0}</int>
 <int name="connTimeout">${connTimeout:0}</int>
 </shardHandlerFactory>

</solr>

As you can see, the discovery solr configuration is "SolrCloud friendly". However, the presence of the element does mean that<solrcloud> not
the Solr instance is running in SolrCloud mode. Unless the or are specified at startup time, this section is ignored.-DzkHost -DzkRun

Using Multiple SolrCores

It is possible to segment Solr into multiple cores, each with its own configuration and indices. Cores may be dedicated to a single application or to
very different ones, but all are administered through a common administration interface. You can create new Solr cores on the fly, shutdown
cores, even replace one running core with another, all without ever stopping or restarting your servlet container.

Solr cores are configured by placing a file named in a subdirectory under . There are no a-priori limits to thecore.properties solr.home
depth of the tree, nor are there limits to the number of cores that can be defined. Cores may be anywhere in the tree with the exception that cores
may be defined under an existing core. That is, the following is not allowed:not

./cores/core1/core.properties

./cores/core1/coremore/core5/core.properties

The enumeration will stop at core1 in the above example.

The following is legal

261Apache Solr Reference Guide 4.4

./cores/somecores/core1/core.properties

./cores/somecores/core2/core.properties

./cores/othercores/core3/core.properties

./cores/extracores/deepertree/core4/core.properties

A minimal file looks like this:core.properties

name=collection1

This is very different than the legacy tag. In fact, your file . Say the filesolr.xml <core> core.properties can be empty core.properties
is located in (relative to) . In that case, the file core name is assumed to be "core1". The instance dir will be thesolr_home ./cores/core1
folder containing (./cores/core1). The dataDir will be etc.core.properties ../cores/core1/data

You can run Solr without configuring any cores.

Solr.xml Parameters

The Element<solr>

There are no attributes that you can specify in the tag, which is the root element of . The tables below list the child nodes of<solr> solr.xml
each XML element in .solr.xml

The persistent attribute is no longer supported in solr.xml. The properties in solr.xml are immutable, and any changes to
individual cores are persisted in the individual core.properties files.

Node Description

<str name="adminHandler"> If used, this attribute should be set to the FQN (Fully qualified name) of a class that inherits from
CoreAdminHandler. For example, adminHandler="com.myorg.MyAdminHandler" would configure
the custom admin handler (MyAdminHandler) to handle admin requests. If this attribute isn't set,
Solr uses the default admin handler, org.apache.solr.handler.admin.CoreAdminHandler. For more
information on this parameter, see the Solr Wiki at .http://wiki.apache.org/solr/CoreAdmin#cores

<int name="coreLoadThreads"> Specifies the number of threads that will be assigned to load cores in parallel

<str name="coreRootDirectory"> The root of the core discovery tree, defaults to SOLR_HOME

<str name="managementPath"> no-op at present.

<str name="sharedLib"> Specifies the path to a common library directory that will be shared across all cores. Any JAR files
in this directory will be added to the search path for Solr plugins. This path is relative to the
top-level container's Solr Home.

<str name="shareSchema"> This attribute, when set to true, ensures that the multiple cores pointing to the same schema.xml
will be referring to the same IndexSchema Object. Sharing the IndexSchema Object makes loading
the core faster. If you use this feature, make sure that no core-specific property is used in your
schema.xml.

<int name="transientCacheSize"> Defines how many cores with transient=true that can be loaded before swapping the least recently
used core for a new core.

The element<solrcloud>

This element defines several parameters that relate so SolrCloud. This section is ignored unless the solr instance is started with either -DzkRun
or -DzkHost

Node Description

<int name="distribUpdateConnTimeout"> Used to set the underlying "connTimeout" for intra-cluster updates.

<int name="distribUpdateSoTimeout"> Used to set the underlying "socketTimeout" for intra-cluster updates.

http://wiki.apache.org/solr/CoreAdmin#cores

262Apache Solr Reference Guide 4.4

<str name="host"> The hostname Solr uses to access cores.

<str name="hostContext"> The servlet context path.

<int name="hostPort"> The port Solr uses to access cores. In the default file, this is set to solr.xml
}, which will use the Solr port defined in Jetty.${jetty.port:

<int name="leaderVoteWait"> When SolrCloud is starting up, how long each Solr node will wait for all known replicas for
that share to be found before assuming that any nodes that haven't reported are down.

<int name="zkClientTimeout"> A timeout for connection to a ZooKeeper server. It is used with SolrCloud.

<str name="zkHost"> In SolrCloud mode, the URL of the ZooKeeper host that Solr should use for cluster state
information.

<str name="genericCoreNodeNames"> If , node names are not based on the address of the node, but on a generic nameTRUE
that identifies the core. When a different machine takes over serving that core things will be
much easier to understand.

The element.<logging>

Node Description

<str name="class"> The class to use for logging. The corresponding JAR file must be available to solr, perhaps through a <lib>
directive in solrconfig.xml.

<str name="enabled"> true/false - whether to enable logging or not.

The element.<logging><watcher>

Node Description

<int name="size"> The number of log events that are buffered.

<int name="threshold"> The logging level above which your particular logging implementation will record. For example
when using log4j one might specify DEBUG

WARN INFO
etc.

The element.<shardHandlerFactory>

Custom share handlers can be defined in solr.xml if you wish to create a custom shard handler

 <shardHandlerFactory name="ShardHandlerFactory" class="qualified.class.name">

However, since this is a custom shard handler, sub-elements are specific to the implementation.

Individual core.properties files.

Core discovery replaces the individual tags in with a core.properties file located on disk. The presence of the core.properties<core> solr.xml
file the instanceDir for that core. The file is a simple Java Properties file where each line is just a key=value pair, e.g. defines core.properties

. Notice that no quotes are required.name=core1

Java properties files allow the hash "#" or bang "!" characters to specify comment-to-end-of-line. This table defines the recognized properties:

key Description

name The name of the SolrCore. You'll use this name to reference the SolrCore when running commands with the
CoreAdminHandler.

config The configuration file name for a given core. The default is .solrconfig.xml

schema The schema file name for a given core. The default is schema.xml

dataDir This relative path defines the Solr Home for the core.

properties The name of the properties file for this core. The value can be an absolute pathname or a path relative to the value of
.instanceDir

263Apache Solr Reference Guide 4.4

transient If , the core can be unloaded if Solr reaches the . The default if not specified is . Corestrue transientCacheSize false
are unloaded in order of least recently used first.

loadOnStartup If , the default if it is not specified, the core will loaded when Solr starts.true

coreNodeName Added in Solr 4.2, this attributes allows naming a core. The name can then be used later if you need to replace a machine
with a new one. By assigning the new machine the same coreNodeName as the old core, it will take over for the old
SolrCore.

ulogDir The absolute or relative directory for the update log for this core (SolrCloud)

shard The shard to assign this core to (SolrCloud)

collection The name of the collection this core is part of (SolrCloud)

roles Future param for SolrCloud or a way for users to mark nodes for their own use.

The minimal core.properties file is an empty file, in which case all of the properties are defaulted appropriately.

Implicit properties

There are several properties that Solr defines automatically for each core. These properties are described in the table below:

Property Description

solr.core.dataDir The core's data directory, by default.${solr.core.instanceDir}/data

solr.core.configName The name of the core's configuration file, by default.solrconfig.xml

solr.core.schemaName The name of the core's schema file, by default.schema.xml

Any of the above properties can be referenced by name in or .schema.xml solrconfig.xml

When defining properties, you can assign a property a default value that will be used if another value isn't specified. For example:

 <!-- Blank unless company.name variable is defined -->
 <str name="foo">${company.name}</str>
 <!-- "SearchCo MegaIndex" if company.name variable is not defined -->
 <str name="bar">${some.variable.name:SearchCo MegaIndex}</str>

Legacy solr.xml Configuration

Use to configure your Solr core (a logical index and associated configuration files), or to configure multiple cores. You can find solr.xml
 in your Solr Home directory. The default file looks like this:solr.xml solr.xml

<solr persistent="true">
 <cores adminPath="/admin/cores" defaultCoreName="collection1" host="${host:}"
 hostPort="${jetty.port:}" hostContext="${hostContext:}"
 zkClientTimeout="${zkClientTimeout:15000}">
 <core name="collection1" instanceDir="collection1" />
 </cores>
</solr>

For more information about core configuration and , see .solr.xml http://wiki.apache.org/solr/CoreAdmin

Using Multiple SolrCores

It is possible to segment Solr into multiple cores, each with its own configuration and indices. Cores may be dedicated to a single application or to
very different ones, but all are administered through a common administration interface. You can create new Solr cores on the fly, shutdown
cores, even replace one running core with another, all without ever stopping or restarting your servlet container.

Solr cores are configured by placing a file named in your directory. A typical looks like this:solr.xml solr.home solr.xml

http://wiki.apache.org/solr/CoreAdmin

264Apache Solr Reference Guide 4.4

<solr persistent="false">
 <cores adminPath="/admin/cores" host="${host:}" hostPort="${jetty.port:}">
 <core name="core0" instanceDir="core0" />
 <core name="core1" instanceDir="core1" />
 </cores>
</solr>

This sets up two Solr cores, named "core0" and "core1", and names the directories (relative to the Solr installation path) which will store the
configuration and data sub-directories.

You can run Solr without configuring any cores.

Solr.xml Parameters

The Element<solr>

There are several attributes that you can specify on , which is the root element of .<solr> solr.xml

Attribute Description

coreLoadThreads Specifies the number of threads that will be assigned to load cores in parallel

persistent Indicates that changes made through the API or admin UI should be saved back to this . If not , anysolr.xml true
runtime changes will be lost on the next Solr restart. The servlet container running Solr must have sufficient permissions
to replace (file delete and create), or errors will result. Any comments in are not preserved whensolr.xml solr.xml
the file is updated. The default is true.

sharedLib Specifies the path to a common library directory that will be shared across all cores. Any JAR files in this directory will be
added to the search path for Solr plugins. This path is relative to the top-level container's Solr Home.

zkHost In SolrCloud mode, the URL of the ZooKeeper host that Solr should use for cluster state information.

If you set the persistent attribute to , be sure that the Web server has permission to replace the file. If the permissions aretrue
set incorrectly, the server will generate 500 errors and throw IOExceptions. Also, note that any comments in the filesolr.xml
will be lost when the file is overwritten.

The Element<cores>

The element, which contains definitions for each Solr core, is a child of and accepts several attributes of its own.<cores> <solr>

Attribute Description

adminPath This is the relative URL path to access the SolrCore administration pages. For example, a value of
 means that you can access the CoreAdminHandler with a URL that looks like this: /admin/cores

. If this attribute is not present, then SolrCore administration will not behttp://localhost:8983/solr/admin/cores
possible.

host The hostname Solr uses to access cores.

hostPort The port Solr uses to access cores. In the default file, this is set to }, which willsolr.xml ${jetty.port:
use the Solr port defined in Jetty.

hostContext The servlet context path.

zkClientTimeout A timeout for connection to a ZooKeeper server. It is used with .SolrCloud

distribUpdateConnTimeout Used to set the underlying "connTimeout" for intra-cluster updates.

distribUpdateSoTimeout Used to set the underlying "socketTimeout" for intra-cluster updates

leaderVoteWait When SolrCloud is starting up, how long each Solr node will wait for all known replicas for that share to be
found before assuming that any nodes that haven't reported are down.

http://localhost:8983/solr/admin/cores

265Apache Solr Reference Guide 4.4

genericCoreNodeNames If , node names are not based on the address of the node, but on a generic name that identifies theTRUE
core. When a different machine takes over serving that core things will be much easier to understand.

managementPath no-op at present.

defaultCoreName The name of a core that will be used for requests that do not specify a core.

transientCacheSize Defines how many cores with that can be loaded before swapping the least recently usedtransient=true
core for a new core.

shareSchema This attribute, when set to , ensures that the multiple cores pointing to the same will betrue schema.xml
referring to the same IndexSchema Object. Sharing the IndexSchema Object makes loading the core faster.
If you use this feature, make sure that no core-specific property is used in your .schema.xml

adminHandler If used, this attribute should be set to the (Fully qualified name) of a class that inherits from FQN
. For example, would configureCoreAdminHandler adminHandler="com.myorg.MyAdminHandler"

the custom admin handler () to handle admin requests. If this attribute isn't set, Solr usesMyAdminHandler
the default admin handler, . For moreorg.apache.solr.handler.admin.CoreAdminHandler
information on this parameter, see the Solr Wiki at .http://wiki.apache.org/solr/CoreAdmin#cores

The Element<logging>

There is at most one element for a Solr installation that defines various attributes for logging.<logging>

Attribute Description

class The class to use for logging. The corresponding JAR file must be available to solr, perhaps through a <lib> directive in
solrconfig.xml.

enabled true/false - whether to enable logging or not.

In addition, the element may have a child element which may have the following attributes<logging> <watcher>

size The number of log events that are buffered.

threshold The logging level above which your particular logging implementation will record. For example when using log4j one might
specify DEBUG or WARN or INFO etc.

The <core> Element

There is one element for each SolrCore you define. They are children of the element and each one accepts the following<core> <cores>
attributes.

Attribute Description

name The name of the SolrCore. You'll use this name to reference the SolrCore when running commands with the
CoreAdminHandler.

instanceDir This relative path defines the Solr Home for the core.

config The configuration file name for a given core. The default is .solrconfig.xml

schema The schema file name for a given core. The default is schema.xml

dataDir This relative path defines the Solr Home for the core.

properties The name of the properties file for this core. The value can be an absolute pathname or a path relative to the value of
.instanceDir

transient If , the core can be unloaded if Solr reaches the . The default if not specified is . Corestrue transientCacheSize false
are unloaded in order of least recently used first.

loadOnStartup If , the default if it is not specified, the core will loaded when Solr starts.true

coreNodeName Added in Solr 4.2, this attributes allows naming a core. The name can then be used later if you need to replace a machine
with a new one. By assigning the new machine the same coreNodeName as the old core, it will take over for the old
SolrCore.

ulogDir The absolute or relative directory for the update log for this core (SolrCloud)

shard The shard to assign this core to (SolrCloud)

http://wiki.apache.org/solr/CoreAdmin#cores

266Apache Solr Reference Guide 4.4

collection The name of the collection this core is part of (SolrCloud)

roles Future param for SolrCloud or a way for users to mark nodes for their own use.

Properties in solr.xml

You can define properties in that you may then reference in and . Properties are name/value pairs.solr.xml solrconfig.xml schema.xml
The scope of a property depends on which element it occurs within.

If a property is declared under but outside a element, then it will have container scope and will be visible to all cores. In the<solr> <core>
example above, is such a property.productname

If a property declaration occurs within a element, then its scope is limited to that core and it will not be visible to other cores. A property at<core>
core scope will override one of the same name declared at container scope.

<solr persistent="true" sharedLib="lib">
 <property name="productname" value="Acme Online"/>
 <cores adminPath="/admin/cores">
 <core name="core0" instanceDir="core0">
 <property name="dataDir" value="/data/core0"/></core>
 <core name="core1" instanceDir="core1"/>
 </cores>
</solr>

In addition to any properties you declare at the core level, there are several properties that Solr defines automatically for each core. These
properties are described in the table below:

Property Description

solr.core.name The core's name, as defined by the "name" attribute.

solr.core.instanceDir The core's instance directory under which that its and directories are located, derived from theconf/ data/
core's attribute.instanceDir

solr.core.dataDir The core's data directory, by default.${solr.core.instanceDir}/data

solr.core.configName The name of the core's configuration file, by default.solrconfig.xml

solr.core.schemaName The name of the core's schema file, by default.schema.xml

Any of the above properties can be referenced by name in or .schema.xml solrconfig.xml

When defining properties, you can assign a property a default value that will be used if another value isn't specified. For example:

<!-- Blank unless company.name variable is defined -->
<str name="foo">${company.name}</str>
<!-- "SearchCo MegaIndex" if company.name variable is not defined -->
<str name="bar">${some.variable.name:SearchCo MegaIndex}</str>

Moving to the New solr.xml Format

Migration from old-style to core discovery is very straightforward. First, modify the file from the to the solr.xml solr.xml legacy format
.discovery format

In general there is a direct analog from the legacy format to the new format there is no element nor are there any except <cores> <core>
elements in discovery-based Solr.

Startup

In Solr 4.4 and on, the presence of a child element of the element in the file signals a legacy version of ,<cores> <solr> solr.xml solr.xml
and cores are expected to be defined as they have been historically. Depending on whether a element is discovered, is<cores> solr.xml

267Apache Solr Reference Guide 4.4

parsed as either a legacy or discovery file and errors are thrown in the log if legacy and discovery modes are mixed in .solr.xml

Moving definitions.<core>

To migrate to discovery-based , remove all of the elements and the enclosing element from . See thesolr.xml <core> <cores> solr.xml
pages linked above for examples of migrating other attributes. Then, in the instanceDir for each core create a file. core.properties This file

. In particular, the is assumed to be the directory in which the file iscan be empty if all defaults are acceptable instanceDir core.properties
discovered. The data directory will be in a directory called "data" directly below. If the file is completely empty, the name of the core is assumed to
be the name of the folder in which the file was discovered.core.properties

As mentioned elsewhere, the tree structure that the cores are in is arbitrary, with the exception that the directories containing the
 files must share a common root, but that root may be many levels up the tree. Note that supporting a root for the cores that iscore.properties

not a child of is supported through properties in . However, only root is possible, there is no provision presently forSOLR_HOME solr.xml one
specifying multiple roots.

The only restriction on the tree structure is that cores may not be children of other cores; enumeration stops descending the tree when thedown
first file is discovered. Siblings of the directory in which the file is discovered are still walked, onlycore.properties core.properties
stopping recursing down the sibling when a file is found.core.properties

Example

Here's an example of what a legacy file might look like and the equivalent discovery-based and files:solr.xml solr.xml core.properties

<solr persistent="${solr.xml.persist:false}">
 <cores adminPath="/admin/cores" defaultCoreName="collection1" host="127.0.0.1"
hostPort="${hostPort:8983}"
 hostContext="${hostContext:solr}"
zkClientTimeout="${solr.zkclienttimeout:30000}" shareSchema="${shareSchema:false}"
 genericCoreNodeNames="${genericCoreNodeNames:true}">
 <core name="core1" instanceDir="core1" shard="${shard:}"
collection="${collection:core1}" config="${solrconfig:solrconfig.xml}"
schema="${schema:schema.xml}" coreNodeName="${coreNodeName:}"/>
 <core name="core2" instanceDir="core2" />
 <shardHandlerFactory name="shardHandlerFactory" class="HttpShardHandlerFactory">
 <int name="socketTimeout">${socketTimeout:120000}</int>
 <int name="connTimeout">${connTimeout:15000}</int>
 </shardHandlerFactory>
 </cores>
</solr>

The new-style might look like what is below. Note that adminPath, defaultCoreName are not supported in discovery-based solr.xml.solr.xml

<solr>
 <solrcloud>
 <str name="host">127.0.0.1</str>
 <int name="hostPort">${hostPort:8983}</int>
 <str name="hostContext">${hostContext:solr}</str>
 <int name="zkClientTimeout">${solr.zkclienttimeout:30000}</str>
 <str name="shareSchema">${shareSchema:false}</str>
 <str name="genericCoreNodeNames">${genericCoreNodeNames:true}</str>
 </solrcloud>

 <shardHandlerFactory name="shardHandlerFactory" class="HttpShardHandlerFactory">
 <int name="socketTimeout">${socketTimeout:120000}</int>
 <int name="connTimeout">${connTimeout:15000}</int>
 </shardHandlerFactory>

In each of "core1" and "core2" directories, there would be a file that might look like these. Note that note that instanceDir iscore.properties

268Apache Solr Reference Guide 4.4

not supported, it is assumed to be the directory in which core.properties is found.

core1:

name=core1
shard=${shard:}
collection=${collection:core1}
config=${solrconfig:solrconfig.xml}
schema=${schema:schema.xml}
coreNodeName=${coreNodeName:}

core2:

name=core2

In fact, the core2 file could even be empty and the name would default to the directory in which the filecore.properties core.properties
was found.

CoreAdminHandler Parameters and Usage

The CoreAdminHandler is a special SolrRequestHandler that is used to manage Solr cores. Unlike normal SolrRequestHandlers, the
CoreAdminHandler is not attached to a single core. Instead, it manages all the cores running in a single Solr instance. Only one
CoreAdminHandler exists for each top-level Solr instance.

To use the CoreAdminHandler, make sure that the attribute is defined on the <cores> element; otherwise you will not be able toadminPath
make HTTP requests to perform Solr core administration.

The CoreAdminHandler supports seven different actions that may be invoked on the URL. The action to perform is named by theadminPath
HTTP request parameter "action", with arguments for a specific action being provided as additional parameters.

All action names are uppercase. The action names are:

STATUS
CREATE
RELOAD
RENAME
SWAP
UNLOAD
MERGEINDEXES
SPLIT

These actions are described in detail in the sections below.

STATUS

The action returns the status of all running Solr cores, or status for only the named core.STATUS

http://localhost:8983/solr/admin/cores?action=STATUS

http://localhost:8983/solr/admin/cores?action=STATUS&core=core0

The STATUS action accepts one optional parameter:

Parameter Description

core (Optional) The name of a core, as listed in the "name" attribute of a element in .<core> solr.xml

indexInfo If , information about the index will not be returned with a core STATUS request. In Solr implementations with a large numberfalse
of cores (i.e., more than hundreds), retrieving the index information for each core can take a lot of time and isn't always required.

CREATE

The action creates a new core and registers it. If persistence is enabled (on the element), the updatedCREATE persistent="true" <solr>
configuration for this new core will be saved in . If a Solr core with the given name already exists, it will continue to handle requestssolr.xml

http://localhost:8983/solr/admin/cores?action=STATUS
http://localhost:8983/solr/admin/cores?action=STATUS&core=core0

269Apache Solr Reference Guide 4.4

while the new core is initializing. When the new core is ready, it will take new requests and the old core will be unloaded.

http://localhost:8983/solr/admin/cores?action=CREATE&name=coreX&instanceDir=path/to/dir&config=config_file_name.xml&schema=schem_file_name.xml&dataDir=data

The accepts the two mandatory parameters, as well as five optional parameters.CREATE

Parameter Description

name The name of the new core. Same as "name" on the element.<core>

instanceDir The directory where files for this SolrCore should be stored. Same as on the element.instanceDir <core>

config (Optional) Name of the config file (solrconfig.xml) relative to .instanceDir

schema (Optional) Name of the schema file (schema.xml) relative to .instanceDir

datadir (Optional) Name of the data directory relative to .instanceDir

collection (Optional) The name of the collection to which this core belongs. The default is the name of the core.
 causes a property of to be set if a new collection is being created. Use collection.<param>=<value> <param>=<value>

 to point to the configuration for a new collection.collection.configName=<configname>

shard (Optional) The shard id this core represents. Normally you want to be auto-assigned a shard id.

Use to point to the config for a new collection.collection.configName=<configname>

For example: curl
'http://localhost:8983/solr/admin/cores?action=CREATE&name=mycore&collection=collection1&shard=shard2'

RELOAD

The action loads a new core from the configuration of an existing, registered Solr core. While the new core is initializing, the existing oneRELOAD
will continue to handle requests. When the new Solr core is ready, it takes over and the old core is unloaded.

This is useful when you've made changes to a Solr core's configuration on disk, such as adding new field definitions. Calling the RELOAD action
lets you apply the new configuration without having to restart the Web container. However the Core Container does not persist the SolrCloud

 parameters, such as and , which are ignored.solr.xml solr/@zkHost solr/cores/@hostPort

http://localhost:8983/solr/admin/cores?action=RELOAD&core=core0

The RELOAD action accepts a single parameter, , which is the name of the core to be reloaded.core

As of Solr 4.0, REALOAD performs "live" reloads of SolrCore, reusing some existing objects. Some configuration options, such as the DataDir
location and related settings in can not be changed and made active with a simple RELOAD action.IndexWriter solrconfig.xml

RENAME

The action changes the name of a Solr core.RENAME

http://localhost:8983/solr/admin/cores?action=RENAME&core=core0&other=core5

The action requires the following two parameter:RENAME

Parameter Description

core The name of the Solr core to be renamed.

other The new name for the Solr core. If the persistent attribute of is , the new name will be written to as the <solr> true solr.xml
 attribute of the attribute.name <core>

SWAP

SWAP atomically swaps the names used to access two existing Solr cores. This can be used to swap new content into production. The prior core
remains available and can be swapped back, if necessary. Each core will be known by the name of the other, after the swap.

http://localhost:8983/solr/admin/cores?action=RELOAD&core=core0

270Apache Solr Reference Guide 4.4

http://localhost:8983/solr/admin/cores?action=SWAP&core=core1&other=core0

The action requires two parameters, which are described in the table below.SWAP

Parameter Description

core The name of one of the cores to be swapped.

other The name of one of the cores to be swapped.

UNLOAD

The action removes a core from Solr. Active requests will continue to be processed, but no new requests will be sent to the named core.UNLOAD
If a core is registered under more than one name, only the given name is removed.

http://localhost:8983/solr/admin/cores?action=UNLOAD&core=core0

The action requires a parameter () identifying the core to be removed. If the persistent attribute of is set to , the UNLOAD core <solr> true
 element with this attribute will be removed from .<core> name solr.xml

Unloading all cores in a SolrCloud collection causes the removal of that collection's metadata from ZooKeeper.

There are three parameters that can be used with the UNLOAD action:

deleteIndex: if , will remove the index when unloading the core.true
deleteDataDir: if , removes the directory and all sub-directories.true data
deleteInstanceDir: if , removes everything related to the core, including the index directory, configuration files, and other relatedtrue
files.

MERGEINDEXES

The action merges one or more indexes to another index. The indexes must have completed commits, and should be lockedMERGEINDEXES
against writes until the merge is complete or the resulting merged index may become corrupted. The target core index must already exist and
have a compatible schema with the one or more indexes that will be merged to it. Another commit on the target core should also be performed
after the merge is complete.

http://localhost:8983/solr/admin/cores?action=MERGEINDEXES&core=core0&indexDir=/opt/solr/core1/data/index&indexDir=/opt/solr/core2/data/index

In this example, we use the parameter to define the index locations of the source cores. The parameter defines the target index.indexDir core
A benefit of this approach is that we can merge any Lucene-based index that may not be associated with a Solr core.

Alternatively, we can instead use a parameter, as in this example:srcCore

http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&srcCore=core1&srcCore=core2

This approach allows us to define cores that may not have an index path that is on the same physical server as the target core. However, we can
only use Solr cores as the source indexes. Another benefit of this approach is that we don't have as high a risk for corruption if writes occur in
parallel with the source index.

SPLIT

The action splits an index into two or more indexes. The index being split can continue to handle requests. The split pieces can be placedSPLIT
into a specified directory on the server's filesystem or it can be merged into running Solr cores.

The action supports three parameters, which are described in the table below.SPLIT

Parameter Description Multi-valued

core The name of the core to be split. false

path The directory path in which a piece of the index will be written. true

targetCore The target Solr core to which a piece of the index will be merged true

Either or parameter must be specified but not both.path targetCore

The index will be split into as many pieces as the number of or parameters.core path targetCore

http://localhost:8983/solr/admin/cores?action=SWAP&core=core1&other=core0
http://localhost:8983/solr/admin/cores?action=UNLOAD&core=core0
http://localhost:8983/solr/admin/cores?action=MERGEINDEXES&core=core0&indexDir=/opt/solr/core1/data/index&indexDir=/opt/solr/core2/data/index
http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&srcCore=core1&srcCore=core2

271Apache Solr Reference Guide 4.4

http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&targetCore=core1&targetCore=core2

This example shows the usage of this action with two parameters. Here the index will be split into two pieces and merged intotargetCore core
the two indexes.targetCore

http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&path=/path/to/index/1&path=/path/to/index/2

This example shows the usage of this action with two parameters. The index will be split into two pieces and written into the twopath core
directory paths specified.

The must already exist and must have a compatible schema with the index. A commit is automatically called on the targetCore core core
index before it is split.

This command is used as part of the command but it can be used for non-cloud Solr cores as well. When used against a non-cloudSPLITSHARD
core, this action will split the source index and distribute its documents alternately so that each split piece contains an equal number of
documents.

Solr Plugins

Solr allows you to load custom code to perform a variety of tasks within Solr, from custom Request Handlers to process your searches, to custom
Analyzers and Token Filters for your text field. You can even load custom Field Types. These pieces of custom code are called plugins.

Not everyone will need to create plugins for their Solr instances - what's provided is usually enough for most applications. However, if there's
something that you need, you may want to review the Solr Wiki documentation on plugins at .SolrPlugins

JVM Settings

Configuring your JVM can be a complex topic. A full discussion is beyond the scope of this document. Luckily, most modern JVMs are quite good
at making the best use of available resources with default settings. The following sections contain a few tips that may be helpful when the defaults
are not optimal for your situation.

For more general information about improving Solr performance, see .https://wiki.apache.org/solr/SolrPerformanceFactors

Choosing Memory Heap Settings

The most important JVM configuration settings are those that determine the amount of memory it is allowed to allocate. There are two primary
command-line options that set memory limits for the JVM. These are , which sets the initial size of the JVM's memory heap, and ,-Xms -Xmx
which sets the maximum size to which the heap is allowed to grow.

If your Solr application requires more heap space than you specify with the option, the heap will grow automatically. It's quite reasonable to-Xms
not specify an initial size and let the heap grow as needed. The only downside is a somewhat slower startup time since the application will take
longer to initialize. Setting the initial heap size higher than the default may avoid a series of heap expansions, which often results in objects being
shuffled around within the heap, as the application spins up.

The maximum heap size, set with , is more critical. If the memory heap grows to this size, object creation may begin to fail and throw -Xmx
. Setting this limit too low can cause spurious errors in your application, but setting it too high can be detrimental asOutOfMemoryException

well.

It doesn't always cause an error when the heap reaches the maximum size. Before an error is raised, the JVM will first try to reclaim any available
space that already exists in the heap. Only if all garbage collection attempts fail will your application see an exception. As long as the maximum is
big enough, your app will run without error, but it may run more slowly if forced garbage collection kicks in frequently.

The larger the heap the longer it takes to do garbage collection. This can mean minor, random pauses or, in extreme cases, "freeze the world"
pauses of a minute or more. As a practical matter, this can become a serious problem for heap sizes that exceed about two gigabytes, even if far
more physical memory is available. On robust hardware, you may get better results running multiple JVMs, rather than just one with a large
memory heap. Some specialized JVM implementations may have customized garbage collection algorithms that do better with large heaps. Also,
Java 7 is expected to have a redesigned GC that should handle very large heaps efficiently. Consult your JVM vendor's documentation.

When setting the maximum heap size, be careful not to let the JVM consume all available physical memory. If the JVM process space grows too
large, the operating system will start swapping it, which will severely impact performance. In addition, the operating system uses memory space
not allocated to processes for file system cache and other purposes. This is especially important for I/O-intensive applications, like Lucene/Solr.
The larger your indexes, the more you will benefit from filesystem caching by the OS. It may require some experimentation to determine the
optimal tradeoff between heap space for the JVM and memory space for the OS to use.

On systems with many CPUs/cores, it can also be beneficial to tune the layout of the heap and/or the behavior of the garbage collector. Adjusting
the relative sizes of the generational pools in the heap can affect how often GC sweeps occur and whether they run concurrently. Configuring the
various settings of how the garbage collector should behave can greatly reduce the overall performance impact when it does run. There is a lot of
good information on this topic available on Sun's website. A good place to start is here: .http://java.sun.com/javase/technologies/hotspot/gc/

http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&targetCore=core1&targetCore=core2
http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&path=/path/to/index/1&path=/path/to/index/2
http://wiki.apache.org/solr/SolrPlugins
https://wiki.apache.org/solr/SolrPerformanceFactors
http://java.sun.com/javase/technologies/hotspot/gc/

272Apache Solr Reference Guide 4.4

Use the Server HotSpot VM

If you are using Sun's JVM, add the command-line option when you start Solr. This tells the JVM that it should optimize for a long-server
running, server process. If the Java runtime on your system is a JRE, rather than a full JDK distribution (including and other developmentjavac
tools), then it is possible that it may not support the JVM option. Test this by running and look for as an-server java -help -server
available option in the displayed usage message.

Checking JVM Settings

A great way to see what JVM settings your server is using, along with other useful information, is to use the admin RequestHandler,
. This request handler will display a wealth of server statistics and settings.solr/admin/system

You can also use any of the tools that are compatible with the Java Management Extensions (JMX). See the section in Using JMX with Solr
 for more information.Managing Solr

273Apache Solr Reference Guide 4.4

1.

2.

Managing Solr
This section describes how to run Solr and how to look at Solr when it is running. It contains the following sections:

Running Solr on Jetty: Describes how to run Solr in the Jetty web application container. The Solr example included in this distribution runs in a
Jetty web application container.

Running Solr on Tomcat: Describes how to run Solr in the Tomcat web application container.

Configuring Logging: Describes how to configure logging for Solr.

Backing Up: Describes backup strategies for your Solr indexes.

Using JMX with Solr: Describes how to use Java Management Extensions with Solr.

Running Solr on HDFS: How to use HDFS to store your Solr indexes and transaction logs.

For information on running Solr in a variety of Java application containers, see the on the Solr wiki.basic installation instructions

Running Solr on Tomcat

Solr comes with an example schema and scripts for running on . The next section describes some of the details of how things work "underJetty
the hood," and covers running multiple Solr instances and deploying Solr using the Tomcat application manager.

For more information about running Solr on Tomcat, see the and the page on the Solr wiki.basic installation instructions Solr Tomcat

How Solr Works with Tomcat

The two basic steps for running Solr in any Web application container are as follows:

Make the Solr classes available to the container. In many cases, the Solr Web application archive (WAR) file can be placed into a special
directory of the application container. In the case of Tomcat, you need to place the Solr WAR file in Tomcat's directory. If youwebapps
installed Tomcat with Solr, take a look in :you'll see the file is already there. tomcat/webapps solr.war
Point Solr to the Solr home directory that contains and . There are a few ways to get thisconf/solrconfig.xml conf/schema.xml
done. One of the best is to define the Java system property. With Tomcat, the best way to do this is via a shellsolr.solr.home
environment variable, . Tomcat puts the value of this variable on the command line upon startup. Here is an example: JAVA_OPTS

export JAVA_OPTS="-Dsolr.solr.home=/Users/jonathan/Desktop/solr"

Port 8983 is the default Solr listening port. If you are using Tomcat and wish to change this port, edit the file in thetomcat/conf/server.xml
Solr distribution. You'll find the port in this part of the file:

 <Connector port="8983" protocol="HTTP/1.1" connectionTimeout="20000"
redirectPort="8443" />

Modify the port number as desired and restart Tomcat if it is already running.

Modifying the port number will leave some of the samples and help file links pointing to the default port. It is out of the scope of
this reference guide to provide full details of how to change all of the examples and other resources to the new port.

Running Multiple Solr Instances

The standard way to deploy multiple Solr index instances in a single Web application is to use the multicore API described in Using Multiple
.SolrCores

An alternative approach, which provides more code isolation, uses Tomcat context fragments. A context fragment is a file that contains a single
 element and any subelements required for your application. The file omits all other XML elements.<context>

Each context fragment specifies where to find the Solr WAR and the path to the solr home directory. The name of the context fragment file
determines the URL used to access that instance of Solr. For example, a context fragment named would deploy Solr to beharvey.xml
accessed at .http://localhost:8983/harvey

http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrTomcat
http://localhost:8983/harvey

274Apache Solr Reference Guide 4.4

In Tomcat's directory, store one context fragment per instance of Solr. If the conf/Catalina/localhost conf/Catalina/localhost
directory doesn't exist, go ahead and create it.

Using Tomcat context fragments, you could run multiple instances of Solr on the same server, each with its own schema and configuration. For
full details and examples of context fragments, take a look at the Solr Wiki: .http://wiki.apache.org/solr/SolrTomcat

Here are examples of context fragments which would set up two Solr instances, each with its own :solr.home

<Context docBase="/some/path/solr.war" debug="0" crossContext="true" >
 <Environment name="solr/home" type="java.lang.String" value="/some/path/solr1home"
override="true" />
</Context>
<Context docBase="/some/path/solr.war" debug="0" crossContext="true" >
 <Environment name="solr/home" type="java.lang.String"
 value="/some/path/solr2home" override="true" />
</Context>

Deploying Solr with the Tomcat Manager

If your instance of Tomcat is running the Tomcat Web Application Manager, you can use its browser interface to deploy Solr.

Just as before, you have to tell Solr where to find the solr home directory. You can do this by setting JAVA_OPTS before starting Tomcat.

Once Tomcat is running, navigate to the Web application manager, probably available at a URL like this:

http://localhost:8983/manager/html

You will see the main screen of the manager.

To add Solr, scroll down to the section, specifically . Click and find the Solr WAR file, usually somethingDeploy WAR file to deploy Browse...
like within your Solr installation. Click . Tomcat will load the WAR file and start running it. Click the linkdist/apache-solr-3.x.0.war Deploy
in the application path column of the manager to see Solr. You won't see much, just a welcome screen, but it contains a link for the Admin

http://wiki.apache.org/solr/SolrTomcat
http://localhost:8983/manager/html

275Apache Solr Reference Guide 4.4

Console.

Tomcat's manager screen, in its application list, has links so you can stop, start, reload, or undeploy the Solr application.

Running Solr on Jetty

Solr comes with an example schema and scripts for running on , along with a working installation, in the directory. The includedJetty /example
version of Jetty works well for small installations, but for more heavy-duty use, we recommend that you download the , whichfull Jetty package
includes additional modules ("JettyPlus").

For more information about the Jetty example installation, see the and the on the Solr wiki.Solr Tutorial basic installation instructions

For detailed information about running Solr on Jetty or JettyPlus, see .http://wiki.apache.org/solr/SolrJetty

Changing the Solr Listening Port

Port 8983 is the default port for Solr. If you are using Jetty and wish to change the port number, edit the file in the Solrjetty/etc/jetty.xml
distribution. You'll find the port in this part of the file:

 <New class="org.mortbay.jetty.bio.SocketConnector">
 <Set name="port">
 <SystemProperty name="jetty.port" default="8983"/>
 </Set>
 <Set name="maxIdleTime">50000</Set>
 <Set name="lowResourceMaxIdleTime">1500</Set>
 </New>

Modify the port number as desired and restart Jetty if it is already running.

Modifying the port number will leave some of the samples and help file links pointing to the wrong port. It is out of the scope of
this reference guide to provide full details of how to change all of the examples and other resources to the new port.

Configuring Logging

Prior to version 4.3, Solr used the SLF4J Logging API (). To improve flexibility in logging with containers other than Jetty, inhttp://www.slf4j.org
Solr 4.3 the default behavior has changed and the SLF4J jars were removed from Solr's file. This allows changing or upgrading the logging.war
mechanism as needed.

For further information about Solr logging, see .SolrLogging

Temporary Logging Settings

You can control the amount of logging output in Solr by using the Admin Web interface. Select the link. Note that this page only letsLOGGING
you change settings in the running system and is not saved for the next run. (For more information about the Admin Web interface, see Using the

.)Solr Administration User Interface

http://jetty.mortbay.org/jetty/
http://docs.codehaus.org/display/JETTY/Downloading+Jetty
http://lucene.apache.org/solr/tutorial.html
http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrJetty
http://www.slf4j.org
http://wiki.apache.org/solr/SolrLogging

276Apache Solr Reference Guide 4.4

The Logging screen.

This part of the Admin Web interface allows you to set the logging level for many different log categories. Fortunately, any categories that are
 will have the logging level of its parent. This makes it possible to change many categories at once by adjusting the logging level of theirunset

parent.

When you select , you see the following menu:Level

The Log Level Menu.

Directories are shown with their current logging levels. The Log Level Menu floats over these. To set a log level for a particular directory, select it
and click the appropriate log level button.

Log levels settings are as follows:

Level Result

FINEST Reports everything.

FINE Reports everything but the least important messages.

CONFIG Reports configuration errors.

INFO Reports everything but normal status.

WARNING Reports all warnings.

SEVERE Reports only the most severe warnings.

277Apache Solr Reference Guide 4.4

OFF Turns off logging.

UNSET Removes the previous log setting.

Multiple settings at one time are allowed.

Permanent Logging Settings

Making permanent changes to the JDK Logging API configuration is a matter of creating or editing a properties file.

Tomcat Logging Settings

Tomcat offers a choice between settings for all applications or settings specifically for the Solr application.

With Solr 4.3, you will need to copy the SLF4J files from the directory to the main directory of Tomcat (this may be.jar example/ext/lib lib
as simple as). Then you can copy the file from to a location on the classpath - thetomcat/lib log4j.properties example/resources
same location as the files is probably OK in most cases. Then you can edit the properties as needed to set the log destination..jar

See the documentation for the SLF4J Logging API for more information:

http://slf4j.org/docs.html

http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

Jetty Logging Settings

To change settings for the SLF4J Logging API in Jetty, you need to create a settings file and tell Jetty where to find it.

Begin by creating a file or modifying the one found in .jetty/logging.properties example/etc

To tell Jetty how to find the file, edit and add the following property information:jetty.xml

<Configure id="Server" class="org.mortbay.jetty.Server">
 <Call class="java.lang.System" name="setProperty">
 <Arg>java.util.logging.config.file</Arg>
 <Arg>logging.properties</Arg>
 </Call>
</Configure>

The next time you launch Jetty, it will use the settings in the file.

Backing Up

If you are worried about data loss, and of course you be, you need a way to back up your Solr indexes so that you can recover quickly inshould
case of catastrophic failure.

Making Backups with the Solr Replication Handler

The easiest way to make back-ups in Solr is to take advantage of the Replication Handler, which is described in detail in . TheIndex Replication
Replication Handler's primary purpose is to replicate an index on slave servers for load-balancing, but the Replication Handler can be used to
make a back-up copy of a server's index, even if no slave servers are in operation.

Once you have configured the Replication Handler in , you can trigger a back-up with an HTTP command like this:solrconfig.xml

http:// /solr/replication?command=backupmaster_host

For details on configuring the Replication Handler, see .Legacy Scaling and Distribution

Backup Scripts from Earlier Solr Releases

Solr also provides shell scripts in the bin directory that make copies of the indexes. However, these scripts only work with a Linux-style shell, and
not everybody in the world runs Linux.

The scripts themselves are relatively simple. Look in the bin directory of your Solr home directory, for example . In particular,example/solr/bin

http://slf4j.org/docs.html
http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

278Apache Solr Reference Guide 4.4

backup.sh makes a copy of Solr's index directory and gives it a name based on the current date.

This scripts include the following:

Script Name Description

abc Atomic Backup post-Commit tells the Solr server to perform a commit. A snapshot of the index directory is made after the
commit if the Solr server is configured to do so (by enabling the event listener in postCommit

). A backup of the most recent snapshot directory is then made if the commit is successful.solr/conf/solrconfig.xml
Backup directories are named backup. where is the timestamp of when the snapshotyyyymmddHHMMSS yyyymmddHHMMSS
was taken.

abo Atomic Backup post-Optimize tells the Solr server to perform an optimize. A snapshot of the index directory is made after the
optimize if the Solr server is configured to do so (by enabling the or event listener in postCommit postOptimize

). A backup of the most recent snapshot directory is then made if the optimize is successful.solr/conf/solrconfig.xml
Backup directories are named backup. where is the timestamp of when the snapshotyyyymmddHHMMSS yyyymmddHHMMSS
was taken.

backup Backs up the index directory using hard links. Backup directories are named backup. where yyyymmddHHMMSS
 is the timestamp of when the backup was taken.yyyymmddHHMMSS

backupcleaner Runs as a cron job to remove backups more than a configurable number of days old or all backups except for the most recent
n number of backups. Also can be run manually.

For more details about backup scripts, see the Solr Wiki page .http://wiki.apache.org/solr/SolrOperationsTools

Using JMX with Solr

Java Management Extensions (JMX) is a technology that makes it possible for complex systems to be controlled by tools without the systems and
tools having any previous knowledge of each other. In essence, it is a standard interface by which complex systems can be viewed and
manipulated.

Solr, like any other good citizen of the Java universe, can be controlled via a JMX interface. You can enable JMX support by adding lines to
. You can use a JMX client, like jconsole, to connect with Solr. Check out the Wiki page forsolrconfig.xml http://wiki.apache.org/solr/SolrJmx

more information. You may also find the following overview of JMX to be useful:
.http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html

Configuring JMX

JMX configuration is provided in . Please see the for more details.solrconfig.xml JMX Technology Home Page

A attribute can be used when configuring in . If this attribute is set, Solr uses it as the root name for allrootName <jmx /> solrconfig.xml
the MBeans that Solr exposes via JMX. The default name is "solr" followed by the core name.

Enabling/disabling JMX and securing access to MBeanServers is left up to the user by specifying appropriate JVM parameters
and configuration. Please explore the for more details.JMX Technology Home Page

Configuring an Existing MBeanServer

The command:

<jmx />

enables JMX support in Solr if and only if an existing MBeanServer is found. Use this if you want to configure JMX with JVM parameters. Remove
this to disable exposing Solr configuration and statistics to JMX. If this is specified, Solr will try to list all available MBeanServers and use the first
one to register MBeans.

Configuring an Existing MBeanServer with agentId

The command:

<jmx agentId="myMBeanServer" />

http://wiki.apache.org/solr/SolrOperationsTools
http://jmsbrdy.com/monitoring-java-applications-running-on-ec2-i
http://wiki.apache.org/solr/SolrJmx
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

279Apache Solr Reference Guide 4.4

1.
2.

3.
4.
5.

enables JMX support in Solr if and only if an existing MBeanServer is found matching the given agentId. If multiple servers are found, the first one
is used. If none is found, an exception is raised and depending on the configuration, Solr may refuse to start.

Configuring a New MBeanServer

The command:

<jmx serviceUrl="service:jmx:rmi:///jndi/rmi://localhost:9999/solrjmx" />

creates a new MBeanServer exposed for remote monitoring at the specific service URL. If the JMXConnectorServer can't be started (probably
because the serviceUrl is bad), an exception is thrown.

Example

Using the example jetty setup provided with Solr installation, the JMX support works like this in .jconsole.png

Run "ant example" to build the example war file.
Go to the example folder in the Solr installation and run the following command:

java -Dcom.sun.management.jmxremote -jar start.jar

Start (provided with the Sun JDK in the bin directory).jconsole
Connect to the "start.jar" shown in the list of local processes.
Switch to the "MBeans" tab. You should be able to see "solr" listed there.

Configuring a Remote Connection to Solr JMX

If you want to connect to Solr remotely, you need to pass in some extra parameters, documented here:

http://docs.oracle.com/javase/1.5.0/docs/guide/management/agent.html

If you are not able to connect from a remote machine, you may also need to specify the hostname of the Solr host by adding the following
property as well:

Making JMX connections into machines running behind NATs (e.g. Amazon's EC2 service) is not a simple task. The
 system property may help, but running on the server itself and using a remotejava.rmi.server.hostname jconsole

desktop is often the simplest solution. See .http://jmsbrdy.com/monitoring-java-applications-running-on-ec2-i

Running Solr on HDFS

Solr has support for writing and reading its index and transaction log files to the HDFS distributed filesystem. This does not use Hadoop
Map-Reduce to process Solr data, rather it only uses the HDFS filesystem for index and transaction log file storage.

Basic Configuration

To use HDFS rather than a local filesystem, you must be using Hadoop 2.0.x and configure properly.solrconfig.xml

You need to use an HdfsDirectoryFactory and a data dir of the form hdfs://host:port/path
You need to specify an UpdateLog location of the form hdfs://host:port/path
You should specify a lock factory type of ' ' or none.hdfs

With the default configuration files, you can start Solr on HDFS with the following command:

java -Dsolr.directoryFactory=HdfsDirectoryFactory
 -Dsolr.lock.type=hdfs
 -Dsolr.data.dir=hdfs://host:port/path
 -Dsolr.updatelog=hdfs://host:port/path -jar start.jar

http://docs.oracle.com/javase/1.5.0/docs/guide/management/agent.html
http://jmsbrdy.com/monitoring-java-applications-running-on-ec2-i

280Apache Solr Reference Guide 4.4

The Block Cache

For performance, the HdfsDirectoryFactory uses a Directory that will cache HDFS blocks. This caching mechanism is meant to replace the
standard file system cache that Solr utilizes so much. By default, this cache is allocated off heap. This cache will often need to be quite large and
you may need to raise the off heap memory limit for the specific JVM you are running Solr in. For the Oracle/OpenJDK JVMs, the follow is an
example command line parameter that you can use to raise the limit when starting Solr:

-XX:MaxDirectMemorySize=20g

Settings

The HdfsDirectoryFactory has a number of settings.

Block Cache Settings

Param Default Description

 solr.hdfs.blockcache.enabled true Enable the blockcache

 solr.hdfs.blockcache.read.enabled true Enable the read cache

 solr.hdfs.blockcache.write.enabled true Enable the write cache

solr.hdfs.blockcache.direct.memory.allocation true Enable direct memory allocation. If this is false, heap is used

 solr.hdfs.blockcache.slab.count 1 Number of memory slabs to allocate. Each slab is 128 MB in size.

NRTCachingDirectory Settings

Param Default Description

 solr.hdfs.nrtcachingdirectory.enable true Enable the use of NRTCachingDirectory

solr.hdfs.nrtcachingdirectory.maxmergesizemb 16 NRTCachingDirectory max segment size for merges

 solr.hdfs.nrtcachingdirectory.maxcachedmb 192 NRTCachingDirectory max cache size

HDFS Client Configuration Settings

solr.hdfs.confdir pass the location of HDFS client configuration files - needed for HDFS HA for example.

Param Default Description

solr.hdfs.confdir N/A Pass the location of HDFS client configuration files - needed for HDFS HA for example.

Example

281Apache Solr Reference Guide 4.4

<directoryFactory name="DirectoryFactory" class="solr.HdfsDirectoryFactory">
 <bool name="solr.hdfs.blockcache.enabled">true</bool>
 <int name="solr.hdfs.blockcache.slab.count">1</int>
 <bool name="solr.hdfs.blockcache.direct.memory.allocation">true</bool>
 <int name="solr.hdfs.blockcache.blocksperbank">16384</int>
 <bool name="solr.hdfs.blockcache.read.enabled">true</bool>
 <bool name="solr.hdfs.blockcache.write.enabled">true</bool>
 <bool name="solr.hdfs.nrtcachingdirectory.enable">true</bool>
 <int name="solr.hdfs.nrtcachingdirectory.maxmergesizemb">16</int>
 <int name="solr.hdfs.nrtcachingdirectory.maxcachedmb">192</int>
</directoryFactory>

Limitations

You must use an 'append-only' Lucene index codec because HDFS is an append only filesystem. The currently default codec used by Solr is
'append-only' and supported with HDFS.

282Apache Solr Reference Guide 4.4

SolrCloud
Apache Solr includes the ability to set up a cluster of Solr servers that combines fault tolerance and high availability. Called , theseSolrCloud
capabilities provide distributed indexing and search capabilities, supporting the following features:

Central configuration for the entire cluster
Automatic load balancing and fail-over for queries
ZooKeeper integration for cluster coordination and configuration.

SolrCloud is flexible distributed search and indexing, without a master node to allocate nodes, shards and replicas. Instead, Solr uses ZooKeeper
to manage these locations, depending on configuration files and schemas. Documents can be sent to any server and ZooKeeper will figure it out.

In this section, we'll cover everything you need to know about using Solr in SolrCloud mode. We've split up the details into the following topics:

Getting Started with SolrCloud
How SolrCloud Works

Shards and Indexing Data in SolrCloud
Distributed Requests
Read and Write Side Fault Tolerance
NRT, Replication, and Disaster Recovery with SolrCloud

SolrCloud Configuration and Parameters
Using ZooKeeper to Manage Configuration Files
Collections API
Parameter Reference
Command Line Utilities
SolrCloud with Legacy Configuration Files

SolrCloud Glossary

You can also find more information on the .Solr wiki page on SolrCloud

If upgrading an existing Solr 4.1 instance running with SolrCloud, be aware that the way the parameter is definedname_node
has changed. This may cause a situation where the uses the IP address of the machine instead of the servername_node
name, and thus SolrCloud is not aware of the existing node. If this happens, you can manually edit the parameter in host

 to refer to the server name, or set the in your system environment variables (since by default issolr.xml host solr.xml
configured to inherit the name from the environment variables). See also the section solr:Core Admin and Configuringhost
solr.xml for more information about the parameter.host

Getting Started with SolrCloud

SolrCloud is designed to provide a highly available, fault tolerant environment that can index your data for searching. It's a system in which data is
organized into multiple pieces, or shards, that can be housed on multiple machines, with replicas providing redundancy for both scalability and
fault tolerance, and a ZooKeeper server that helps manage the overall structure so that both indexing and search requests can be routed
properly.

This section explains SolrCloud and its inner workings in detail, but before you dive in, it's best to have an idea of what it is you're trying to
accomplish. This page provides a simple tutorial that explains how SolrCloud works on a practical level, and how to take advantage of its
capabilities. We'll use simple examples of configuring SolrCloud on a single machine, which is obviously not a real production environment, which
would include several servers or virtual machines. In a real production environment, you'll also use the real machine names instead of "localhost",
which we've used here.

In this section you will learn:

How to distribute data over multiple instances by using ZooKeeper and creating shards.
How to create redundancy for shards by using replicas.
How to create redundancy for the overall cluster by running multiple ZooKeeper instances.

Tutorials in this section:

Simple Two-Shard Cluster on the Same Machine
Two-Shard Cluster with Replicas
Using Multiple ZooKeepers in an Ensemble

http://wiki.apache.org/solr/SolrCloud

283Apache Solr Reference Guide 4.4

1.
2.

This tutorial assumes that you're already familiar with the basics of using Solr. If you need a refresher, please visit the Getting
 to get a grounding in Solr concepts. If you load documents as part of that exercise, you should start over with aStarted section

fresh Solr installation for these SolrCloud tutorials.

Simple Two-Shard Cluster on the Same Machine

Creating a cluster with multiple shards involves two steps:

Start the "overseer" node, which includes an embedded ZooKeeper server to keep track of your cluster.
Start any remaining shard nodes and point them to the running ZooKeeper.

Make sure to run Solr from the example directory in non-SolrCloud mode at least once before beginning; this process unpacks
the jar files necessary to run SolrCloud. However, do not load documents yet, just start it once and shut it down.

In this example, you'll create two separate Solr instances on the same machine. This is not a production-ready installation, but just a quick
exercise to get you familiar with SolrCloud.

For this exercise, we'll start by creating two copies of the directory that is part of the Solr distribution:example

cd <SOLR_DIST_HOME>
cp -r example node1
cp -r example node2

These copies of the directory can really be called anything. All we're trying to do is copy Solr's example app to the side so we can playexample
with it and still have a stand-alone Solr example to work with later if we want.

Next, start the first Solr instance, including the parameter, which also starts a local ZooKeeper instance:-DzkRun

cd node1
java -DzkRun -DnumShards=2 -Dbootstrap_confdir=./solr/collection1/conf
-Dcollection.configName=myconf -jar start.jar

Let's look at each of these parameters:

-DzkRun Starts up a ZooKeeper server embedded within Solr. This server will manage the cluster configuration. Note that we're doing this
example all on one machine; when you start working with a production system, you'll likely (or at least ause multiple ZooKeepers in an ensemble
stand-alone ZooKeeper instance). In that case, you'll replace this parameter with , which is thezkHost=<ZooKeeper Host:Port>
hostname:port of the stand-alone ZooKeeper.

-DnumShards Determines how many pieces you're going to break your index into. In this case we're going to break the index into two pieces, or
, so we're setting this value to 2. Note that . So if you expect to need moreshards once you start up a cluster, you cannot change this value

shards later on, build them into your configuration now (you can do this by starting all of your shards on the same server, then migrating them to
different servers later).

-Dbootstrap_confdir ZooKeeper needs to get a copy of the cluster configuration, so this parameter tells it where to find that information.

-Dcollection.configName This parameter determines the name under which that configuration information is stored by ZooKeeper. We've
used "myconf" as an example, it can be anything you'd like.

The , , and parameters need only be specified once,-DnumShards -Dbootstrap_confdir -Dcollection.configName
the first time you start Solr in SolrCloud mode. They load your configurations into ZooKeeper; if you run them again at a later
time, they will re-load your configurations and may wipe out changes you have made.

At this point you have one sever running, but it represents only half the shards, so you will need to start the second one before you have a fully
functional cluster. To do that, start the second instance in another window as follows:

284Apache Solr Reference Guide 4.4

cd node2
java -Djetty.port=7574 -DzkHost=localhost:9983 -jar start.jar

Because this node isn't the overseer, the parameters are a bit less complex:

-Djetty.port The only reason we even have to set this parameter is because we're running both servers on the same machine, so they can't
both use Jetty's default port. In this case we're choosing an arbitrary number that's different from the default. When you start on different
machines, you can use the same Jetty ports if you'd like.

-DzkHost This parameter tells Solr where to find the ZooKeeper server so that it can "report for duty". By default, the ZooKeeper server operates
on the Solr port plus 1000. (Note that if you were running an external ZooKeeper server, you'd simply point to that.)

At this point you should have two Solr windows running, both being managed by ZooKeeper. To verify that, open the Solr Admin UI in your
browser and go to the :Cloud screen

http://localhost:8983/solr/#/~cloud

Use the port of the first Solr you started; this is your overseer. You can go to the

You should see both node1 and node2, as in:

Now it's time to see the cluster in action. Start by indexing some data to one or both shards. You can do this any way you like, but the easiest way
is to use the , along with curl so that you can control which port (and thereby which server) gets the updates:exampledocs

curl http://localhost:8983/solr/update?commit=true -H "Content-Type: text/xml" -d
"@mem.xml"
curl http://localhost:7574/solr/update?commit=true -H "Content-Type: text/xml" -d
"@monitor2.xml"

At this point each shard contains a subset of the data, but a search directed at either server should span both shards. For example, the following
searches should both return the identical set of all results:

http://localhost:8983/solr/collection1/select?q=*:*

http://localhost:7574/solr/collection1/select?q=*:*

The reason that this works is that each shard knows about the other shards, so the search is carried out on all cores, then the results are
combined and returned by the called server.

In this way you can have two cores or two hundred, with each containing a separate portion of the data.

If you want to check the number of documents on each shard, you could add to each query and your searchdistrib=false
would not span all shards.

But what about providing high availability, even if one of these servers goes down? To do that, you'll need to look at replicas.

Two-Shard Cluster with Replicas

In order to provide high availability, you can create replicas, or copies of each shard that run in parallel with the main core for that shard. The
architecture consists of the original shards, which are called the leaders, and their replicas, which contain the same data but let the leader handle

http://localhost:8983/solr/#/~cloud
http://localhost:8983/solr/collection1/select?q=*:*
http://localhost:7574/solr/collection1/select?q=*:*

285Apache Solr Reference Guide 4.4

all of the administrative tasks such as making sure data goes to all of the places it should go. This way, if one copy of the shard goes down, the
data is still available and the cluster can continue to function.

Start by creating two more fresh copies of the example directory:

cd <SOLR_DIST_HOME>
cp -r example node3
cp -r example node4

Just as when we created the first two shards, you can name these copied directories whatever you want.

If you don't already have the two instances you created in the previous section up and running, go ahead and restart them. From there, it's simply
a matter of adding additional instances. Start by adding node3:

cd node3
java -Djetty.port=8900 -DzkHost=localhost:9983 -jar start.jar

Notice that the parameters are exactly the same as they were for starting the second node; you're simply pointing a new instance at the original
ZooKeeper. But if you look at the SolrCloud admin page, you'll see that it was added not as a third shard, but as a replica for the first:

This is because the cluster already knew that there were only two shards and they were already accounted for, so new nodes are added as
replicas. Similarly, when you add the fourth instance, it's added as a replica for the second shard:

cd node4
java -Djetty.port=7500 -DzkHost=localhost:9983 -jar start.jar

If you were to add additional instances, the cluster would continue this round-robin, adding replicas as necessary. Replicas are attached to
leaders in the order in which they are started, unless they are assigned to a specific shard with an additional parameter of (as a systemshardId
property, as in , the value of which is the ID number of the shard the new node should be attached to). Upon restarts, the node will-DshardId=1
still be attached to the same leader even if the is not defined again (it will always be attached to that machine).shardId

So where are we now? You now have four servers to handle your data. If you were to send data to a replica, as in:

286Apache Solr Reference Guide 4.4

1.
2.
3.

curl http://localhost:7500/solr/update?commit=true -H "Content-Type: text/xml" -d
"@money.xml"

the course of events goes like this:

Replica (in this case the server on port 7500) gets the request.
Replica forwards request to its leader (in this case the server on port 7574).
The leader processes the request, and makes sure that all of its replicas process the request as well.

In this way, the data is available via a request to any of the running instances, as you can see by requests to:

http://localhost:8983/solr/collection1/select?q=*:*

http://localhost:7574/solr/collection1/select?q=*:*

http://localhost:8900/solr/collection1/select?q=*:*

http://localhost:7500/solr/collection1/select?q=*:*

But how does this help provide high availability? Simply put, a cluster must have at least one server running for each shard in order to function. To
test this, shut down the server on port 7574, and then check the other servers:

http://localhost:8983/solr/collection1/select?q=*:*

http://localhost:8900/solr/collection1/select?q=*:*

http://localhost:7500/solr/collection1/select?q=*:*

You should continue to see the full set of data, even though one of the servers is missing. In fact, you can have multiple servers down, and as
long as at least one instance for each shard is running, the cluster will continue to function. If the leader goes down – as in this example – a new
leader will be "elected" from among the remaining replicas.

Note that when we talk about servers going down, in this example it's crucial that one particular server stays up, and that's the one running on port
8983. That's because it's our overseer – the instance running ZooKeeper. If that goes down, the cluster can continue to function under some
circumstances, but it won't be able to adapt to any servers that come up or go down.

That kind of single point of failure is obviously unacceptable. Fortunately, there is a solution for this problem: multiple ZooKeepers.

Using Multiple ZooKeepers in an Ensemble

To simplify setup for this example we're using the internal ZooKeeper server that comes with Solr, but in a production
environment, you will likely be using an external ZooKeeper. The concepts are the same, however. You can find instructions on
setting up an external ZooKeeper server here: http://zookeeper.apache.org/doc/r3.3.4/zookeeperStarted.html

To truly provide high availability, we need to make sure that not only do we also have at least one shard server running at all times, but also that
the cluster also has a ZooKeeper running to manage it. To do that, you can set up a cluster to use multiple ZooKeepers. This is called using a
ZooKeeper ensemble.

A ZooKeeper ensemble can keep running as long as more than half of its servers are up and running, so at least two servers in a three
ZooKeeper ensemble, 3 servers in a 5 server ensemble, and so on, must be running at any given time. These required servers are called a
quorum.

In this example, you're going to set up the same two-shard cluster you were using before, but instead of a single ZooKeeper, you'll run a
ZooKeeper server on three of the instances. Start by cleaning up any ZooKeeper data from the previous example:

cd <SOLR_DIST_DIR>
rm -r shard*/solr/zoo_data

Next you're going to restart the Solr servers, but this time, rather than having them all point to a single ZooKeeper instance, each will run
ZooKeeper listen to the rest of the ensemble for instructions.and

You're using the same ports as before – 8983, 7574, 8900 and 7500 – so any ZooKeeper instances would run on ports 9983, 8574, 9900 and
8500. You don't actually need to run ZooKeeper on every single instance, however, so assuming you run ZooKeeper on 9983, 8574, and 9900,
the ensemble would have an address of:

http://localhost:8983/solr/collection1/select?q=*:*
http://localhost:7574/solr/collection1/select?q=*:*
http://localhost:8900/solr/collection1/select?q=*:*
http://localhost:7500/solr/collection1/select?q=*:*
http://localhost:8983/solr/collection1/select?q=*:*
http://localhost:8900/solr/collection1/select?q=*:*
http://localhost:7500/solr/collection1/select?q=*:*
http://zookeeper.apache.org/doc/r3.3.4/zookeeperStarted.html

287Apache Solr Reference Guide 4.4

localhost:9983,localhost:8574,localhost:9900

This means that when you start the first instance, you'll do it like this:

cd node1
java -DzkRun -DnumShards=2 -Dbootstrap_confdir=./solr/collection1/conf \
 -Dcollection.configName=myconf
-DzkHost=localhost:9983,localhost:8574,localhost:9900 \
 -jar start.jar

Note that the order of the parameters matters. Make sure to specify the -DzkHost parameter after the other ZooKeeper-related
parameters.

You'll notice a lot of error messages scrolling past; this is because the ensemble doesn't yet have a quorum of ZooKeepers running.

Notice also, that this step takes care of uploading the cluster's configuration information to ZooKeeper, so starting the next server is more
straightforward:

cd node2
java -Djetty.port=7574 -DzkRun -DnumShards=2 \
 -DzkHost=localhost:9983,localhost:8574,localhost:9900 -jar start.jar

Once you start this instance, you should see the errors begin to disappear on both instances, as the ZooKeepers begin to update each other,
even though you only have two of the three ZooKeepers in the ensemble running.

Next start the last ZooKeeper:

cd node3
java -Djetty.port=8900 -DzkRun -DnumShards=2 \
 -DzkHost=localhost:9983,localhost:8574,localhost:9900 -jar start.jar

Finally, start the last replica, which doesn't itself run ZooKeeper, but references the ensemble:

cd node4
java -Djetty.port=7500 -DzkHost=localhost:9983,localhost:8574,localhost:9900 \
 -jar start.jar

Just to make sure everything's working properly, run a query:

http://localhost:8983/solr/collection1/select?q=*:*

and check the SolrCloud admin page:

http://localhost:8983/solr/collection1/select?q=*:*

288Apache Solr Reference Guide 4.4

Now you can go ahead and kill the server on 8983, but ZooKeeper will still work, because you have more than half of the original servers still
running. To verify, open the SolrCloud admin page on another server, such as:

http://localhost:8900/solr/#/~cloud

How SolrCloud Works

In this section, we'll discuss generally how SolrCloud works, covering these topics:

Nodes, Cores, Clusters and Leaders
Shards and Indexing Data in SolrCloud
Distributed Requests
Read and Write Side Fault Tolerance
NRT, Replication, and Disaster Recovery with SolrCloud

If you are already familiar with SolrCloud concepts and functionality, you can skip to the section covering SolrCloud Configuration and Parameters
.

Basic SolrCloud Concepts

On a single node, Solr has a that is essentially a single . If you want multiple indexes, you create multiple cores. With SolrCloud, acore index
single index can span multiple Solr instances. This means that a single index can be made up of multiple cores on different machines.

The cores that make up one logical index are called a . A collection is a essentially a single index that can span many cores, both forcollection
index scaling as well as redundancy. If, for instance, you wanted to move your two-core Solr setup to SolrCloud, you would have 2 collections,
each made up of multiple individual cores.

In SolrCloud you can have multiple collections. Collections can be divided into slices. Each slice can exist in multiple copies; these copies of the
same slice are called . One of the shards within a slice is the , designated by a leader-election process. Each shard is a physicalshards leader
index, so one shard corresponds to one core.

It is important to understand the distinction between a core and a collection. In classic single node Solr, a core is basically equivalent to a
collection in that it presents one logical index. In SolrCloud, the cores on multiple nodes form a collection. This is still just one logical index, but
multiple cores host different shards of the full collection. So a core encapsulates a single physical index on an instance. A collection is a
combination of all of the cores that together provide a logical index that is distributed across many nodes.

Differences Between Solr 3.x-style Scaling and SolrCloud

In Solr 3.x, Solr included following features:

The index and all changes to it are replicated to another Solr instance.
In distributed searches, queries are sent to multiple Solr instances and the results are combined into a single output.
Documents are available only after committing, which may be expensive and not very timely.
Sharding must be done manually, usually through SolrJ or a similar utility, and there is no distributed indexing: your index code must
understand your sharding schema.
Replication must be manually configured and can slow down access to recent content because the system needs to wait for a commit
and the replication to be triggered and to complete.
Failure recovery may result in the loss of your ability to index, and make recovering your indexing process difficult.

http://localhost:8900/solr/#/~cloud

289Apache Solr Reference Guide 4.4

1.

With SolrCloud, some capabilities are distributed:

SolrCloud automatically distributes index updates to the appropriate shard, distributes searches across multiple shards, and assigns
replicas to shards when replicas are available.
Near Real Time searching is supported, and if configured, documents are available after a "soft" commit.
Indexing accesses your sharding schema automatically.
Replication is automatic for backup purposes.
Recovery is robust and automatic.
ZooKeeper serves as a repository for cluster state.

Nodes, Cores, Clusters and Leaders

Nodes and Cores

In SolrCloud, a is Java Virtual Machine instance running Solr, commonly called a server. Each Solr core can also be considered a node. Anynode
node can contain both an instance of Solr and various kinds of data.

A Solr is basically an index of the text and fields found in documents. A single Solr instance can contain multiple "cores", which are separatecore
from each other based on local criteria. It might be that they are going to provide different search interfaces to users (customers in the US and
customers in Canada, for example), or they have security concerns (some users cannot have access to some documents), or the documents are
really different and just won't mix well in the same index (a shoe database and a dvd database).

When you start a new core in SolrCloud mode, it registers itself with ZooKeeper. This involves creating an Ephemeral node that will go away if the
Solr instance goes down, as well as registering information about the core and how to contact it (such as the base Solr URL, core name, etc).
Smart clients and nodes in the cluster can use this information to determine who they need to talk to in order to fulfill a request.

New Solr cores may also be created and associated with a collection via . Additional cloud-related parameters are discussed in the CoreAdmin
 page. Terms used for the CREATE action are:Parameter Reference

collection: the name of the collection to which this core belongs. Default is the name of the core.
shard: the shard id this core represents. (Optional: normally you want to be auto assigned a shard id.)
collection.<param>=<value>: causes a property of to be set if a new collection is being created. For example, use <param>=<value>

 to point to the config for a new collection.collection.configName=<configname>

For example:

curl 'http://localhost:8983/solr/admin/cores?
 action=CREATE&name=mycore&collection=collection1&shard=shard2'

Clusters

A cluster is set of Solr nodes managed by ZooKeeper as a single unit. When you have a cluster, you can always make requests to the cluster and
if the request is acknowledged, you can be sure that it will be managed as a unit and be durable, i.e., you won't lose data. Updates can be seen
right after they are made and the cluster can be expanded or contracted.

Creating a Cluster

A cluster is created as soon as you have more than one Solr instance registered with ZooKeeper. The section Getting Started with SolrCloud
reviews how to set up a simple cluster.

Resizing a Cluster

Clusters contain a settable number of shards. You set the number of shards for a new cluster by passing a system property, , whennumShards
you start up Solr. The parameter must be passed on the first startup of any Solr node, and is used to auto-assign which shard eachnumShards
instance should be part of. Once you have started up more Solr nodes than , the nodes will create replicas for each shard, distributingnumShards
them evenly across the node, as long as they all belong to the same collection.

To add more cores to your collection, simply start the new core. You can do this at any time and the new core will sync its data with the current
replicas in the shard before becoming active.

You can also avoid and manually assign a core a shard ID if you choose.numShards

The number of shards determines how the data in your index is broken up, so you cannot change the number of shards of the index after initially
setting up the cluster.

However, you do have the option of breaking your index into multiple shards to start with, even if you are only using a single machine. You can
then expand to multiple machines later. To do that, follow these steps:

http://wiki.apache.org/solr/CoreAdmin

290Apache Solr Reference Guide 4.4

1.

2.
3.

1.
2.

3.

Set up your collection by hosting multiple cores on a single physical machine (or group of machines). Each of these shards will be a
leader for that shard.
When you're ready, you can migrate shards onto new machines by starting up a new replica for a given shard on each new machine.
Remove the shard from the original machine. ZooKeeper will promote the replica to the leader for that shard.

Leaders and Replicas

The concept of a is similar to that of when thinking of traditional Solr replication. The leader is responsible for making sure the leader master
 are up to date with the same information stored in the leader.replicas

However, with SolrCloud, you don't simply have one master and one or more "slaves", instead you likely have distributed your search and index
traffic to multiple machines. If you have bootstrapped Solr with , for example, your indexes are split across both shards. In thisnumShards=2
case, both shards are considered leaders. If you start more Solr nodes after the initial two, these will be automatically assigned as replicas for the
leaders.

Replicas are assigned to shards in the order they are started the first time they join the cluster. This is done in a round-robin manner, unless the
new node is manually assigned to a shard with the parameter during startup. This parameter is used as a system property, as in shardId

, the value of which is the ID number of the shard the new node should be attached to.-DshardId=1

On subsequent restarts, each node joins the same shard that it was assigned to the first time the node was started (whether that assignment
happened manually or automatically). A node that was previously a replica, however, may become the leader if the previously assigned leader is
not available.

Consider this example:

Node A is started with the bootstrap parameters, pointing to a stand-alone ZooKeeper, with the parameter set to 2.numShards
Node B is started and pointed to the stand-alone ZooKeeper.

Nodes A and B are both shards, and have fulfilled the 2 shard slots we defined when we started Node A. If we look in the Solr Admin UI, we'll see
that both nodes are considered leaders (indicated with a solid blank circle).

Node C is started and pointed to the stand-alone ZooKeeper.

Node C will automatically become a replica of Node A because we didn't specify any other shard for it to belong to, and it cannot become a new
shard because we only defined two shards and those have both been taken.

Node D is started and pointed to the stand-alone ZooKeeper.

Node D will automatically become a replica of Node B, for the same reasons why Node C is a replica of Node A.

Upon restart, suppose that Node C starts before Node A. What happens? Node C will become the leader, while Node A becomes a replica of
Node C.

Shards and Indexing Data in SolrCloud

When your data is too large for one node, you can break it up and store it in sections by creating one or more . Each is a portion of theshards
logical index, or core, and it's the set of all nodes containing that section of the index.

A shard is a way of splitting a core over a number of "servers", or nodes. For example, you might have a shard for data that represents each
state, or different categories that are likely to be searched independently, but are often combined.

Before SolrCloud, Solr supported Distributed Search, which allowed one query to be executed across multiple shards, so the query was executed
against the entire Solr index and no documents would be missed from the search results. So splitting the core across shards is not exclusively a
SolrCloud concept. There were, however, several problems with the distributed approach that necessitated improvement with SolrCloud:

Splitting of the core into shards was somewhat manual.
There was no support for distributed indexing, which meant that you needed to explicitly send documents to a specific shard; Solr couldn't
figure out on its own what shards to send documents to.
There was no load balancing or failover, so if you got a high number of queries, you needed to figure out where to send them and if one
shard died it was just gone.

SolrCloud fixes all those problems. There is support for distributing both the index process and the queries automatically, and ZooKeeper
provides failover and load balancing. Additionally, every shard can also have multiple replicas for additional robustness.

Unlike Solr 3.x, in SolrCloud there are no masters or slaves. Instead, there are leaders and replicas. Leaders are automatically elected, initially on
a first-come-first-served basis, and then based on the Zookeeper process described at

.http://zookeeper.apache.org/doc/trunk/recipes.html#sc_leaderElection.

If a leader goes down, one of its replicas is automatically elected as the new leader. As each node is started, it's assigned to the shard with the
fewest replicas. When there's a tie, it's assigned to the shard with the lowest shard ID.

When a document is sent to a machine for indexing, the system first determines if the machine is a replica or a leader.

http://zookeeper.apache.org/doc/trunk/recipes.html#sc_leaderElection

291Apache Solr Reference Guide 4.4

If the machine is a replica, the document is forwarded to the leader for processing.
If the machine is a leader, SolrCloud determines which shard the document should go to, forwards the document the leader for that
shard, indexes the document for this shard, an d forwards the index notation to itself and any replicas.

Document Routing

Solr 4.1 added the ability to co-locate documents to improve query performance.

First, if you specify when you create a collection, you will use the "compositeId" router by default, which will then allow you to sendnumShards
documents with a prefix in the document ID. The prefix will be used to calculate the hash Solr uses to determine the shard a document is sent to
for indexing. The prefix can be anything you'd like it to be (it doesn't have to be the shard name, for example), but it must be consistent so Solr
behaves consistently. For example, if you wanted to co-locate documents for a customer, you could use the customer name or ID as the prefix. If
your customer is "IBM", for example, with a document with the ID "12345", you would insert the prefix into the document id field: "IBM!12345". The
exclamation mark ('!') is critical here, as it defines the shard to direct the document to.

Then at query time, you include the prefix(es) into your query with the parameter (i.e.,). In someshard.keys q=solr&shard.keys=IBM!
situations, this may improve query performance because it overcomes network latency when querying all the shards.

If you do not want to influence how documents are stored, you don't need to specify a prefix in your document ID.

If you did not create the collection with the parameter, you will be using the "implicit" router by default. In this case, you could use thenumShards
 parameter or a field to name a specific shard._shard_

Shard Splitting

Until Solr 4.3, when you created a collection in SolrCloud, you had to decide on your number of shards when you created the collection and you
could not change it later. It can be difficult to know in advance the number of shards that you need, particularly when organizational requirements
can change at a moment's notice, and the cost of finding out later that you chose wrong can be high, involving creating new cores and re-indexing
all of your data.

The ability to split shards is in the Collections API. It currently allows splitting a shard into two pieces. The existing shard is left as-is, so the split
action effectively makes two copies of the data as new shards. You can delete the old shard at a later time when you're ready.

More details on how to use shard splitting is in the section solr:Managing Collections via the Collections API.

Distributed Requests

One of the advantages of using SolrCloud is the ability to distribute requests among various shards that may or may not contain the data that
you're looking for. You have the option of searching over all of your data or just parts of it.

Querying all shards for a collection should look familiar; it's as though SolrCloud didn't even come into play:

http://localhost:8983/solr/collection1/select?q=*:*

If, on the other hand, you wanted to search just one shard, you can specify that shard, as in:

http://localhost:8983/solr/collection1/select?q=*:*&shards=localhost:7574/solr

If you want to search a group of shards, you can specify them together:

http://localhost:8983/solr/collection1/select?q=*:*&shards=localhost:7574/solr,localhost:8983/solr

Or you can specify a list of servers to choose from for load balancing purposes by using the pipe symbol (|):

http://localhost:8983/solr/collection1/select?q=*:*&shards=localhost:7574/solr|localhost:7500/solr

(If you have explicitly created your shards using ZooKeeper and have shard IDs, you can use those IDs rather than server addresses.)

You also have the option of searching multiple collections. For example:

http://localhost:8983/solr/collection1/select?collection=collection1,collection2,collection3

292Apache Solr Reference Guide 4.4

Read and Write Side Fault Tolerance

Read Side Fault Tolerance

With earlier versions of Solr, you had to set up your own load balancer. Now each individual node load balances requests across the replicas in a
cluster. You still need a load balancer on the 'outside' that talks to the cluster, or you need a smart client. (Solr provides a smart Java Solrj client
called CloudSolrServer.)

A smart client understands how to read and interact with ZooKeeper and only requests the ZooKeeper ensembles' address to start discovering to
which nodes it should send requests.

Write Side Fault Tolerance

SolrCloud supports near real-time actions, elasticity, high availability, and fault tolerance. What this means, basically, is that when you have a
large cluster, you can always make requests to the cluster, and if a request is acknowledged you are sure it will be durable; i.e., you won't lose
data. Updates can be seen right after they are made and the cluster can be expanded or contracted.

Recovery

A Transaction Log is created for each node so that every change to content or organization is noted. The log is used to determine which content
in the node should be included in a replica. When a new replica is created, it refers to the Leader and the Transaction Log to know which content
to include. If it fails, it retries.

Since the Transaction Log consists of a record of updates, it allows for more robust indexing because it includes redoing the uncommitted
updates if indexing is interrupted.

If a leader goes down, it may have sent requests to some replicas and not others. So when a new potential leader is identified, it runs a synch
process against the other replicas. If this is successful, everything should be consistent, the leader registers as active, and normal actions
proceed. If the a replica is too far out of synch, the system asks for a full replication/replay-based recovery.

If an update fails because cores are reloading schemas and some have finished but others have not, the leader tells the nodes that the update
failed and starts the recovery procedure.

NRT, Replication, and Disaster Recovery with SolrCloud

SolrCloud and Replication

Replication ensures redundancy for your data, and enables you to send an update request to any node in the shard. If that node is a replica, it
will forward the request to the leader, which then forwards it to all existing replicas, using versioning to make sure every replica has the most
up-to-date version. This architecture enables you to be certain that your data can be recovered in the event of a disaster, even if you are using
Near Real Time searching.

Near Real Time Searching

If you want to use the support, enable auto soft commits in your file before storing it into Zookeeper.NearRealtimeSearch solrconfig.xml
Otherwise you can send explicit soft commits to the cluster as you need.

SolrCloud doesn't work very well with separated data clusters connected by an expensive pipe. The root problem is that SolrCloud's architecture
sends documents to all the nodes in the cluster (on a per-shard basis), and that architecture is really dictated by the NRT functionality.

Imagine that you have a set of servers in China and one in the US that are aware of each other. Assuming 5 replicas, a single update to a shard
may make multiple trips over the expensive pipe before it's all done, probably slowing indexing speed unacceptably.

So the SolrCloud recommendation for this situation is to maintain these clusters separately; nodes in China don't even know that nodes exist in
the US and vice-versa. When indexing, you send the update request to one node in the US and one in China and all the node-routing after that is
local to the separate clusters. Requests can go to any node in either country and maintain a consistent view of the data.

However, if your US cluster goes down, you have to re-synchronize the down cluster with up-to-date information from China. The process
requires you to replicate the index from China to the repaired US installation and then get everything back up and working.

Disaster Recovery for an NRT system

Use of Near Real Time (NRT) searching affects the way that systems using SolrCloud behave during disaster recovery.

The procedure outlined below assumes that you are maintaining separate clusters, as described above. Consider, for example, an event in
which the US cluster goes down (say, because of a hurricane), but the China cluster is intact. Disaster recovery consists of creating the new
system and letting the intact cluster create a replicate for each shard on it, then promoting those replicas to be leaders of the newly created US
cluster.

Here are the steps to take:

http://wiki.apache.org/solr/NearRealtimeSearch

293Apache Solr Reference Guide 4.4

1.
2.
3.
4.

5.

6.
7.

Take the downed system offline to all end users.
Take the indexing process offline.
Repair the system.
Bring up one machine per shard in the repaired system as part of the ZooKeeper cluster on the good system, and wait for replication to
happen, creating a replica on that machine. (SoftCommits will not be repeated, but data will be pulled from the transaction logs if
necessary.)

SolrCloud will automatically use old-style replication for the bulk load. By temporarily having only one replica, you'll
minimize data transfer across a slow connection.

Bring the machines of the repaired cluster down, and reconfigure them to be a separate Zookeeper cluster again, optionally adding more
replicas for each shard.
Make the repaired system visible to end users again.
Start the indexing program again, delivering updates to both systems.

SolrCloud Configuration and Parameters

In this section, we'll cover the various configuration options for SolrCloud.

In general, with a new Solr 4 instance, the required configuration is in the sample and files. However, there mayschema.xml solrconfig.xml
be reasons to change default settings or configure the cloud elements manually.

The following topics are covered in these pages:

Setting Up an External ZooKeeper Ensemble
Using ZooKeeper to Manage Configuration Files
Collections API

Parameter Reference
Command Line Utilities
SolrCloud with Legacy Configuration Files

Setting Up an External ZooKeeper Ensemble

Although Solr comes bundled with Apache ZooKeeper, you should consider yourself discouraged from using this internal ZooKeeper in
production, because shutting down a redundant Solr instance will also shut down its ZooKeeper server, which might not be quite so redundant.
Because a ZooKeeper ensemble must have a quorum of more than half its servers running at any given time, this can be a problem.

The solution to this problem is to set up an external ZooKeeper ensemble. Fortunately, while this process can seem intimidating due to the
number of powerful options, setting up a simple ensemble is actually quite straightforward. The basic steps are as follows:

Download Apache ZooKeeper

The first step in setting up Apache ZooKeeper is, of course, to download the software. It's available from
.http://zookeeper.apache.org/releases.html

When using stand-alone ZooKeeper, you need to take care to keep your version of ZooKeeper updated with the latest version
distributed with Solr. Since you are using it as a stand-alone application, it does not get upgraded when you upgrade Solr.

Solr 4.0 uses Apache ZooKeeper v3.3.6.

Solr 4.1 uses Apache ZooKeeper v3.4.5.

Create the instance

Creating the instance is a simple matter of extracting the files into a specific target directory. The actual directory itself doesn't matter, as long as
you know where it is, and where you'd like to have ZooKeeper store its internal data.

Configure the instance

The next step is to configure your ZooKeeper instance. To do that, create the following file:

http://zookeeper.apache.org/releases.html

294Apache Solr Reference Guide 4.4

<ZOOKEEPER_HOME>/conf/zoo.cfg

and add the following information:

tickTime=2000
dataDir=/var/lib/zookeeper
clientPort=2181

The parameters are as follows:

tickTime: Part of what ZooKeeper does is to determine which servers are up and running at any given time, and the minimum session time out is
defined as two "ticks". The parameter specifies, in miliseconds, how long each tick should be.tickTime

dataDir: This is the directory in which ZooKeeper will store data about the cluster. This directory should start out empty.

clientPort: This is the port on which Solr will access ZooKeeper.

Once this file is in place, you're ready to start the ZooKeeper instance.

Run the instance

To run the instance, you can simply use the script provided:

bin/zkServer.sh start

Again, ZooKeeper provides a great deal of power through additional configurations, but delving into them is beyond the scope of this tutorial. For
more information, see the ZooKeeper page. For this example, however, the defaults are fine.Getting Started

Point Solr at the instance

Pointing Solr at the ZooKeeper instance you've created is a simple matter of using the parameter. For example, in the -DzkHost Getting Started
example you learned how to point to the internal ZooKeeper. In this example, you would point to the ZooKeeper you've started on port 2181:

cd shard1
java -DnumShards=2 -Dbootstrap_confdir=./solr/collection1/conf \
 -Dcollection.configName=myconf -DzkHost=localhost:2181 -jar start.jar
cd shard2java
java -Djetty.port=7574 -DzkHost=localhost:2181 -jar start.jar

As before, you must first upload the configuration information, and then you can connect a second instance.

Shut down ZooKeeper

To shut down ZooKeeper, use the zkServer script:

bin/zkServer.sh stop

Setting up a ZooKeeper ensemble

In the Getting Started example, using a ZooKeeper ensemble was a simple matter of starting multiple instances and pointing to them. With an
external ZooKeeper ensemble, you need to set things up just a little more carefully.

The difference is that rather than simply starting up the servers, you need to configure them to know about and talk to each other first. So your
original file might look like this:zoo.cfg

http://zookeeper.apache.org/doc/r3.4.5/zookeeperStarted.html

295Apache Solr Reference Guide 4.4

dataDir=/var/lib/zookeeperdata/1
clientPort=2181
initLimit=5
syncLimit=2
server.1=localhost:2888:3888
server.2=localhost:2889:3889
server.3=localhost:2890:3890

Here you see three new parameters:

initLimit: The time, in ticks, the server allows for connecting to the leader. In this case, you have 5 ticks, each of which is 2000 milliseconds long,
so the server will wait as long as 10 seconds to connect.

syncLimit: The time, in ticks, the server will wait before updating itself from the leader.

server.X: These are the locations of all servers in the ensemble, and the ports on which they communicate with each other. The server id, stored
in the file, identifies each server, so in the case of this first instance, you would create the file <dataDir>/myid

 with the content/var/lib/zookeeperdata/1/myid

1

Now, whereas with Solr you need to create entirely new directories to run multiple instances, all you need for a new ZooKeeper instance, even if
it's on the same machine for testing purposes, is a new configuration file. To complete the example you'll create two more configuration files.

The file should have the content:<ZOOKEEPER_HOME>/conf/zoo2.cfg

tickTime=2000
dataDir=c:/sw/zookeeperdata/2
clientPort=2182
initLimit=5
syncLimit=2
server.1=localhost:2888:3888
server.2=localhost:2889:3889
server.3=localhost:2890:3890

You'll also need to create :<ZOOKEEPER_HOME>/conf/zoo3.cfg

tickTime=2000
dataDir=c:/sw/zookeeperdata/3
clientPort=2183
initLimit=5
syncLimit=2
server.1=localhost:2888:3888
server.2=localhost:2889:3889
server.3=localhost:2890:3890

Finally, create your files in each of the directories so that each server knows which instance it is.myid dataDir

To start the servers, you can simply explicitly reference the configuration files:

cd <ZOOKEEPER_HOME>
bin/zkServer.sh start zoo.cfg
bin/zkServer.sh start zoo2.cfg
bin/zkServer.sh start zoo3.cfg

296Apache Solr Reference Guide 4.4

1.
2.
3.
4.
5.

Once these servers are running, you can reference them from Solr just as you did before:

java -DnumShards=2 -Dbootstrap_confdir=./solr/collection1/conf \
 -Dcollection.configName=myconf
-DzkHost=localhost:2181,localhost:2182,localhost:2183 -jar start.jar

For more information on getting the most power from your ZooKeeper installation, check out the .ZooKeeper Administrator's Guide

Using ZooKeeper to Manage Configuration Files

With SolrCloud your configuration files (particularly and) are kept in ZooKeeper. These files are uploaded whensolrconfig.xml schema.xml
you first start Solr in SolrCloud mode.

Startup Bootstrap Parameters

There are two different ways you can use system properties to upload your initial configuration files to ZooKeeper the first time you start Solr.
Remember that these are meant to be used only on first startup or when overwriting configuration files. Every time you start Solr with these
system properties, any current configuration files in ZooKeeper may be overwritten when names match.conf.set

The first way is to look at and upload the for each core found. The name will be the collection name for that core,solr.xml conf config set
and collections will use the that has a matching name. One parameter is used with this approach, . If you pass config set bootstrap_conf

 on startup, each core you have configured will have its configuration files automatically uploaded and linked to the-Dbootstrap_conf=true
collection containing the core.

An alternate approach is to upload the given directory as a with the given name. No linking of collection to is done.config set config set
However, if only one exists, a collection will autolink to it. Two parameters are used with this approach:conf.set

Parameter Default value Description

bootstrap_confdir No default If you pass on startup, that specific directory of-bootstrap_confdir=<directory>
configuration files will be uploaded to ZooKeeper with a name defined by theconf.set
system property below, .collection.configName

collection.configName Defaults to
configuration1

Determines the name of the pointed to by .conf.set bootstrap_confdir

Using the , you can download and re-upload these configuration files.ZooKeeper Command Line Interface (zkCLI)

It's important to keep these files under version control.

Managing Your SolrCloud Configuration Files

To update or change your SolrCloud configuration files:

Download the latest configuration files from ZooKeeper, using the source control checkout process.
Make your changes.
Commit your changed file to source control.
Push the changes back to ZooKeeper.
Reload the collection so that the changes will be in effect.

There are some scripts available with the ZooKeeper Command Line Utility to help manage changes to configuration files, discussed in the
section on .Command Line Utilities

Collections API

The Collections API is used to enable you to create, remove, or reload collections, but in the context of SolrCloud you can also use it to create
collections with a specific number of shards and replicas.

The base URL for all API calls below is .http://<hostname>:<port>/solr

API Entry Points
Create a Collection
Reload a Collection

http://zookeeper.apache.org/doc/r3.4.5/zookeeperAdmin.html

297Apache Solr Reference Guide 4.4

Split a Shard
Delete a Shard
Create an Alias for a Collection
Delete a Collection Alias
Delete a Collection

API Entry Points

/admin/collections?action=CREATE: a collectioncreate
: a collection/admin/collections?action=RELOAD reload

: a shard into two new shards/admin/collections?action=SPLITSHARD split
: an inactive shard/admin/collections?action=DELETESHARD delete
: for a collection/admin/collections?action=CREATEALIAS create an alias
: for a collection/admin/collections?action=DELETEALIAS delete an alias

: a collection/admin/collections?action=DELETE delete

Create a Collection

/admin/collections?action=CREATE&name= &numShards= &replicationFactor= &maxShardsPerNode=name number number
&createNodeSet= &collection.configName=number nodelist configname

Input

Query Parameters

Key Type Required Default Description

name string Yes The name of the collection to be created.

numShards integer Yes null The number of shards to be created as part of the collection.

replicationFactor integer Yes null The number of replicas to be created for each shard.

maxShardsPerNode integer No 1 When creating collections, the shards and/or replicas are spread across all available
(i.e., live) nodes, and two replicas of the same shard will never be on the same node.
If a node is not live when the CREATE operation is called, it will not get any parts of
the new collection, which could lead to too many replicas being created on a single
live node. Defining sets a limit on the number of replicasmaxShardsPerNode
CREATE will spread to each node. If the entire collection can not be fit into the live
nodes, no collection will be created at all.

createNodeSet string No null Allows defining the nodes to spread the new collection across. If not provided, the
CREATE operation will create shard-replica spread across all live Solr nodes. The
format is a comma-separated list of node_names, such as

.localhost:8983_solr,localhost:8984_solr,localhost:8985_solr

collection.configName string No the
collection
name

Defines the name of the configurations (which must already be stored in ZooKeeper)
to use for this collection. If not provided, Solr will default to the collection name as the
configuration name.

Output

Output Content

The response will include the status of the request and the new core names. If the status is anything other than "success", an error message will
explain why the request failed.

Examples

Input

http://localhost:8983/solr/admin/collections?action=CREATE&name=newCollection&numShards=2&replicationFactor=1

Output

298Apache Solr Reference Guide 4.4

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3764</int>
 </lst>
 <lst name="success">
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3450</int>
 </lst>
 <str name="core">newCollection_shard1_replica1</str>
 <str name="saved">/Applications/solr-4.3.0/example/solr/solr.xml</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3597</int>
 </lst>
 <str name="core">newCollection_shard2_replica1</str>
 <str name="saved">/Applications/solr-4.3.0/example/solr/solr.xml</str>
 </lst>
 </lst>
</response>

Reload a Collection

/admin/collections?action=RELOAD&name=name

The RELOAD action is used when you have changed a configuration in ZooKeeper.

Input

Query Parameters

Key Type Required Description

name string Yes The name of the collection to reload.

Output

Output Content

The response will include the status of the request and the cores that were reloaded. If the status is anything other than "success", an error
message will explain why the request failed.

Examples

Input

http://localhost:8983/solr/admin/collections?action=RELOAD&name=newCollection

Output

299Apache Solr Reference Guide 4.4

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1551</int>
 </lst>
 <lst name="success">
 <lst name="10.0.1.6:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">761</int>
 </lst>
 </lst>
 <lst name="10.0.1.4:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1527</int>
 </lst>
 </lst>
 </lst>
</response>

Split a Shard

Splitting a shard will take an existing shard and break it into two pieces. The original shard will continue to contain the same data as-is but it will
start re-routing requests to the new shards. The new shards will have as many replicas as the original shard. After splitting a shard, you should
issue a commit to make the documents visible, and then you can remove the original shard (with the Core API or Solr Admin UI) when ready.

This command allows for seamless splitting and requires no downtime. A shard being split will continue to accept query and indexing requests
and will automatically start routing them to the new shards once this operation is complete. This command can only be used for SolrCloud
collections created with "numShards" parameter i.e. collections which rely on Solr's hash based routing mechanism. The split is performed by
dividing the original shard's hash range into two equal partitions and dividing up the documents in the original shard according to the new
sub-ranges.

Note that this is a synchronous operation and it can take some time to split a large shard. Therefore, a read timeout does not necessarily imply
failure and a retry should be made after verifying the state of the cluster.

/admin/collections?action=SHARDSPLIT&collection= &shard=name shardID

Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection that includes the shard to be split.

shard string Yes The name of the shard to be split.

Output

Output Content

The output will include the status of the request and the new shard names, which will use the original shard as their basis, adding an underscore
and a number. For example, "shard1" will become "shard1_0" and "shard1_1". If the status is anything other than "success", an error message
will explain why the request failed.

Examples

Input
Split shard1 of the "anotherCollection" collection.

300Apache Solr Reference Guide 4.4

http://10.0.1.6:8983/solr/admin/collections?action=SPLITSHARD&collection=anotherCollection&shard=shard1

Output

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">6120</int>
 </lst>
 <lst name="success">
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3673</int>
 </lst>
 <str name="core">anotherCollection_shard1_1_replica1</str>
 <str name="saved">/Applications/solr-4.3.0/example/solr/solr.xml</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3681</int>
 </lst>
 <str name="core">anotherCollection_shard1_0_replica1</str>
 <str name="saved">/Applications/solr-4.3.0/example/solr/solr.xml</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">6008</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">6007</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">71</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
 <str name="core">anotherCollection_shard1_1_replica1</str>
 <str name="status">EMPTY_BUFFER</str>
 </lst>
 <lst>

301Apache Solr Reference Guide 4.4

 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
 <str name="core">anotherCollection_shard1_0_replica1</str>
 <str name="status">EMPTY_BUFFER</str>
 </lst>

302Apache Solr Reference Guide 4.4

 </lst>
</response>

Delete a Shard

Deleting a shard will unload all replicas of the shard and remove them from . It will only remove shards that are inactive, orclusterstate.json
which have no range given for custom sharding.

/admin/collections?action=DELETESHARD&shard= &collection=shardID name

Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection that includes the shard to be split.

shard string Yes The name of the shard to be split.

Output

Output Content

The output will include the status of the request. If the status is anything other than "success", an error message will explain why the request
failed.

Examples

Input
Delete 'shard1' of the "anotherCollection" collection.

http://10.0.1.6:8983/solr/admin/collections?action=DELETESHARD&collection=anotherCollection&shard=shard1

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">558</int>
 </lst>
 <lst name="success">
 <lst name="10.0.1.4:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">27</int>
 </lst>
 </lst>
 </lst>
</response>

Create an Alias for a Collection

/admin/collections?action=CREATEALIAS&name= &collections=name collectionlist

Input

303Apache Solr Reference Guide 4.4

Query Parameters

Key Type Required Description

name string Yes The alias name to be created.

collections string Yes The list of collections to be aliased, separated by commas.

Output

Output Content

The output will simply be a responseHeader with details of the time it took to process the request. To confirm the creation of the alias, you can
look in the Solr Admin UI, under the Cloud section and find the file.aliases.json

Examples

Input
Create an alias named "testalias" and link it to the collections named "anotherCollection" and "testCollection".

http://10.0.1.6:8983/solr/admin/collections?action=CREATEALIAS&name=testalias&collections=anotherCollection,testCollection

Output

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">122</int>
 </lst>
</response>

Delete a Collection Alias

/admin/collections?action=DELETEALIAS&name=name

Input

Query Parameters

Key Type Required Description

name string Yes The name of the alias to delete.

Output

Output Content

The output will simply be a responseHeader with details of the time it took to process the request. To confirm the removal of the alias, you can
look in the Solr Admin UI, under the Cloud section, and find the file.aliases.json

Examples

Input
Remove the alias named "testalias".

http://10.0.1.6:8983/solr/admin/collections?action=DELETEALIAS&name=testalias

304Apache Solr Reference Guide 4.4

Output

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">117</int>
 </lst>
</response>

Delete a Collection

/admin/collections?action=DELETE&name=collection

Input

Query Parameters

Key Type Required Description

name string Yes The name of the collection to delete.

Output

Output Content

The response will include the status of the request and the cores that were deleted. If the status is anything other than "success", an error
message will explain why the request failed.

Examples

Input
Delete the collection named "newCollection".

http://10.0.1.6:8983/solr/admin/collections?action=DELETE&name=newCollection

Output

305Apache Solr Reference Guide 4.4

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">603</int>
 </lst>
 <lst name="success">
 <lst name="10.0.1.6:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">19</int>
 </lst>
 <str name="saved">/Applications/solr-4.3.0/example/solr/solr.xml</str>
 </lst>
 <lst name="10.0.1.4:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">67</int>
 </lst>
 <str name="saved">/Applications/solr-4.3.0/example/solr/solr.xml</str>
 </lst>
 </lst>
</response>

Parameter Reference

Cluster Parameters

numShards Defaults to
1

The number of shards to hash documents to. There must be one leader per shard and each leader can have N
replicas.

SolrCloud Instance Parameters

These are set in , but by default they are set up to also work with system properties.solr.xml

host Defaults to the first local host
address found

If the wrong host address is found automatically, you can override the host address
with this parameter.

hostPort Defaults to the jetty.port system
property

The port that Solr is running on. By default this is found by looking at the
 system property.jetty.port

hostContext Defaults to solr The context path for the Solr web application.

SolrCloud Instance ZooKeeper Parameters

zkRun Defaults to
localhost:<solrPort+1001>

Causes Solr to run an embedded version of ZooKeeper. Set to the address of
ZooKeeper on this node; this allows us to know who you are in the list of addresses
in the connect string. Use -DzkRun to get the default value.zkHost

zkHost No default The host address for ZooKeeper. Usually this is a comma-separated list of
addresses to each node in your ZooKeeper ensemble.

zkClientTimeout Defaults to 15000 The time a client is allowed to not talk to ZooKeeper before its session expires.

zkRun and are set up using system properties. is set up in by default, but can also be set using azkHost zkClientTimeout solr.xml
system property.

SolrCloud Core Parameters

306Apache Solr Reference Guide 4.4

shardId Defaults to being automatically assigned based on numShards Allows you to specify the id used to group cores into shards.

shardId can be configured in for each core element as an attribute.solr.xml

Additional cloud related parameters are discussed in .Solr Cores and solr.xml

Command Line Utilities

Solr's Administration page (found by default at), provides a section with menu items for monitoring indexing andhttp://hostname:8983/solr/admin
performance statistics, information about index distribution and replication, and information on all threads running in the JVM at the time. There is
also a section where you can run queries, and an assistance area.

In addition, SolrCloud provides its own administration page (found by default at), as well as a few toolshttp://localhost:8983/solr/#/~cloud
available via ZooKeeper's Command Line Utility (CLI). The CLI lets you upload configuration information to ZooKeeper, in the same two ways that
were shown in the examples in . It also provides a few other commands that let you link collection sets to collections, makeParameter Reference
ZooKeeper paths or clear them, and download configurations from ZooKeeper to the local filesystem.

Using The ZooKeeper CLI

ZooKeeper has a utility that lets you pass command line parameters: (for Windows environments) and (for Unixzkcli.bat zkcli.sh
environments).

zkcli Parameters

The command takes the form where the command to run can be , , , , zkcli -cmd <arg> bootstrap upconfig downconfig linkconfig
, or .makepath put clear

Parameter Usage Meaning

-c -collection <arg> For : name of the collection.linkconfig

-d --confdir <arg For : a directory of configuration files.upconfig

-h --help Bring up the help page.

-n --confname <arg> For , : name of the configuration set.upconfig linkconfig

-r --runzk <arg> Run ZooKeeper internally by passing the Solr run port; only for clusters on one machine.

-s --solrhome <arg> For bootstrap, <location>.runzk: solrhome

-z --zkhost <arg> ZooKeeper host address. This parameter is for all CLI commands.mandatory

ZooKeeper CLI Examples

Below are some examples of using the CLI:zkcli

Uploading a Configuration Directory

java -classpath example/solr-webapp/WEB-INF/lib/*
 org.apache.solr.cloud.ZkCLI -cmd upconfig -zkhost 127.0.0.1:9983
 -confdir example/solr/collection1/conf -confname conf1 -solrhome example/solr

Put arbitrary data into a new file

java -classpath example/solr-webapp/WEB-INF/lib/*
 org.apache.solr.cloud.ZkCLI -zkhost 127.0.0.1:9983 -put /data.txt 'some data'

Linking a Collection to a Configuration Set

http://hostname:8983/solr/admin
http://localhost:8983/solr/#/~cloud

307Apache Solr Reference Guide 4.4

java -classpath example/solr-webapp/webapp/WEB-INF/lib/*
 org.apache.solr.cloud.ZkCLI -cmd linkconfig -zkhost 127.0.0.1:9983
 -collection collection1 -confname conf1 -solrhome example/solr

Bootstrapping All the Configuration Directories in solr.xml

java -classpath example/solr-webapp/webapp/WEB-INF/lib/*
 org.apache.solr.cloud.ZkCLI -cmd bootstrap -zkhost 127.0.0.1:9983
 -solrhome example/solr

Scripts

There are scripts in that handle the classpath and class name for you if you are using Solr out of the box with Jetty.example/cloud-scripts
Commands then become:

sh zkcli.sh -cmd linkconfig -zkhost 127.0.0.1:9983
 -collection collection1 -confname conf1 -solrhome example/solr

SolrCloud with Legacy Configuration Files

All of the required configuration is already set up in the sample configurations shipped with Solr. You only need to add the following if you are
migrating old configuration files. Do not remove these files and parameters from a new Solr instance if you intend to use Solr in SolrCloud mode.

These properties exist in 3 files: , , and .schema.xml solrconfig.xml solr.xml

1. In , you must have a field defined:schema.xml _version_

<field name="_version_" type="long" indexed="true" stored="true" multiValued="false"/>

2. In , you must have an defined. This should be defined in the section.solrconfig.xml UpdateLog updateHandler

<updateHandler>
...
 <updateLog>
 <str name="dir">${solr.data.dir:}</str>
 </updateLog>
...
</updateHandler>

3. You must have a replication handler called defined:/replication

<requestHandler name="/replication" startup="lazy" />

There are several parameters available for this handler, discussed in the section .Index Replication

4. You must have a Realtime Get handler called "/get" defined:

308Apache Solr Reference Guide 4.4

<requestHandler name="/get">
 <lst name="defaults">
 <str name="omitHeader">true</str>
 </lst>
</requestHandler>

The parameters for this handler are discussed in the section .RealTime Get

5. You must have the admin handlers defined:

<requestHandler name="/admin/" class="solr.admin.AdminHandlers" />

6. And you must leave the admin path in as the default:solr.xml

<cores adminPath="/admin/cores" />

7. The is part of the default update chain and is automatically injected into any of your custom update chains, so youDistributedUpdateProcessor
don't actually need to make any changes for this capability. However, should you wish to add it explicitly, you can still add it to the

 file as part of an . For example:solrconfig.xml updateRequestProcessorChain

<updateRequestProcessorChain name="sample">
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.DistributedUpdateProcessorFactory"/>
 <processor class="my.package.UpdateFactory"/>
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

If you do not want the DistributedUpdateProcessFactory auto-injected into your chain (for example, if you want to use SolrCloud functionality, but
you want to distribute updates yourself) then specify the update processor factory in yourNoOpDistributingUpdateProcessorFactory
chain:

<updateRequestProcessorChain name="sample">
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.NoOpDistributingUpdateProcessorFactory"/>
 <processor class="my.package.MyDistributedUpdateFactory"/>
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

In the update process, Solr skips updating processors that have already been run on other nodes.

SolrCloud Glossary

SolrCloud Glossary

Node : A JVM instance running Solr; a server.

Cluster : A cluster is a set of Solr nodes managed as a single unit.

Core : An individual Solr instance (represents a logical index). Multiple cores can run on a single node.

Shard : In Solr, a logical section of a single collection. This may be spread across multiple nodes of the cluster. Each shard can have as

http://wiki.apache.org/solr/UpdateRequestProcessor?#Distributed_Updates

309Apache Solr Reference Guide 4.4

many replicas as needed.

Leader : Each shard has one node identified as its leader. All the writes for documents belonging to a shard are routed through the
leader.

Collection (Solr) : Multiple documents that make up one logical index. A collection must have a single schema, but can be spread over
multiple cores. A cluster can have multiple collections. When you create a collection, you specify its number of shards. You may have
many collections in the same set of servers, each with a different number of shards.

ZooKeeper : Apache ZooKeeper keeps track of configuration and naming, among other things, for a cluster of Solr nodes. A ZooKeeper
cluster is used as (1) the central configuration store for the cluster, (2) a coordinator for operations requiring distributed synchronization,
and (3) the system of record for cluster topology.

Ensemble : Multiple ZooKeeper instances running simultaneously.

Collection (ZooKeeper) : A group of cores managed together as part of a SolrCloud installation.

Overseer : The Overseer coordinates the clusters. It keeps track of the existing nodes and shards and assigns shards to nodes.

Transaction Log : An append-only log of write operations maintained by each node.

Document : A group of fields and their values. Documents are the basic unit of storage, and their specific locations are found using an
index. Documents are assigned to shards using standard hashing, or by specifically assigning a shard within the document ID.
Documents are versioned after each write operation.

Related Pages

Solr Glossary

310Apache Solr Reference Guide 4.4

Legacy Scaling and Distribution
This section describes how to set up distribution and replication in Solr. It is considered "legacy" behavior, since while it is still supported in Solr,
the SolrCloud functionality described in the previous chapter is where the current development is headed. However, if you don't need all that
SolrCloud delivers, search distribution and index replication may be sufficient.

This section covers the following topics:

Introduction to Scaling and Distribution: Conceptual information about distribution and replication in Solr.

Distributed Search with Index Sharding: Detailed information about implementing distributed searching in Solr.

Index Replication: Detailed information about replicating your Solr indexes.

Combining Distribution and Replication: Detailed information about replicating shards in a distributed index.

Merging Indexes: Information about combining separate indexes in Solr.

Introduction to Scaling and Distribution

Both Lucene and Solr were designed to scale to support large implementations with minimal custom coding. This section covers:

distributing an index across multiple servers
replicating an index on multiple servers
merging indexes

If you need full scale distribution of indexes and queries, as well as replication, load balancing and failover, you may want to use SolrCloud. Full
details on configuring and using SolrCloud is available in the section .SolrCloud

What Problem Does Distribution Solve?

If searches are taking too long or the index is approaching the physical limitations of its machine, you should consider distributing the index across
two or more Solr servers.

To distribute an index, you divide the index into partitions called shards, each of which runs on a separate machine. Solr then partitions searches
into sub-searches, which run on the individual shards, reporting results collectively. The architectural details underlying index sharding are
invisible to end users, who simply experience faster performance on queries against very large indexes.

What Problem Does Replication Solve?

Replicating an index is useful when:

You have a large search volume which one machine cannot handle, so you need to distribute searches across multiple read-only copies
of the index.
There is a high volume/high rate of indexing which consumes machine resources and reduces search performance on the indexing
machine, so you need to separate indexing and searching.
You want to make a backup of the index (see).Backing Up

Distributed Search with Index Sharding

When an index becomes too large to fit on a single system, or when a query takes too long to execute, an index can be split into multiple shards,
and Solr can query and merge results across those shards. A single shard receives the query, distributes the query to other shards, and
integrates the results. You can find additional information about distributed search on the Solr wiki: .http://wiki.apache.org/solr/DistributedSearch

The figure below compares a single server to a distributed configuration with two shards.

http://wiki.apache.org/solr/DistributedSearch

311Apache Solr Reference Guide 4.4

1.
2.

If single queries are currently fast enough and if one simply wants to expand the capacity (queries/sec) of the search system,
then standard index replication (replicating the entire index on multiple servers) should be used instead of index sharding.

Update commands may be sent to any server with distributed indexing configured correctly. Document adds and deletes are forwarded to the
appropriate server/shard based on a hash of the unique document id. commands and commands are sent to everycommit deleteByQuery
server in .shards

Update reorders (i.e., replica A may see update X then Y, and replica B may see update Y then X). also handles reorders thedeleteByQuery
same way, to ensure replicas are consistent. All replicas of a shard are consistent, even if the updates arrive in a different order on different
replicas.

Distributed Support for Date and Numeric Range Faceting

You can now use range faceting for anything that uses date math (both date and numeric ranges). In addition, you can now use NOW by
including in the original request to sync remote shard requests to a common 'now' time. For example, usingFacetParams.FACET_DATE_NOW
range faceting is a convenient way to keep the rest of your request the same, but check how the current date affects your date boosting
strategies.

FacetParams.FACET_DATE_NOW takes as a parameter a (stringified) long that is the number of milliseconds from 1 Jan 1970 00:00, i.e., the
returned value from a call. This delineates it from a 'searchable' time and avoids superfluous date parsing.System.currentTimeMillis()

NOTE: This parameter affects date facet timing only. If there are other areas of a query that rely on 'NOW', these will not
interpret this value.

For distributed , Solr steps through each date facet, adding and merging results from the current shard.facet_dates

Any time and/or time zone differences are NOT taken into account here. The issue of time zone/skew on distributed shards is currently handled
by passing a parameter in the search query. This is then used by the participating shards to use as 'now'.facet.date.now=<epochtime>

If you use the first encountered shard's as the basis for subsequent shards' data to be merged in, if subsequent shards' facet_dates
 are skewed in relation to the first by a >1 'gap', these 'earlier' or 'later' facets will not be merged in.facet_dates

There are two reasons for this:

Performance: It is of course faster to check lists against a single map's data, rather than against each other.facet_date
If 'earlier' and/or 'later' are added in, this makes the time range larger than that which was requested (e.g. a request forfacet_dates
one hour's worth of facets could bring back 2, 3, or more hours of data).

Distributing Documents across Shards

It is up to you to get all your documents indexed on each shard of your server farm. Solr does not include out-of-the-box support for distributed
indexing, but your method can be as simple as a round robin technique. Just index each document to the next server in the circle. (For more
information about indexing, see .)Indexing and Basic Data Operations

A simple hashing system would also work. The following should serve as an adequate hashing function.

uniqueId.hashCode() % numServers

One advantage of this approach is that it is easy to know where a document is if you need to update it or delete. In contrast, if you are moving
documents around in a round-robin fashion, you may not know where a document actually is.

Solr does not calculate universal term/doc frequencies. For most large-scale implementations, it is not likely to matter that Solr calculates TD/IDF
at the shard level. However, if your collection is heavily skewed in its distribution across servers, you may find misleading relevancy results in your

312Apache Solr Reference Guide 4.4

searches. In general, it is probably best to randomly distribute documents to your shards.

You can directly configure aspects of the concurrency and thread-pooling used within distributed search in Solr. This allows for finer grained
control and you can tune it to target your own specific requirements. The default configuration favors throughput over latency.

To configure the standard handler, provide a configuration like this:

<requestHandler name="standard" class="solr.SearchHandler" default="true">
 <!-- other params go here -->
 <shardHandlerFactory class="HttpShardHandlerFactory">
 <int name="socketTimeOut">1000</int>
 <int name="connTimeOut">5000</int>
 </shardHandler>
 </requestHandler>

The parameters that can be specified are as follows:

Parameter Default Explanation

socketTimeout 0 (use OS default) The amount of time in ms that a socket is allowed to wait.

connTimeout 0 (use OS default) The amount of time in ms that is accepted for binding / connecting a socket

maxConnectionsPerHost 20 The maximum number of connections that is made to each individual shard in a
distributed search.

corePoolSize 0 The retained lowest limit on the number of threads used in coordinating distributed
search.

maximumPoolSize Integer.MAX_VALUE The maximum number of threads used for coordinating distributed search.

maxThreadIdleTime 5 seconds The amount of time to wait for before threads are scaled back in response to a reduction
in load.

sizeOfQueue -1 If specified, the thread pool will use a backing queue instead of a direct handoff buffer.
High throughput systems will want to configure this to be a direct hand off (with -1).
Systems that desire better latency will want to configure a reasonable size of queue to
handle variations in requests.

fairnessPolicy false Chooses the JVM specifics dealing with fair policy queuing, if enabled distributed
searches will be handled in a First in First out fashion at a cost to throughput. If disabled
throughput will be favored over latency.

Executing Distributed Searches with the Parametershards

If a query request includes the parameter, the Solr server distributes the request across all the shards listed as arguments to theshards
parameter. The parameter uses this syntax:shards

host:port/base_url[,host:port/base_url]*

For example, the parameter below causes the search to be distributed across two Solr servers: and , both of which areshards solr1 solr2
running on port 8983:

http://localhost:8983/solr/select?

shards=solr1:8983/solr,solr2:8983/solr&indent=true&q=ipod+solr

Rather than require users to include the shards parameter explicitly, it is usually preferred to configure this parameter as a default in the
RequestHandler section of .solrconfig.xml

Do not add the parameter to the standard requestHandler; otherwise, search queries may enter an infinite loop.shards
Instead, define a new requestHandler that uses the parameter, and pass distributed search requests to that handler.shards

Currently, only query requests are distributed. This includes requests to the standard request handler (and subclasses such as the DisMax
RequestHandler), and any other handler () using standard components thatorg.apache.solr.handler.component.searchHandler
support distributed search.

http://localhost:8983/solr/select?

313Apache Solr Reference Guide 4.4

1.

Where , distributed responses will include information about the shard (where each shard represents a logically differentshards.info=true
index or physical location), such as the following:

<lst name="shards.info">
 <lst name="localhost:7777/solr">
 <long name="numFound">1333</long>
 <float name="maxScore">1.0</float>
 <long name="time">686</long>
 </lst>
 <lst name="localhost:8888/solr">
 <long name="numFound">342</long>
 <float name="maxScore">1.0</float>
 <long name="time">602</long>
 </lst>
</lst>

The following components support distributed search:

The component, which returns documents matching a queryQuery
The component, which processes facet.query and facet.field requests where facets are sorted by count (the default).Facet
The component, which enables Solr to include "highlighted" matches in field values.Highlighting
The component, which returns simple statistics for numeric fields within the DocSet.Stats
The component, which helps with debugging.Debug

Limitations to Distributed Search

Distributed searching in Solr has the following limitations:

Each document indexed must have a unique key.
If Solr discovers duplicate document IDs, Solr selects the first document and discards subsequent ones.
Inverse-document frequency (IDF) calculations cannot be distributed.
The index for distributed searching may become momentarily out of sync if a commit happens between the first and second phase of the
distributed search. This might cause a situation where a document that once matched a query and was subsequently changed may no
longer match the query but will still be retrieved. This situation is expected to be quite rare, however, and is only possible for a single
query request.
Distributed searching supports only sorted-field faceting, not date faceting
The number of shards is limited by number of characters allowed for GET method's URI; most Web servers generally support at least
4000 characters, but many servers limit URI length to reduce their vulnerability to Denial of Service (DoS) attacks.
TF/IDF computations are per shard. This may not matter if content is well (randomly) distributed.
Shard information can be returned with each document in a distributed search by including in the search request. Thisfl=id, [shard]
returns the shard URL.
In a distributed search, the data directory from the core descriptor overrides any data directory in solrconfig.xml.
Update commands may be sent to any server with distributed indexing configured correctly. Document adds and deletes are forwarded to
the appropriate server/shard based on a hash of the unique document id. commands and commands are sent tocommit deleteByQuery
every server in .shards

Avoiding Distributed Deadlock

Each shard may also serve top-level query requests and then make sub-requests to all of the other shards. In this configuration, care should be
taken to ensure that the max number of threads serving HTTP requests in the servlet container is greater than the possible number of requests
from both top-level clients and other shards. If this is not the case, the configuration may result in a distributed deadlock.

For example,a deadlock might occur in the case of two shards, each with just a single thread to service HTTP requests. Both threads could
receive a top-level request concurrently, and make sub-requests to each other. Because there are no more remaining threads to service requests,
the servlet containers will block the incoming requests until the other pending requests are finished, but they will not finish since they are waiting
for the sub-requests. By ensuring that the servlets are configured to handle a sufficient number of threads, you can avoid deadlock situations like
this.

Testing Index Sharding on Two Local Servers

For simple functionality testing, it's easiest to just set up two local Solr servers on different ports. (In a production environment, of course, these
servers would be deployed on separate machines.)

Make a copy of the solr example directory:

314Apache Solr Reference Guide 4.4

1.

2.

3.

4.

5.

6.

cd solr
cp -r example example7574

Change the port number:

perl -pi -e s/8983/7574/g example7574/etc/jetty.xml
example7574/exampledocs/post.sh

In the first window, start up the server on port 8983:

cd example
java -server -jar start.jar

In the second window, start up the server on port 7574:

cd example7574
java -server -jar start.jar

In the third window, index some example documents to each server:

cd example/exampledocs
./post.sh [a-m]*.xml
cd ../../example7574/exampledocs
./post.sh [n-z]*.xml

Now do a distributed search across both servers with your browser or : curl

curl
'http://localhost:8983/solr/select?shards=localhost:8983/solr,localhost:7574/solr&indent=true&q=ipod+solr'

Index Replication

The Lucene index format has changed with Solr 4. As a result, once you upgrade, previous versions of Solr will no longer be
able to read the rest of your indices. In a master/slave configuration, all searchers/slaves should be upgraded before the master.
If the master is updated first, the older searchers will not be able to read the new index format.

Index Replication distributes complete copies of a master index to one or more slave servers. The master server continues to manage updates to
the index. All querying is handled by the slaves. This division of labor enables Solr to scale to provide adequate responsiveness to queries against
large search volumes.

315Apache Solr Reference Guide 4.4

The figure below shows a Solr configuration using index replication. The master server's index is replicated on the slaves.

A Solr index can be replicated across multiple slave servers, which then process requests.

Topics covered in this section:

Index Replication in Solr
Replication Terminology
Configuring the Replication RequestHandler on a Master Server
Configuring the Replication RequestHandler on a Slave Server
Setting Up a Repeater with the ReplicationHandler
Commit and Optimize Operations
Slave Replication
Index Replication using ssh and rsync
The Snapshot and Distribution Process
Commit and Optimization
Distribution and Optimization

Index Replication in Solr

Solr includes a Java implementation of index replication that works over HTTP.

For information on the / based replication, see .ssh rsync Index Replication using ssh and rsync

The Java-based implementation of index replication offers these benefits:

Replication without requiring external scripts
The configuration affecting replication is controlled by a single file, solrconfig.xml
Supports the replication of configuration files as well as index files
Works across platforms with same configuration
No reliance on OS-dependent hard links
Tightly integrated with Solr; an admin page offers fine-grained control of each aspect of replication
The Java-based replication feature is implemented as a RequestHandler. Configuring replication is therefore similar to any normal
RequestHandler.

Replication Terminology

The table below defines the key terms associated with Solr replication.

Term Definition

Collection A Lucene collection is a directory of files. These files make up the indexed and returnable data of a Solr search repository.

Distribution The copying of a collection from the master server to all slaves. The distribution process takes advantage of Lucene's index file
structure.

Inserts and
Deletes

As inserts and deletes occur in the collection, the directory remains unchanged. Documents are always inserted into newly
created files. Documents that are deleted are not removed from the files. They are flagged in the file, deletable, and are not
removed from the files until the collection is optimized.

316Apache Solr Reference Guide 4.4

Master and
Slave

The Solr distribution model uses the master/slave model. The master is the service which receives all updates initially and keeps
everything organized. Solr uses a single update master server coupled with multiple query slave servers. All changes (such as
inserts, updates, deletes, etc.) are made against the single master server. Changes made on the master are distributed to all the
slave servers which service all query requests from the clients.

Update An update is a single change request against a single Solr instance. It may be a request to delete a document, add a new
document, change a document, delete all documents matching a query, etc. Updates are handled synchronously within an
individual Solr instance.

Optimization A process that compacts the index and merges segments in order to improve query performance. New secondary segment(s)
are created to contain documents inserted into the collection after it has been optimized. A Lucene collection must be optimized
periodically to maintain satisfactory query performance. Optimization is run on the master server only. An optimized index will
give you a performance gain at query time of at least 10%. This gain may be more on an index that has become fragmented
over a period of time with many updates and no optimizations. Optimizations require a much longer time than does the
distribution of an optimized collection to all slaves.

Segments The number of files in a collection.

mergeFactor A parameter that controls the number of files (segments) in a collection. For example, when mergeFactor is set to 3, Solr will fill
one segment with documents until the limit maxBufferedDocs is met, then it will start a new segment. When the number of
segments specified by mergeFactor is reached-- --then Solr will merge all the segments into a single index file,in this example, 3
then begin writing new documents to a new segment.

Snapshot A directory containing hard links to the data files. Snapshots are distributed from the master server when the slaves pull them,
"smartcopying" the snapshot directory that contains the hard links to the most recent collection data files.

Configuring the Replication RequestHandler on a Master Server

Before running a replication, you should set the following parameters on initialization of the handler:

Name Description

replicateAfter String specifying action after which replication should occur. Valid values are commit, optimize, or startup. There can
be multiple values for this parameter. If you use "startup", you need to have a "commit" and/or "optimize" entry also if
you want to trigger replication on future commits or optimizes.

backupAfter String specifying action after which a backup should occur. Valid values are commit, optimize, or startup. There can
be multiple values for this parameter. It is not required for replication, it just makes a backup.

maxNumberOfBackups Integer specifying how many backups to keep. This can be used to delete all but the most recent N backups.

confFiles The configuration files to replicate, separated by a comma.

commitReserveDuration If your commits are very frequent and your network is slow, you can tweak this parameter to increase the amount of
time taken to download 5Mb from the master to a slave. The default is 10 seconds.

The example below shows how to configure the Replication RequestHandler on a master server.

<requestHandler name="/replication" class="solr.ReplicationHandler" >
 <lst name="master">
 <str name="replicateAfter">optimize</str>
 <str name="backupAfter">optimize</str>
 <str name="confFiles">schema.xml,stopwords.txt,elevate.xml</str>
 <str name="commitReserveDuration">00:00:10</str>
 </lst>
 <int name="maxNumberOfBackups">2</int>
</requestHandler>

Replicating solrconfig.xml

In the configuration file on the master server, include a line like the following:

<str name="confFiles">solrconfig_slave.xml:solrconfig.xml,x.xml,y.xml</str>

317Apache Solr Reference Guide 4.4

This ensures that the local configuration will be saved as on the slave. All other files will be savedsolrconfig_slave.xml solrconfig.xml
with their original names.

On the master server, the file name of the slave configuration file can be anything, as long as the name is correctly identified in the confFiles
string; then it will be saved as whatever file name appears after the colon ':'.

Configuring the Replication RequestHandler on a Slave Server

The code below shows how to configure a ReplicationHandler on a slave.

318Apache Solr Reference Guide 4.4

<requestHandler name="/replication" class="solr.ReplicationHandler" >
 <lst name="slave">

 <!--fully qualified url for the replication handler of master. It is possible
to pass on this as
 a request param for the fetchindex command-->

 <str name="masterUrl">http://remote_host:port/solr/corename/replication</str>

 <!--Interval in which the slave should poll master .Format is HH:mm:ss . If
this is absent slave does not
 poll automatically.

 But a fetchindex can be triggered from the admin or the http API -->

 <str name="pollInterval">00:00:20</str>

 <!-- THE FOLLOWING PARAMETERS ARE USUALLY NOT REQUIRED-->

 <!--to use compression while transferring the index files. The possible values
are internal|external
 if the value is 'external' make sure that your master Solr has the settings
to honor the
 accept-encoding header.
 See here for details: http://wiki.apache.org/solr/SolrHttpCompression
 If it is 'internal' everything will be taken care of automatically.
 USE THIS ONLY IF YOUR BANDWIDTH IS LOW . THIS CAN ACTUALLY SLOWDOWN
REPLICATION IN A LAN-->

 <str name="compression">internal</str>

 <!--The following values are used when the slave connects to the master to
download the index files.
 Default values implicitly set as 5000ms and 10000ms respectively. The user
DOES NOT need to specify
 these unless the bandwidth is extremely low or if there is an extremely high
latency-->

 <str name="httpConnTimeout">5000</str>
 <str name="httpReadTimeout">10000</str>

 <!-- If HTTP Basic authentication is enabled on the master, then the slave can
be
 configured with the following -->

 <str name="httpBasicAuthUser">username</str>
 <str name="httpBasicAuthPassword">password</str>
 </lst>
</requestHandler>

If you are not using cores, then you simply omit the parameter above in the . To ensure that the URL iscorename masterUrl
correct, just hit the URL with a browser. You must get a status OK response.

Setting Up a Repeater with the ReplicationHandler

319Apache Solr Reference Guide 4.4

A master may be able to serve only so many slaves without affecting performance. Some organizations have deployed slave servers across
multiple data centers. If each slave downloads the index from a remote data center, the resulting download may consume too much network
bandwidth. To avoid performance degradation in cases like this, you can configure one or more slaves as repeaters. A repeater is simply a node
that acts as both a master and a slave.

To configure a server as a repeater, the definition of the Replication in the file must include filerequestHandler solrconfig.xml
lists of use for both masters and slaves.
Be sure to set the parameter to commit, even if is set to optimize on the main master. This isreplicateAfter replicateAfter
because on a repeater (or any slave), a commit is called only after the index is downloaded. The optimize command is never called on
slaves.
Optionally, one can configure the repeater to fetch compressed files from the master through the compression parameter to reduce the
index download time.

Here is an example of a ReplicationHandler configuration for a repeater:

<requestHandler name="/replication" class="solr.ReplicationHandler">
 <lst name="master">
 <str name="replicateAfter">commit</str>
 <str name="confFiles">schema.xml,stopwords.txt,synonyms.txt</str>
 </lst>
 <lst name="slave">
 <str name="masterUrl">http://master.solr.company.com:8983/solr/replication</str>
 <str name="pollInterval">00:00:60</str>
 </lst>
 </requestHandler>

Commit and Optimize Operations

When a commit or optimize operation is performed on the master, the RequestHandler reads the list of file names which are associated with each
commit point. This relies on the parameter in the configuration to decide which types of events should trigger replication.replicateAfter

Setting on the Master Description

commit Triggers replication whenever a commit is performed on the master index.

optimize Triggers replication whenever the master index is optimized.

startup Triggers replication whenever the master index starts up.

The replicateAfter parameter can accept multiple arguments. For example:

<str name="replicateAfter">startup</str>
<str name="replicateAfter">commit</str>
<str name="replicateAfter">optimize</str>

Slave Replication

The master is totally unaware of the slaves. The slave continuously keeps polling the master (depending on the parameter) topollInterval
check the current index version of the master. If the slave finds out that the master has a newer version of the index it initiates a replication
process. The steps are as follows:

The slave issues a command to get the list of the files. This command returns the names of the files as well as somefilelist
metadata (for example, size, a lastmodified timestamp, an alias if any).
The slave checks with its own index if it has any of those files in the local index. It then runs the filecontent command to download the
missing files. This uses a custom format (akin to the HTTP chunked encoding) to download the full content or a part of each file. If the
connection breaks in between , the download resumes from the point it failed. At any point, the slave tries 5 times before giving up a
replication altogether.
The files are downloaded into a temp directory, so that if either the slave or the master crashes during the download process, no files will
be corrupted. Instead, the current replication will simply abort.
After the download completes, all the new files are moved to the live index directory and the file's timestamp is same as its counterpart on
the master.
A commit command is issued on the slave by the Slave's ReplicationHandler and the new index is loaded.

320Apache Solr Reference Guide 4.4

Replicating Configuration Files

To replicate configuration files, list them using using the parameter. Only files found in the directory of the master's SolrconfFiles conf
instance will be replicated.

Solr replicates configuration files only when the index itself is replicated. That means even if a configuration file is changed on the master, that file
will be replicated only after there is a new commit/optimize on master's index.

Unlike the index files, where the timestamp is good enough to figure out if they are identical, configuration files are compared against their
checksum. The files (on master and slave) are judged to be identical if their checksums are identical.schema.xml

As a precaution when replicating configuration files, Solr copies configuration files to a temporary directory before moving them into their ultimate
location in the conf directory. The old configuration files are then renamed and kept in the same directory. The ReplicationHandler doesconf/
not automatically clean up these old files.

If a replication involved downloading of at least one configuration file, the ReplicationHandler issues a core-reload command instead of a commit
command.

Resolving Corruption Issues on Slave Servers

If documents are added to the slave, then the slave is no longer in sync with its master. However, the slave will not undertake any action to put
itself in sync, until the master has new index data. When a commit operation takes place on the master, the index version of the master becomes
different from that of the slave. The slave then fetches the list of files and finds that some of the files present on the master are also present in the
local index but with different sizes and timestamps. This means that the master and slave have incompatible indexes. To correct this problem, the
slave then copies all the index files from master to a new index directory and asks the core to load the fresh index from the new directory.

HTTP API Commands for the ReplicationHandler

You can use the HTTP commands below to control the ReplicationHandler's operations.

Command Description

http://_master_host_:_port_/solr/replication?command=enablereplication Enables replication on the master for all its slaves.

http://_master_host_:_port_/solr/replication?command=disablereplication Disables replication on the master for all its slaves.

http://_host_:_port_/solr/replication?command=indexversion Returns the version of the latest replicatable index on the specified
master or slave.

http://_slave_host_:_port_/solr/replication?command=fetchindex Forces the specified slave to fetch a copy of the index from its
master.

If you like, you can pass an extra attribute such as masterUrl or
compression (or any other parameter which is specified in the <lst

 tag) to do a one time replication from a master.name="slave">
This obviates the need for hard-coding the master in the slave.

http://_slave_host_:_port_/solr/replication?command=abortfetch Aborts copying an index from a master to the specified slave.

http://_slave_host_:_port_/solr/replication?command=enablepoll Enables the specified slave to poll for changes on the master.

http://_slave_host_:_port_/solr/replication?command=disablepoll Disables the specified slave from polling for changes on the master.

http://_slave_host_:_port_/solr/replication?command=details Retrieves configuration details and current status.

<http://host:port/solr/replication?command=filelist&indexversion=
>index-version-number

Retrieves a list of Lucene files present in the specified host's index.
You can discover the version number of the index by running the

 command.indexversion

http://_master_host_:_port_/solr/replication?command=backup Creates a backup on master if there are committed index data in the
server; otherwise, does nothing. This command is useful for making
periodic backups. The request parameter can benumberToKeep
used with the backup command unless the maxNumberOfBackups
initialization parameter has been specified on the handler – in which
case is always used and attempts to usemaxNumberOfBackups
the request parameter will cause an error.numberToKeep

Index Replication using ssh and rsync

Solr supports / -based replication. ssh rsync This mechanism only works on systems that support removing open hard links.

Solr distribution is similar in concept to database replication. All collection changes come to one master Solr server. All production queries are
done against query slaves. Query slaves receive all their collection changes indirectly — as new versions of a collection which they pull from the

http://_master_host_:_port_/solr/replication?command=enablereplication
http://_master_host_:_port_/solr/replication?command=disablereplication
http://_host_:_port_/solr/replication?command=indexversion
http://_slave_host_:_port_/solr/replication?command=fetchindex
http://_slave_host_:_port_/solr/replication?command=abortfetch
http://_slave_host_:_port_/solr/replication?command=enablepoll
http://_slave_host_:_port_/solr/replication?command=disablepoll
http://_slave_host_:_port_/solr/replication?command=details
http://host:port/solr/replication?command=filelist&indexversion=
http://_master_host_:_port_/solr/replication?command=backup

321Apache Solr Reference Guide 4.4

1.

2.

3.

4.
5.

master. These collection downloads are polled for on a cron'd basis.

A collection is a directory of many files. Collections are distributed to the slaves as snapshots of these files. Each snapshot is made up of hard
links to the files so copying of the actual files is not necessary when snapshots are created. Lucene only rewrites files following ansignificantly
optimization command. Generally, once a file is written, it will change very little, if at all. This makes the underlying transport of rsync very useful.
Files that have already been transferred and have not changed do not need to be re-transferred with the new edition of a collection.

The Snapshot and Distribution Process

Here are the steps that Solr follows when replicating an index:

The command takes snapshots of the collection on the master. It runs when invoked by Solr after it has done a commit orsnapshooter
an optimize.
The command runs on the query slaves to pull the newest snapshot from the master. This is done via rsync in daemon modesnappuller
running on the master for better performance and lower CPU utilization over rsync using a remote shell program as the transport.
The runs on the slave after a snapshot has been pulled from the master. This signals the local Solr server to open a newsnapinstaller
index reader, then auto-warming of the cache(s) begins (in the new reader), while other requests continue to be served by the original
index reader. Once auto-warming is complete, Solr retires the old reader and directs all new queries to the newly cache-warmed reader.
All distribution activity is logged and written back to the master to be viewable on the distribution page of its GUI.
Old versions of the index are removed from the master and slave servers by a cron'd .snapcleaner

If you are building an index from scratch, distribution is the final step of the process.

Manual copying of index files is not recommended; however, running distribution commands manually (that is, not relying on to run them)crond
is perfectly fine.

Snapshot Directories

Snapshots are stored in directories whose names follow this format: snapshot.yyyymmddHHMMSS

All the files in the index directory are hard links to the latest snapshot. This design offers these advantages:

The Solr implementation can keep multiple snapshots on each host without needing to keep multiple copies of index files that have not
changed.
File copying from master to slave is very fast.
Taking a snapshot is very fast as well.

Solr Distribution Scripts

For the Solr distribution scripts, the name of the index directory is defined either by the environment variable in the configuration file data_dir
 or the command line argument . It should match the value used by the Solr server which is defined in solr/conf/scripts.conf -d

.solr/conf/solrconfig.xml

All Solr collection distribution scripts are bundled in a Solr release and reside in the directory . It's recommended that yousolr/src/scripts
install the scripts in a directory.solr/bin/

Collection distribution scripts create and prepare for distribution a snapshot of a search collection after each commit and optimize request if the
 and event listener is configured in to execute .postCommit postOptimize solrconfig.xml snapshooter

The script creates a directory , where is a timestamp in the format, . It contains hard linkssnapshooter snapshot.<ts> <ts> yyyymmddHHMMSS
to the data files.

Snapshots are distributed from the master server when the slaves pull them, "smartcopying" the snapshot directory that contains the hard links to
the most recent collection data files.

Name Description

snapshooter Creates a snapshot of a collection. Snapshooter is normally configured to run on the master Solr server when a commit or
optimize happens. Snapshooter can also be run manually, but one must make sure that the index is in a consistent state,
which can only be done by pausing indexing and issuing a commit.

snappuller A shell script that runs as a job on a slave Solr server. The script looks for new snapshots on the master Solr servercron
and pulls them.

snappuller-enable Creates the file , whose presence enables snappuller.solr/logs/snappuller-enabled

snapinstaller Installs the latest snapshot (determined by the timestamp) into the place, using hard links (similar to the process of taking a
snapshot). Then is written and scp'd (secure copied) back to the master Solr server.solr/logs/snapshot.current
snapinstaller then triggers the Solr server to open a new Searcher.

snapcleaner Runs as a job to remove snapshots more than a configurable number of days old or all snapshots except for thecron
most recent n number of snapshots. Also can be run manually.

322Apache Solr Reference Guide 4.4

rsyncd-start Starts the rsyncd daemon on the master Solr server which handles collection distribution requests from the slaves.

rsyncd daemon Efficiently synchronizes a collection-- --by copying only the files that actually changed. Inbetween master and slaves
addition, rsync can optionally compress data before transmitting it.

rsyncd-stop Stops the rsyncd daemon on the master Solr server. The stop script then makes sure that the daemon has in fact exited by
trying to connect to it for up to 300 seconds. The stop script exits with error code 2 if it fails to stop the rsyncd daemon.

rsyncd-enable Creates the file , whose presence allows the rsyncd daemon to run, allowing replication tosolr/logs/rsyncd-enabled
occur.

rsyncd-disable Removes the file , whose absence prevents the rsyncd daemon from running, preventingsolr/logs/rsyncd-enabled
replication.

For more information about usage arguments and syntax see the page on the Solr Wiki.SolrCollectionDistributionScripts

Solr Distribution-related Cron Jobs

The distribution process is automated through the use of cron jobs. The cron jobs should run under the user ID that the Solr server is running
under.

Cron Job Description

snapcleaner The snapcleaner job should be run out of at the regular basis to clean up old snapshots. This should be done on both thecron
master and slave Solr servers. For example, the following job runs everyday at midnight and cleans up snapshots 8 dayscron
and older:

 0 0 * * * <solr.solr.home>/solr/bin/snapcleaner -D 7

Additional cleanup can always be performed on-demand by running snapcleaner manually.

snappuller
snapinstaller

On the slave Solr servers, snappuller should be run out of cron regularly to get the latest index from the master Solr server. It is
a good idea to also run snapinstaller with snappuller back-to-back in the same crontab entry to install the latest index once it has
been copied over to the slave Solr server.

For example, the following cron job runs every 5 minutes to keep the slave Solr server in sync with the master Solr server:

0,5,10,15,20,25,30,35,40,45,50,55 * * * *
<solr.solr.home>/solr/bin/snappuller;<solr.solr.home>/solr/bin/snapinstaller

Modern cron allows this to be shortened to .*/5 * * * *...

Performance Tuning for Script-based Replication

Because fetching a master index uses the rsync utility, which transfers only the segments that have changed, replication is normally very fast.
However, if the master server has been optimized, then rsync may take a long time, because many segments will have been changed in the
process of optimization.

If replicating to multiple slaves consumes too much network bandwidth, consider the use of a repeater.
Make sure that slaves do not pull from the master so frequently that a previous replication is still running when a new one is started. In
general, it's best to allow at least a minute for the replication process to complete. But in configurations with low network bandwidth or a
very large index, even more time may be required.

Commit and Optimization

On a very large index, adding even a few documents and then running an optimize operation causes the complete index to be rewritten. This
consumes a lot of disk I/O and impacts query performance. Optimizing a very large index may even involve copying the index twice and calling
optimize at the beginning at the end. If some documents have been deleted, the first optimize call will rewrite the index even before theand
second index is merged.

Optimization is an I/O intensive process, as the entire index is read and re-written in optimized form. Anecdotal data shows that optimizations on
modest server hardware can take around 5 minutes per GB, although this obviously varies considerably with index fragmentation and hardware
bottlenecks. We do not know what happens to query performance on a collection that has not been optimized for a long time. We know that itdo
will get worse as the collection becomes more fragmented, but how much worse is very dependent on the manner of updates and commits to the
collection. The setting of the attribute affects performance as well. Dividing a large index with millions of documents into even asmergeFactor
few as five segments may degrade search performance by as much as 15-20%.

While optimizing has many benefits, a rapidly changing index will not retain those benefits for long, and since optimization is an intensive process,
it may be better to consider other options, such as lowering the merge factor (discussed in this Guide in the section on Configuring the Lucene

http://wiki.apache.org/solr/SolrCollectionDistributionScripts
http://solr:Configuring+solrconfig.xml#Configuringsolrconfig.xml-ConfiguringtheLuceneIndexWriters

323Apache Solr Reference Guide 4.4

).Index Writers

Distribution and Optimization

The time required to optimize a master index can vary dramatically. A small index may be optimized in minutes. A very large index may take
hours. The variables include the size of the index and the speed of the hardware.

Distributing a newly optimized collection may take only a few minutes or up to an hour or more, again depending on the size of the index and the
performance capabilities of network connections and disks. During optimization the machine is under load and does not process queries very well.
Given a schedule of updates being driven a few times an hour to the slaves, we cannot run an optimize with every committed snapshot.

Copying an optimized collection means that the collection will need to be transferred during the next snappull. This is a large expense, butentire
not nearly as huge as running the optimize everywhere. Consider this example: on a three-slave one-master configuration, distributing a
newly-optimized collection takes approximately 80 seconds . Rolling the change across a tier would require approximately ten minutes pertotal
machine (or machine group). If this optimize were rolled across the query tier, and if each collection being optimized were disabled and not
receiving queries, a rollout would take at least twenty minutes and potentially as long as an hour and a half. Additionally, the files would need to
be synchronized so that the rsync, snappull would not think that the independently optimized files were different in any way. This wouldfollowing
also leave the door open to independent corruption of collections instead of each being a perfect copy of the master.

Optimizing on the master allows for a straight-forward optimization operation. No query slaves need to be taken out of service. The optimized
collection can be distributed in the background as queries are being normally serviced. The optimization can occur at any time convenient to the
application providing collection updates.

Combining Distribution and Replication

When your index is too large for a single machine and you have a query volume that single shards cannot keep up with, it's time to replicate each
shard in your distributed search setup.

The idea is to combine distributed search with replication. As shown in the figure below, a combined distributed-replication configuration features
a master server for each shard and then 1- slaves that are replicated from the master. As in a standard replicated configuration, the mastern
server handles updates and optimizations without adversely affecting query handling performance.

Query requests should be load balanced across each of the shard slaves. This gives you both increased query handling capacity and fail-over
backup if a server goes down.

A Solr configuration combining both replication and master-slave distribution.

None of the master shards in this configuration know about each other. You index to each master, the index is replicated to each slave, and then
searches are distributed across the slaves, using one slave from each master/slave shard.

For high availability you can use a load balancer to set up a virtual IP for each shard's set of slaves. If you are new to load balancing, HAProxy (
) is a good open source software load-balancer. If a slave server goes down, a good load-balancer will detect the failurehttp://haproxy.1wt.eu/

using some technique (generally a heartbeat system), and forward all requests to the remaining live slaves that served with the failed slave. A
single virtual IP should then be set up so that requests can hit a single IP, and get load balanced to each of the virtual IPs for the search slaves.

http://solr:Configuring+solrconfig.xml#Configuringsolrconfig.xml-ConfiguringtheLuceneIndexWriters
http://haproxy.1wt.eu/

324Apache Solr Reference Guide 4.4

1.

2.
3.
4.

5.

With this configuration you will have a fully load balanced, search-side fault-tolerant system (Solr does not yet support fault-tolerant indexing).
Incoming searches will be handed off to one of the functioning slaves, then the slave will distribute the search request across a slave for each of
the shards in your configuration. The slave will issue a request to each of the virtual IPs for each shard, and the load balancer will choose one of
the available slaves. Finally, the results will be combined into a single results set and returned. If any of the slaves go down, they will be taken out
of rotation and the remaining slaves will be used. If a shard master goes down, searches can still be served from the slaves until you have
corrected the problem and put the master back into production.

Merging Indexes

If you need to combine indexes from two different projects or from multiple servers previously used in a distributed configuration, you can use
either the IndexMergeTool included in or the .lucene-misc CoreAdminHandler

To merge indexes, they must meet these requirements:

The two indexes must be compatible: their schemas should include the same fields and they should analyze fields the same way.
The indexes must not include duplicate data.

Optimally, the two indexes should be built using the same schema.

Using IndexMergeTool

To merge the indexes, do the following:

Find the lucene-core and lucene-misc JAR files that your version of Solr is using. You can do this by copying your filesolr.war
somewhere and unpacking it (). These two JAR files should be in . They are probably calledjar xvf solr.war WEB-INF/lib
something like and .lucene-core-VERSION.jar lucene-misc-VERSION.jar
Copy them somewhere easy to find.
Make sure that both indexes you want to merge are closed.
Issue this command:

java -cp /path/to/lucene-core-VERSION.jar:/path/to/lucene-misc-VERSION.jar
 org/apache/lucene/misc/IndexMergeTool
 /path/to/newindex
 /path/to/index1
 /path/to/index2

This will create a new index at that contains both index1 and index2./path/to/newindex

Copy this new directory to the location of your application's solr index (move the old one aside first, of course) and start Solr.

For example:

java -cp /tmp/lucene-core-4.4.0.jar:
/tmp/lucene-misc-4.4.0.jar org/apache/lucene/misc/IndexMergeTool
 ./newindex
 ./app1/solr/data/index
 ./app2/solr/data/index

Using CoreAdmin

This method uses the with either the or parameters.CoreAdminHandler indexDir srcCore

The parameter is used to define the path to the indexes for the cores that should be merged, and merge them into a 3rd core thatindexDir
must already exist prior to initiation of the merge process. The indexes must exist on the disk of the Solr host, which may make using this in a
distributed environment cumbersome. With the parameter, a commit should be called on the cores to be merged (so the IndexWriterindexDir
will close), and no writes should be allowed on either core until the merge is complete. If writes are allowed, corruption may occur on the merged
index. Once complete, a commit should be called on the merged core to make sure the changes are visible to searchers.

The following example shows how to construct the merge command with :indexDir

325Apache Solr Reference Guide 4.4

http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&indexDir=/home/solr/core1/data/index&indexDir=/home/solr/core2/data/index

In this example, is the new core that is created prior to calling the merge process.core

The parameter is used to call the cores to be merged by name instead of defining the path. The cores do not need to exist on the samesrcCore
disk as the Solr host, and the merged core does not need to exist prior to issuing the command. also protects against corruption duringsrcCore
creation of the merged core index, so writes are still possible while the merge occurs. However, can only merge Solr Cores - indexessrcCore
built directly with Lucene should be merged with either the IndexMergeTool or the parameter.indexDir

The following example shows how to construct the merge command with :srcCore

http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&srcCore=core1&srcCore=core2

http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&indexDir=/home/solr/core1/data/index&indexDir=/home/solr/core2/data/index
http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&srcCore=core1&srcCore=core2

326Apache Solr Reference Guide 4.4

Client APIs
This section discusses the available client APIs for Solr. It covers the following topics:

Introduction to Client APIs: A conceptual overview of Solr client APIs.

Choosing an Output Format: Information about choosing a response format in Solr.

Using JavaScript: Explains why a client API is not needed for JavaScript responses.

Using Python: Information about Python and JSON responses.

Client API Lineup: A list of all Solr Client APIs, with links.

Using SolrJ: Detailed information about SolrJ, an API for working with Java applications.

Using Solr From Ruby: Detailed information about using Solr with Ruby applications.

MBean Request Handler: Describes the MBean request handler for programmatic access to Solr server statistics and information.

Introduction to Client APIs

At its heart, Solr is a Web application, but because it is built on open protocols, any type of client application can use Solr.

HTTP is the fundamental protocol used between client applications and Solr. The client makes a request and Solr does some work and provides a
response. Clients use requests to ask Solr to do things like perform queries or index documents.

Client applications can reach Solr by creating HTTP requests and parsing the HTTP responses. Client APIs encapsulate much of the work of
sending requests and parsing responses, which makes it much easier to write client applications.

Clients use Solr's five fundamental operations to work with Solr. The operations are query, index, delete, commit, and optimize.

Queries are executed by creating a URL that contains all the query parameters. Solr examines the request URL, performs the query, and returns
the results. The other operations are similar, although in certain cases the HTTP request is a POST operation and contains information beyond
whatever is included in the request URL. An index operation, for example, may contain a document in the body of the request.

Solr also features an EmbeddedSolrServer that offers a Java API without requiring an HTTP connection. For details, see .Using SolrJ

Choosing an Output Format

Many programming environments are able to send HTTP requests and retrieve responses. Parsing the responses is a slightly more thorny
problem. Fortunately, Solr makes it easy to choose an output format that will be easy to handle on the client side.

Specify a response format using the parameter in a query. The available response formats are documented in .wt Response Writers

Most client APIs hide this detail for you, so for many types of client applications, you won't ever have to specify a parameter. In JavaScript,wt
however, the interface to Solr is a little closer to the metal, so you will need to add this parameter yourself.

Using JavaScript

Using Solr from JavaScript clients is so straightforward that it deserves a special mention. In fact, it is so straightforward that there is no client API.
You don't need to install any packages or configure anything.

HTTP requests can be sent to Solr using the standard mechanism.XMLHttpRequest

Out of the box, Solr can send , which are easily interpreted in JavaScript. Just add to theJavaScript Object Notation (JSON) responses wt=json
request URL to have responses sent as JSON.

For more information and an excellent example, read the SolJSON page on the Solr Wiki:

http://wiki.apache.org/solr/SolJSON

Using Python

Solr includes an output format specifically for , but is a little more robust.Python JSON output

http://wiki.apache.org/solr/SolJSON

327Apache Solr Reference Guide 4.4

Simple Python

Making a query is a simple matter. First, tell Python you will need to make HTTP connections.

from urllib2 import *

Now open a connection to the server and get a response. The query parameter tells Solr to return results in a format that Python canwt
understand.

connection = urlopen(
 'http://localhost:8983/solr/select?q=cheese&wt=python')
response = eval(connection.read())

Now interpreting the response is just a matter of pulling out the information that you need.

print response\['response'\]\['numFound'\], "documents found."

Print the name of each document.

for document in response\['response'\]\['docs'\]:
 print " Name =", document\['name'\]

Python with JSON

JSON is a more robust response format, but you will need to add a Python package in order to use it. At a command line, install the simplejson
package like this:

$ sudo easy_install simplejson

Once that is done, making a query is nearly the same as before. However, notice that the wt query parameter is now json, and the response is
now digested by .simplejson.load()

from urllib2 import *
import simplejson
connection = urlopen('http://localhost:8983/solr/select?q=cheese&wt=json')
response = simplejson.load(connection)
print response\['response'\]\['numFound'\], "documents found."

Print the name of each document.

for document in response\['response'\]\['docs'\]:
 print " Name =", document\['name'\]

Client API Lineup

The Solr Wiki contains a list of client APIs at .http://wiki.apache.org/solr/IntegratingSolr

Here is the list of client APIs, current at this writing (November 2011):

http://wiki.apache.org/solr/IntegratingSolr

328Apache Solr Reference Guide 4.4

Name Environment URL

SolRuby Ruby http://wiki.apache.org/solr/SolRuby

DelSolr Ruby http://delsolr.rubyforge.org/

acts_as_solr Rails http://acts-as-solr.rubyforge.org/, http://rubyforge.org/projects/background-solr/

Flare Rails http://wiki.apache.org/solr/Flare

SolPHP PHP http://wiki.apache.org/solr/SolPHP

SolrJ Java http://wiki.apache.org/solr/SolJava

Python API Python http://wiki.apache.org/solr/SolPython

PySolr Python http://code.google.com/p/pysolr/

SolPerl Perl http://wiki.apache.org/solr/SolPerl

Solr.pm Perl http://search.cpan.org/~garafola/Solr-0.03/lib/Solr.pm

SolrForrest Forrest/Cocoon http://wiki.apache.org/solr/SolrForrest

SolrSharp C# http://www.codeplex.com/solrsharp

SolColdfusion ColdFusion http://solcoldfusion.riaforge.org/

SolrNet .NET http://code.google.com/p/solrnet/

AJAX Solr AJAX http://github.com/evolvingweb/ajax-solr/wiki

Using SolrJ

SolrJ (also sometimes known as SolJava) is an API that makes it easy for Java applications to talk to Solr. SolrJ hides a lot of the details of
connecting to Solr and allows your application to interact with Solr with simple high-level methods.

The center of SolrJ is the package, which contains just five main classes. Begin by creating a org.apache.solr.client.solrj SolrServer
, which represents the Solr instance you want to use. Then send SolrRequests or SolrQuerys and get back SolrResponses.

SolrServer is abstract, so to connect to a remote Solr instance, you'll actually create an instance of
, which knows how to use HTTP to talk to Solr.org.apache.solr.client.solrj.impl.HttpSolrServer

String urlString = "http://localhost:8983/solr";
SolrServer solr = new HttpSolrServer(urlString);

Creating a does not make a network connection - that happens later when you perform a query or some other operation - but it willSolrServer
throw if you give it a bad URL string.MalformedURLException

Once you have a , you can use it by calling methods like , , and .SolrServer query() add() commit()

Building and Running SolrJ Applications

The SolrJ API is included with Solr, so you do not have to download or install anything else. However, in order to build and run applications that
use SolrJ, you have to add some libraries to the classpath.

At build time, the examples presented with this section require the following libraries in the classpath (all paths are relative to the root of the Solr
installation).

apache-solr-common-3.x.0.jar
apache-solr-solrj-4.x.x.jar

At run time, the examples in this section require the libraries found in the 'dist/solrj-lib' directory.

The Ant script bundled with this sections' examples includes the libraries as appropriate when building and running.

You can sidestep a lot of the messing around with the JAR files by using Maven instead of Ant. All you will need to do to include SolrJ in your
application is to put the following dependency in the project's :pom.xml

http://wiki.apache.org/solr/SolRuby
http://delsolr.rubyforge.org/
http://acts-as-solr.rubyforge.org/
http://rubyforge.org/projects/background-solr/
http://wiki.apache.org/solr/Flare
http://wiki.apache.org/solr/SolPHP
http://wiki.apache.org/solr/SolJava
http://wiki.apache.org/solr/SolPython
http://code.google.com/p/pysolr/
http://wiki.apache.org/solr/SolPerl
http://search.cpan.org/~garafola/Solr-0.03/lib/Solr.pm
http://wiki.apache.org/solr/SolrForrest
http://www.codeplex.com/solrsharp
http://solcoldfusion.riaforge.org/
http://code.google.com/p/solrnet/
http://github.com/evolvingweb/ajax-solr/wiki

329Apache Solr Reference Guide 4.4

<dependency>
 <groupId>org.apache.solr</groupId>
 <artifactId>solr-solrj</artifactId>
 <version>3.x.0</version>
</dependency>

If you are worried about the SolrJ libraries expanding the size of your client application, you can use a code obfuscator like to removeProGuard
APIs that you are not using.

Setting XMLResponseParser

SolrJ uses a binary format, rather than XML, as its default format. Users of earlier Solr releases who wish to continue working with XML must
explicitly set the parser to the XMLResponseParser, like so:

server.setParser(new XMLResponseParser());

Performing Queries

Use to have Solr search for results. You have to pass a object that describes the query, and you will get back aquery() SolrQuery
QueryResponse (from the package).org.apache.solr.client.solrj.response

SolrQuery has methods that make it easy to add parameters to choose a request handler and send parameters to it. Here is a very simple
example that uses the default request handler and sets the parameter:q

SolrQuery parameters = new SolrQuery();
parameters.set("q", mQueryString);

To choose a different request handler, for example, just set the parameter like this:qt

parameters.set("qt", "/spellCheckCompRH");

Once you have your set up, submit it with :SolrQuery query()

QueryResponse response = solr.query(parameters);

The client makes a network connection and sends the query. Solr processes the query, and the response is sent and parsed into a
.QueryResponse

The is a collection of documents that satisfy the query parameters. You can retrieve the documents directly with QueryResponse
 and you can call other methods to find out information about highlighting or facets.getResults()

SolrDocumentList list = response.getResults();

Indexing Documents

Other operations are just as simple. To index (add) a document, all you need to do is create a and pass it along to the SolrInputDocument
's method.SolrServer add()

http://proguard.sourceforge.net/

330Apache Solr Reference Guide 4.4

String urlString = "http://localhost:8983/solr";
SolrServer solr = new HttpSolrServer(urlString);
SolrInputDocument document = new SolrInputDocument();
document.addField("id", "552199");
document.addField("name", "Gouda cheese wheel");
document.addField("price", "49.99");
UpdateResponse response = solr.add(document);

Remember to commit your changes!

solr.commit();

Uploading Content in XML or Binary Formats

SolrJ lets you upload content in XML and binary formats instead of the default XML format. Use the following to upload using binary format, which
is the same format SolrJ uses to fetch results.

server.setRequestWriter(new BinaryRequestWriter());

EmbeddedSolrServer

The provides the Java interface described above without requiring an HTTP connection. This is the recommendedEmbeddedSolrServer
approach if you need to use Solr in an embedded application. This approach enables you to work with the same Java interface whether or not you
have access to HTTP.

EmbeddedSolrServer works only with handlers registered in . The Solr must besolrconfig.xml RequestHandler
mapped to for a request to function. For more information about configuring handlers, see ./update Configuring solrconfig.xml

Note that the following property could be set through JVM level arguments:

System.setProperty("solr.solr.home",
"/home/shalinsmangar/work/oss/branch-1.3/example/solr");
CoreContainer.Initializer initializer = new CoreContainer.Initializer();
CoreContainer coreContainer = initializer.initialize();
EmbeddedSolrServer server = new EmbeddedSolrServer(coreContainer, "");

If you want to use features (which are described in), then you should use this:MultiCore Solr Cores and solr.xml

File home = new File("/path/to/solr/home");
File f = new File(home, "solr.xml");
CoreContainer container = new CoreContainer();
container.load("/path/to/solr/home", f);
EmbeddedSolrServer server = new EmbeddedSolrServer(container, "core name as defined
in solr.xml");
 ...

Using the ConcurrentUpdateSolrServer

If you are working with Java, you can take advantage of the to perform bulk updates at high speed. The ConcurrentUpdateSolrServer
 buffers all added documents and writes them into open HTTP connections. This class is thread safe. AlthoughConcurrentHttpSolrServer

any SolrServer request can be made with this implementation, it is only recommended to use the for ConcurrrentUpdateSolrServer

http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/client/solrj/embedded/EmbeddedSolrServer.html
http://wiki.apache.org/solr/MultiCore

331Apache Solr Reference Guide 4.4

 requests./update

You can learn more about the at ConcurrentUpdateSolrServer
.http://lucene.apache.org/solr/4_0_0/solr-solrj/org/apache/solr/client/solrj/impl/ConcurrentUpdateSolrServer.html

Related Topics

SolrJ API documentation
Solr Wiki page on SolrJ
Indexing and Basic Data Operations

Using Solr From Ruby

For Ruby applications, the solr-ruby gem encapsulates the fundamental Solr operations.

At a command line, install solr-ruby as follows:

$ gem install solr-ruby
Bulk updating Gem source index for: http://gems.rubyforge.org
Successfully installed solr-ruby-0.0.8
1 gem installed
Installing ri documentation for solr-ruby-0.0.8...
Installing RDoc documentation for solr-ruby-0.0.8...

This gives you a class that makes it easy to add documents, perform queries, and do other Solr stuff.Solr::Connection

Solr-ruby takes advantage of Solr's Ruby response writer, which is a subclass of the JSON response writer. This response writer sends
information from Solr to Ruby in a form that Ruby can understand and use directly.

Performing Queries

To perform queries, you just need to get a and call its query method. Here is a script that looks for cheese. The return valueSolr::Connection
from is an array of documents, which are dictionaries, so the script iterates through each document and prints out a few fields.query()

require 'rubygems'
require 'solr'
solr = Solr::Connection.new('http://localhost:8983/solr')
response = solr.query('cheese')
response.each do |hit|
 puts hit\['id'\] + ' ' + hit\['name'\] + ' ' + hit\['price'\].to_s
end

An example run looks like this:

$ ruby query.rb
551299 Gouda cheese wheel 49.99
123 Fresh mozzarella cheese

Indexing Documents

Indexing is just as simple. You have to get the just as before. Then call the and methods.Solr::Connection add() commit()

http://lucene.apache.org/solr/4_0_0/solr-solrj/org/apache/solr/client/solrj/impl/ConcurrentUpdateSolrServer.html
http://lucene.apache.org/solr/4_0_0/solr-solrj/index.html
http://wiki.apache.org/solr/Solrj

332Apache Solr Reference Guide 4.4

require 'rubygems'
require 'solr'
solr = Solr::Connection.new('http://localhost:8983/solr')
solr.add(:id => 123, :name => 'Fresh mozzarella cheese')
solr.commit()

More Information

For more information on solr-ruby, read the page at the Solr Wiki:

http://wiki.apache.org/solr/solr-ruby

MBean Request Handler

The MBean Request Handler offers programmatic access to the information provided on the and pages of the Admin UI. You canStatistics Info
access the MBean Request Handler here: .http://localhost:8983/solr/admin/mbeans

The MBean Request Handler accepts the following parameters:

Parameter Type Default Description

key multivalued all Restricts results by object key.

cat multivalued all Restricts results by category name.

stats boolean false Specifies whether statistics are returned with results. You can override the parameter on a per-fieldstats
basis.

wt multivalued xml The output format. This operates the same as the . parameter in a querywt

Examples

To return information about the CACHE category only:

http://localhost:8983/solr/admin/mbeans?cat=CACHE

To return information and statistics about the CACHE category only:

http://localhost:8983/solr/admin/mbeans?stats=true&cat=CACHE

To return information for everything, and statistics for everything except the :fieldCache

http://localhost:8983/solr/admin/mbeans?stats=true&f.fieldCache.stats=false

To return information and statistics for the only:fieldCache

http://localhost:8983/solr/admin/mbeans?key=fieldCache&stats=true

http://wiki.apache.org/solr/solr-ruby
http://localhost:8983/solr/admin/mbeans
http://localhost:8983/solr/admin/mbeans?cat=CACHE
http://localhost:8983/solr/admin/mbeans?stats=true&cat=CACHE
http://localhost:8983/solr/admin/mbeans?stats=true&f.fieldCache.stats=false
http://localhost:8983/solr/admin/mbeans?key=fieldCache&stats=true

333Apache Solr Reference Guide 4.4

Further Assistance
There is a very active user community around Solr and Lucene. The solr-user mailing list, and #solr IRC channel are both great resource for
asking questions.

To view the mailing list archives, subscribe to the list, or join the IRC channel, please see https://lucene.apache.org/solr/discussion.html

https://lucene.apache.org/solr/discussion.html

334Apache Solr Reference Guide 4.4

Solr Glossary
Where possible, terms are linked to relevant parts of the Solr Reference Guide for more information.

Jump to a letter:

A G H J K P U V X Y B C D E F I L M N O Q R S T W Z

B

Boolean Operators

These control the inclusion or exclusion of keywords in a query by using operators such as AND, OR, and NOT.

C

Cluster

In Solr, a cluster is a set of Solr nodes managed as a unit. They may contain many cores, collections, shards, and/or replicas. See also .SolrCloud

Collection

In Solr, one or more documents grouped together in a single logical index. A collection must have a single schema, but can be spread across
multiple cores.

In , a group of cores managed together as part of a SolrCloud installation.ZooKeeper

Commit

To make document changes permanent in the index. In the case of added documents, they would be searchable after a .commit

Core

An individual Solr instance (represents a logical index). Multiple cores can run on a single node. See also .SolrCloud

Core Reload

To re-initialize Solr after changes to , or other configuration files.schema.xml solrconfig.xml

D

Distributed Search

Distributed search is one where queries are processed across more than one .shard

Document

One or more Fields and their values that are considered related for indexing. See also .Field

E

Ensemble

A term to indicate multiple ZooKeeper instances running simultaneously.ZooKeeper

F

Facet

The arrangement of search results into categories based on indexed terms.

335Apache Solr Reference Guide 4.4

Field

The content to be indexed/searched along with metadata defining how the content should be processed by Solr.

I

Inverse Document Frequency (IDF)

A measure of the general importance of a term. It is calculated as the number of total Documents divided by the number of Documents that a
particular word occurs in the collection. See and http://en.wikipedia.org/wiki/Tf-idf

 for more info on TF-IDF based scoring and Lucene scoring inhttp://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html
particular. See also .Term Frequency

Inverted Index

A way of creating a searchable index that lists every word and the documents that contain those words, similar to an index in the back of a book
which lists words and the pages on which they can be found. When performing keyword searches, this method is considered more efficient than
the alternative, which would be to create a list of documents paired with every word used in each document. Since users search using terms they
expect to be in documents, finding the term before the document saves processing resources and time.

L

Leader

The main shard for each node that routes document adds, updates, or deletes to other shards on the same node. See also .SolrCloud

M

Metadata

Literally, . Metadata is information about a document, such as it's title, author, or location.data about data

N

Natural Language Query

A search that is entered as a user would normally speak or write, as in, "What is aspirin?"

Node

A JVM instance running Solr. Also known as a Solr server.

O

Overseer

The name of the SolrCloud process that coordinates the clusters. It keeps track of existing nodes and shards, and assigns shards to nodes. See
also .SolrCloud

Q

Query Parser

A query parser processes the terms entered by a user.

R

Recall

The ability of a search engine to retrieve of the possible matches to a user's query.all

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html

336Apache Solr Reference Guide 4.4

Relevance

The appropriateness of a document to the search conducted by the user.

Replica

A copy of a shard or single logical index, for use in failover or load balancing.

Replication

A method of copying a master index from one server to one or more "slave" or "child" servers.

RequestHandler

Logic and configuration parameters that tell Solr how to handle incoming "requests", whether the requests are to return search results, to index
documents, or to handle other custom situations.

S

SearchComponent

Logic and configuration parameters used by request handlers to process query requests. Examples of search components include faceting,
highlighting, and "more like this" functionality.

Shard

In SolrCloud, a logical section of a single collection. This may be spread across multiple nodes. See also .SolrCloud

SolrCloud

Umbrella term for a suite of functionality in Solr which allows managing a cluster of Solr servers for scalability, fault tolerance, and high availability.

Solr Schema (schema.xml)

The Apache Solr index schema. The schema defines the fields to be indexed and the type for the field (text, integers, etc.) The schema is stored
in schema.xml and is located in the Solr home conf directory.

SolrConfig (solrconfig.xml)

The Apache Solr configuration file. Defines indexing options, RequestHandlers, highlighting, spellchecking and various other configurations. The
file, solrconfig.xml is located in the Solr home conf directory.

Spell Check

The ability to suggest alternative spellings of search terms to a user, as a check against spelling errors causing few or zero results.

Stopwords

Generally, words that have little meaning to a user's search but which may have been entered as part of a query. Stopwords arenatural language
generally very small pronouns, conjunctions and prepositions (such as, "the", "with", or "and")

Suggester

Functionality in Solr that provides the ability to suggest possible query terms to users as they type.

Synonyms

Synonyms generally are terms which are near to each other in meaning and may substitute for one another. In a search engine implementation,
synonyms may be abbreviations as well as words, or terms that are not consistently hyphenated. Examples of synonyms in this context would be
"Inc." and "Incorporated" or "iPod" and "i-pod".

T

Term Frequency

The number of times a word occurs in a given document. See and http://en.wikipedia.org/wiki/Tf-idf
 for more info on TF-IDF based scoring and Lucene scoring in particular.http://lucene.apache.org/java/2_3_2/scoring.html

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/java/2_3_2/scoring.html

337Apache Solr Reference Guide 4.4

See also .Inverse Document Frequency (IDF)

Transaction Log

An append-only log of write operations maintained by each node. This log is only required with SolrCloud implementations and is created and
managed automatically by Solr.

W

Wildcard

A wildcard allows a substitution of one or more letters of a word to account for possible variations in spelling or tenses.

Z

ZooKeeper

Also known as . The system used by SolrCloud to keep track of configuration files and node names for a cluster. A ZooKeeperApache ZooKeeper
cluster is used as the central configuration store for the cluster, a coordinator for operations requiring distributed synchronization, and the system
of record for cluster topology. See also .SolrCloud

http://zookeeper.apache.org/

338Apache Solr Reference Guide 4.4

Major Changes from Solr 3 to Solr 4
Solr 4 includes some exciting new developments, and also includes many changes from Solr 3.x and earlier.

Highlights of Solr 4
Changes to Consider

System Changes
Index Format
Query Parsers
Schema Configuration
Changes to solrconfig.xml
Other Changes

Highlights of Solr 4

Solr 4 is a major release of Solr, two years in the making, and includes new features for scalability and high performance for today's data driven,
real time search applications. Some of the major improvements include:

SolrCloud

The primary new feature in Solr 4 goes by the name "SolrCloud", a suite of tools to make scalability built into your project from day one:

Distributed indexing designed from the ground up for near real-time (NRT) and NoSQL features such as realtime-get, optimistic locking,
and durable updates.
High availability with no single points of failure.
Apache Zookeeper integration for distributed coordination and cluster metadata and configuration storage.
Immunity to split-brain issues due to Zookeeper's Paxos distributed consensus protocols.
Updates sent to any node in the cluster and are automatically forwarded to the correct shard and replicated to multiple nodes for
redundancy.
Queries sent to any node automatically perform a full distributed search across the cluster with load balancing and fail-over.

NoSQL Features

Users wishing to use Solr as their primary data store will be interested in these features:

Update durability - A transaction log ensures that even uncommitted documents are never lost.
Real-time Get - The ability to quickly retrieve the latest version of a document, without the need to commit or open a new searcher
Versioning and Optimistic Locking - combined with real-time get, this allows read-update-write functionality that ensures no conflicting
changes were made concurrently by other clients.
Atomic updates - the ability to add, remove, change, and increment fields of an existing document without having to send in the complete
document again.

Other Major Features

There's more:

Pivot Faceting - Multi-level or hierarchical faceting where the top constraints for one field are found for each top constraint of a different
field.
Pseudo-fields - The ability to alias fields, or to add metadata along with returned documents, such as function query values and results of
spatial distance calculations.
A spell checker implementation that can work directly from the main index instead of creating a sidecar index.
Pseudo-Join functionality - The ability to select a set of documents based on their relationship to a second set of documents.
Function query enhancements including conditional function queries and relevancy functions.
New update processors to facilitate modifying documents prior to indexing.
A brand new web admin interface, including support for SolrCloud.

Changes to Consider

There are some major changes in Solr 4 to consider before starting to migrate your configurations and indexes. There are many hundreds of
changes, so a thorough review of the changes.txt file in your Solr instance will help you plan migration to Solr 4.

System Changes

Java 1.6 is now required to run Solr 4.

Index Format

The Lucene index format has changed. As a result, once you upgrade to Solr 4, previous versions of Solr will no longer be able to read

339Apache Solr Reference Guide 4.4

your indices. In a master/slave configuration, all searchers/slaves should be upgraded before the master. If the master is updated first,
older searchers will not be able to read the new index format.

Query Parsers

The default logic for the parameter of the has changed. If no parameter is specified (either in the query or asmm Dismax Query Parser mm
a default in , then the effective value of the parameter is used to influence the behavior (whether is definedsolrconfig.xml q.op q.op
in the query, in , or from the option in). If is effectively "AND" then .solrconfig.xml defaultOperator schema.xml q.op mm=100%
If is effectively "OR" then . If you want to force legacy behavior, set a default value for the parameter in your q.op mm=0% mm

 file.solrconfig.xml

Schema Configuration

Due to low level changes to support SolrCloud, the can no longer be populated via or uniqueKey field <copyField/> <field
 in . If you want to have Solr automatically generate a uniqueKey value when adding documents, use andefault=...> schema.xml

instance of solr.UUIDUpdateProcessorFactory in their update processor chain. See for more details.SOLR-2798

Solr is now much more strict about requiring that the feature (if used) must refer to a field which is not multiValued. IfuniqueKeyField
you upgrade from an earlier version of Solr and see an error that your "can not be configured to be multivalued"uniqueKeyField
please add ' to the declaration for your .multiValued="false <field /> uniqueKeyField

Changes to the :HTMLCharFilterFactory
Known offset bugs have been fixed.
The "Mark invalid" exceptions are no longer triggered.
Newlines are now substituted instead of spaces for block-level elements; this corresponds more closely to on-screen layout,
enables sentence segmentation, and doesn't change the offsets.
Supplementary characters in tags are now recognized.
Accepted tag names have been switched from and Unicode properties to the more[:XID_Start:] [:XID_Continue:]
relaxed and properties, in order to broaden the range of recognizable input. (The improved[:ID_Start:] [:ID_Continue:]
security afforded by the properties is irrelevant to what a does.)XID_* CharFilter
More cases of <script> tags are now properly stripped.
CDATA sections are now recognized.
No space is substituted for inline tags (e.g. , ,). The old version substituted spaces for all tags. <i>
Broken MS-Word-generated processing instructions instead of) are now handled.(? ... /) <? ... ?>
Uppercase character entities "", "©", "<", ">", "®", and "&" are now recognized and handled as if they were lower case.
Opening tags with unbalanced quotation marks are now properly stripped.
Literal "<" and ">" characters in opening tags, regardless of whether they appear inside quotation marks, now inhibit recognition
(and stripping) of the tags. The only exception to this is for values of event-handler attributes, e.g. "onClick", "onLoad",
"onSelect".
A newline '\n' is substituted instead of a space for stripped HTML markup.
Nothing is substituted for opening and closing inline tags - they are simply removed. The list of inline tags is (case insensitively):
<a>, <abbr>, <acronym>, , <basefont>, <bdo>, <big>, <cite>, <code>, <dfn>, , , <i>, , <input>, <kbd>,
<label>, <q>, <s>, <samp>, <select>, <small>, , <strike>, , <sub>, <sup>, <textarea>, <tt>, <u>, and <var>.
HTMLStripCharFilterFactory now handles HTMLStripCharFilter's "escapedTags" feature: opening and closing tags with the given
names, including any attributes and their values, are left intact in the output.
The replacement character U+FFFD is now used to replace numeric character entities for unpaired UTF-16 low and high
surrogates (in the range [U+D800-U+DFFF]).
Properly paired numeric character entities for UTF-16 surrogates are now converted to the corresponding code units.
The generated scanner's parse method has been changed from the default to .yylex() nextChar()

Changes to solrconfig.xml

The <indexDefaults> and <mainIndex> sections of solrconfig.xml have been discontinued and replaced with the <indexConfig> section.
There are also better defaults. When migrating, If you don't know what your old settings mean, delete both the <indexDefaults> and
<mainIndex> sections. If you have customized them, put them in the <indexConfig> section with the same syntax as before.

The no longer looks for a option in the (legacy) section of . If youPingRequestHandler <healthcheck> <admin> solrconfig.xml
want to take advantage of this feature, configure a initialization parameter directly on the .healthcheckFile PingRequestHandler
As part of this change, relative file paths have been fixed to be resolved against the data directory. The sample hassolrconfig.xml
an example of this configuration.

The update request parameter to choose the Update Request Processor Chain has been renamed from to update.processor
. The old parameter was deprecated in Solr 3.x, but now has been removed entirely.update.chain

The VelocityResponseWriter is no longer built into the core. Its jar and dependencies now need to be addressed (via <lib> or solr/home
lib inclusion). It also needs to be registered in like this:solrconfig.xml

<queryResponseWriter name="velocity" class="solr.VelocityResponseWriter"/>

https://issues.apache.org/jira/browse/SOLR-2796

340Apache Solr Reference Guide 4.4

Other Changes

Two of the SolrServer subclasses in SolrJ have been renamed and replaced. is now ,CommonsHttpSolrServer HttpSolrServer
and is now .StreamingUpdateSolrServer ConcurrentUpdateSolrServer

341Apache Solr Reference Guide 4.4

Errata

Errata For This Documentation

Any mistakes found in this documentation after it's release will be listed on the on-line version of this page:

https://cwiki.apache.org/confluence/display/solr/Errata

Errata For Past Versions of This Documentation

Any known mistakes in past releases of this documentation will be noted below.

	Apache Solr Reference Guide
	About This Guide
	Getting Started
	Installing Solr
	Running Solr
	A Quick Overview
	A Step Closer

	Upgrading Solr
	Using the Solr Administration User Interface
	Overview of the Solr Admin UI
	Getting Assistance
	Logging
	Cloud Screens
	Core Admin
	Java Properties
	Thread Dump
	Core-Specific Tools
	Analysis Screen
	Config Screen
	Dataimport Screen
	Documents Screen
	Ping
	Plugins & Stats Screen
	Query Screen
	Replication Screen
	Schema Screen
	Schema Browser Screen

	Documents, Fields, and Schema Design
	Overview of Documents, Fields, and Schema Design
	Solr Field Types
	Field Type Definitions and Properties
	Field Types Included with Solr
	Working with Currencies and Exchange Rates
	Working with Dates
	Working with External Files and Processes
	Field Properties by Use Case

	Defining Fields
	Copying Fields
	Dynamic Fields
	Other Schema Elements
	Schema API
	Putting the Pieces Together
	DocValues
	Schemaless Mode

	Understanding Analyzers, Tokenizers, and Filters
	Overview of Analyzers, Tokenizers, and Filters
	What Is An Analyzer?
	What Is A Tokenizer?
	What Is a Filter?
	Tokenizers
	Filter Descriptions
	CharFilterFactories
	Language Analysis
	Phonetic Matching
	Running Your Analyzer

	Indexing and Basic Data Operations
	What Is Indexing?
	Uploading Data with Solr Cell using Apache Tika
	Uploading Data with Index Handlers
	Uploading Structured Data Store Data with the Data Import Handler
	De-Duplication
	Detecting Languages During Indexing
	Content Streams
	UIMA Integration

	Searching
	Overview of Searching in Solr
	Velocity Search UI
	Relevance
	Query Syntax and Parsing
	Common Query Parameters
	The Standard Query Parser
	The DisMax Query Parser
	The Extended DisMax Query Parser
	Local Parameters in Queries
	Other Parsers

	Highlighting
	MoreLikeThis
	Faceting
	Result Grouping
	Spell Checking
	Suggester
	Function Queries
	Spatial Search
	The Terms Component
	The Term Vector Component
	The Stats Component
	The Query Elevation Component
	Response Writers
	Near Real Time Searching
	RealTime Get

	The Well-Configured Solr Instance
	Configuring solrconfig.xml
	DataDir and DirectoryFactory in SolrConfig
	Lib Directives in SolrConfig
	Managed Schema Definition in SolrConfig
	IndexConfig in SolrConfig
	UpdateHandlers in SolrConfig
	Query Settings in SolrConfig
	RequestDispatcher in SolrConfig
	RequestHandlers and SearchComponents in SolrConfig

	Solr Cores and solr.xml
	Format of solr.xml
	Legacy solr.xml Configuration
	Moving to the New solr.xml Format
	CoreAdminHandler Parameters and Usage

	Solr Plugins
	JVM Settings

	Managing Solr
	Running Solr on Tomcat
	Running Solr on Jetty
	Configuring Logging
	Backing Up
	Using JMX with Solr
	Running Solr on HDFS

	SolrCloud
	Getting Started with SolrCloud
	How SolrCloud Works
	Nodes, Cores, Clusters and Leaders
	Shards and Indexing Data in SolrCloud
	Distributed Requests
	Read and Write Side Fault Tolerance
	NRT, Replication, and Disaster Recovery with SolrCloud

	SolrCloud Configuration and Parameters
	Setting Up an External ZooKeeper Ensemble
	Using ZooKeeper to Manage Configuration Files
	Collections API
	Parameter Reference
	Command Line Utilities
	SolrCloud with Legacy Configuration Files

	SolrCloud Glossary

	Legacy Scaling and Distribution
	Introduction to Scaling and Distribution
	Distributed Search with Index Sharding
	Index Replication
	Combining Distribution and Replication
	Merging Indexes

	Client APIs
	Introduction to Client APIs
	Choosing an Output Format
	Using JavaScript
	Using Python
	Client API Lineup
	Using SolrJ
	Using Solr From Ruby
	MBean Request Handler

	Further Assistance
	Solr Glossary
	Major Changes from Solr 3 to Solr 4
	Errata

