-r”

Apache e
"

y

Solr

Apache Solr Reference Guide

Covering Apache Solr 4.4

Li censed to the Apache Software Foundati on (ASF) under one
or nore contributor license agreenents. See the NOTICE file
distributed with this work for additional information
regardi ng copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in conpliance
with the License. You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE-2. 0

Unl ess required by applicable law or agreed to in witing,
software distributed under the License is distributed on an
"AS | S" BASIS, W THOUT WARRANTI ES OR CONDI TI ONS OF ANY
KIND, either express or inplied. See the License for the
speci fic | anguage governing perm ssions and linitations
under the License.

http://www.apache.org/licenses/LICENSE-2.0

Apache Solr Reference Guide

This reference guide describes Apache Solr, the open source solution for search. You can download Apache Solr from the Solr website at
http://lucene.apache.org/solr/.

This Guide contains the following sections:
Getting Started: This section guides you through the installation and setup of Solr.

Using the Solr Administration User Interface: This section introduces the Solr Web-based user interface. From your browser you can view
configuration files, submit queries, view logfile settings and Java environment settings, and monitor and control distributed configurations.

Documents, Fields, and Schema Design: This section describes how Solr organizes its data for indexing. It explains how a Solr schema defines
the fields and field types which Solr uses to organize data within the document files it indexes.

Understanding Analyzers, Tokenizers, and Filters: This section explains how Solr prepares text for indexing and searching. Analyzers parse
text and produce a stream of tokens, lexical units used for indexing and searching. Tokenizers break field data down into tokens. Filters perform
other transformational or selective work on token streams.

Indexing and Basic Data Operations: This section describes the indexing process and basic index operations, such as commit, optimize, and
rollback.

Searching: This section presents an overview of the search process in Solr. It describes the main components used in searches, including
request handlers, query parsers, and response writers. It lists the query parameters that can be passed to Solr, and it describes features such as
boosting and faceting, which can be used to fine-tune search results.

The Well-Configured Solr Instance: This section discusses performance tuning for Solr. It begins with an overview of the sol r confi g. xm
file, then tells you how to configure cores with sol r. xm , how to configure the Lucene index writer, and more.

Managing Solr: This section discusses important topics for running and monitoring Solr. It describes running Solr in the Apache Tomcat servlet
runner and Web server. Other topics include how to back up a Solr instance, and how to run Solr with Java Management Extensions (JMX).

SolrCloud: This section describes the newest and most exciting of Solr's new features, SolrCloud, which provides comprehensive distributed
capabilities.

Legacy Scaling and Distribution: This section tells you how to grow a Solr distribution by dividing a large index into sections called shards,
which are then distributed across multiple servers, or by replicating a single index across multiple services.

Client APIs: This section tells you how to access Solr through various client APIs, including JavaScript, JSON, and Ruby.

Apache Solr Reference Guide 4.4 2

http://lucene.apache.org/solr/

About This Guide

This guide describes all of the important features and functions of Apache Solr. It is free to download from http:/lucene.apache.org/solr/.
Designed to provide high-level documentation, this guide is intended to be more encyclopedic and less of a cookbook. It is structured to address a
broad spectrum of needs, ranging from new developers getting started to well-experienced developers extending their application or
troubleshooting. It will be of use at any point in the application life cycle, for whenever you need authoritative information about Solr.

The material as presented assumes that you are familiar with some basic search concepts and that you can read XML. It does not assume that
you are a Java programmer, although knowledge of Java is helpful when working directly with Lucene or when developing custom extensions to a
Lucene/Solr installation.

Special notes are included throughout these pages.

Note Type Look & Description

Information
'ﬂ Notes with a blue background are used for information that is important for you to know.
Notes
", Yellow notes are further clarifications of important points to keep in mind while using Solr.
Tip
@ Notes with a green background are Helpful Tips.
Warning

@ Notes with a red background are warning messages.

. The default port configured for Solr during the install process is 8983. The samples, URLs and screenshots in this guide may
show different ports, because the port number that Solr uses is configurable. If you have not customized your installation of Solr,
please make sure that you use port 8983 when following the examples, or configure your own installation to use the port
numbers shown in the examples. For information about configuring port numbers used by Tomcat or Jetty, see Managing Solr.

Apache Solr Reference Guide 4.4 3

http://lucene.apache.org/solr/

Getting Started

Solr makes it easy for programmers to develop sophisticated, high-performance search applications with advanced features such as faceting
(arranging search results in columns with numerical counts of key terms). Solr builds on another open source search technology: Lucene, a Java
library that provides indexing and search technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities.
Both Solr and Lucene are managed by the Apache Software Foundation (www.apache.org).

The Lucene search library currently ranks among the top 15 open source projects and is one of the top 5 Apache projects, with installations at
over 4,000 companies. Lucene/Solr downloads have grown nearly ten times over the past three years, with a current run-rate of over 6,000
downloads a day. The Solr search server, which provides application builders a ready-to-use search platform on top of the Lucene search library,
is the fastest growing Lucene sub-project. Apache Lucene/Solr offers an attractive alternative to the proprietary licensed search and discovery
software vendors.

This section helps you get Solr up and running quickly, and introduces you to the basic Solr architecture and features. It covers the following
topics:

Installing Solr: A walkthrough of the Solr installation process.
Running Solr: An introduction to running Solr. Includes information on starting up the servers, adding documents, and running queries.
A Quick Overview: A high-level overview of how Solr works.

A Step Closer: An introduction to Solr's home directory and configuration options.

Installing Solr

This section describes how to install Solr. You can install Solr anywhere that a suitable Java Runtime Environment (JRE) is available, as detailed
below. Currently this includes Linux, OS X, and Microsoft Windows. The instructions in this section should work for any platform, with a few
exceptions for Windows as noted.

Got Java?

You will need the Java Runtime Environment (JRE) version 1.6 or higher. At a command line, check your Java version like this:

$ *java -version*

java version "1.6.0_0"

| cedTea6 1.3.1 (6b1l2-0Oubuntu6.1) Runtinme Environment (build 1.6.0_0-bl2)
OpenJDK Client VM (build 1.6.0 _0-bl1l2, mi xed node, sharing)

The output will vary, but you need to make sure you have version 1.6 or higher. If you don't have the required version, or if the java command is
not found, download and install the latest version from Sun at http://java.sun.com/javase/downloads/.

Installing Solr

Solr is available from the Solr website at http://lucene.apache.org/solr/.

For Linux/Unix/OSX systems, download the . gzi p file. For Microsoft Windows systems, download the . zi p file.

Solr runs inside a Java servlet container such as Tomcat, Jetty, or Resin. The Solr distribution includes a working demonstration server in the

Exanpl e directory that runs in Jetty. You can use the example server as a template for your own installation, whether or not you are using Jetty
as your servlet container. For more information about the demonstration server, see the Solr Tutorial.

To install Solr
1. Unpack the Solr distribution to your desired location.
2. Stop your Java servlet container.

3. Copy the sol r. war file from the Solr distribution to the webapps directory of your servlet container. Do not change the name of this file:
it must be named sol r. war .

4. Copy the Solr Home directory apache- sol r - 3. x. 0/ exanpl e/ sol r/ from the distribution to your desired Solr Home location.

5. Start your servlet container, passing to it the location of your Solr Home in one of these ways:

Apache Solr Reference Guide 4.4 4

http://www.apache.org/
http://java.sun.com/javase/downloads/
http://lucene.apache.org/solr/
https://lucene.apache.org/solr/tutorial.html

® Set the Java system property sol r. sol r. hone to your Solr Home. (for example, using the example jetty setup: j ava
-Dsol r.solr. hore=/sone/dir -jar start.jar).
® Configure the servlet container so that a JNDI lookup of j ava: conp/ env/ sol r/ hore by the Solr webapp will point to your Solr
Home.
® Start the servlet container in the directory containing . / sol r : the default Solr Home is sol r under the JVM's current working
directory ($CW sol r).
To confirm your installation, go to the Solr Admin page at ht t p: // _host nanme_: 8983/ sol r/ adni n/ . Note that your servlet container may
have started on a different port: check the documentation for your servlet container to troubleshoot that issue. Also note that if that port is already
in use, Solr will not start. In that case, shut down the servlet container running on that port, or change your Solr port.

For more information about installing and running Solr on different Java servlet containers, see the Solrinstall page on the Solr Wiki.

Related Topics

® Solrinstall

Running Solr

This section describes how to run Solr with an example schema, how to add documents, and how to run queries.

Start the Server

If you didn't start Solr after installing it, you can start it by running st art . j ar from the Solr exanpl e directory.

$ java -jar start.jar

If you are running Windows, you can start the Web server by running st art . bat instead.

C:\ Appl i cations\Sol r\exanple > start. bat

That's it! Solr is running. If you need convincing, use a Web browser to see the Admin Console.

http://1ocal host: 8983/ sol r/admn

/S
Apache -
ol
Solr ~
& Dashboard
= Instance |E= System (V]
() Logging
& Start about 2 hours ago)
=F Core Admin Physical Memory
. L
.| Java Properties |, cwD JUsers /atymes/Desktop/solrfexample
= Thread Dump |
|, Data JUsers fatymes/Desktop/solr/example /solr/collection1
Swap Space
2 collectionl ld
[Versions

oo SOIr-spec 4.0.0.2012.08.06.22.50.47
File Descriptor Count

] lucene-speg.0.0-BETA

o Jvm # JVM-Memory

The Solr Admin interface.

If Solr is not running, your browser will complain that it cannot connect to the server. Check your port number and try again.

Add Documents

Apache Solr Reference Guide 4.4 5

http://_hostname_:8983/solr/admin/
https://wiki.apache.org/solr/SolrInstall
https://wiki.apache.org/solr/FrontPage
http://wiki.apache.org/solr/SolrInstall
http://localhost:8983/solr/admin

Solr is built to find documents that match queries. Solr's schema provides an idea of how content is structured (more on the schema later), but
without documents there is nothing to find. Solr needs input before it can do anything.

You may want to add a few sample documents before trying to index your own content. The Solr installation comes with example documents
located in the exanpl e/ exanpl edocs directory of your installation.

In the exanpl edocs directory is the SimplePostTool, a Java-based command line tool, post . j ar, which can be used to index the documents.
Do not worry too much about the details for now. The Indexing and Basic Data Operations section has all the details on indexing.

To see some information about the usage of post . j ar, use the - hel p option.

$ java -jar post.jar -help

The SimplePostTool is a simple command line tool for POSTing raw XML to a Solr port. XML data can be read from files specified as command
line arguments, as raw command line ar g strings, or via STDIN.

Examples:

java -Ddata=files -jar post.jar *.xnl
java -Ddata=args -jar post.jar '<delete><id>42</id></del ete>'
java -Ddata=stdin -jar post.jar < hd.xm

Other options controlled by System Properties include the Solr URL to POST to, and whether a commit should be executed. These are the
defaults for all System Properties:

-Ddat a=fil es
-Durl =http://Iocal host: 8983/ sol r/ update
-Dconmi t =yes

Go ahead and add all the documents in the directory as follows:

$ java -Durl =http://1 ocal host: 8983/ solr/update -jar post.jar *.xnl

Si npl ePost Tool : version 1.2

Si npl ePost Tool : WARNI NG Make sure your XM. docunents are encoded in UTF-8, other
encodi ngs are not currently supported

Si npl ePost Tool : POSTing files to http://10.211.55. 8:8983/sol r/ update. .
Si npl ePost Tool : POSTing file hd. xm

Si npl ePost Tool : PCOSTing file ipod_other. xnl

Si npl ePost Tool : POSTing file ipod_video.xnl

Si npl ePost Tool : POSTing file mem xm

Si npl ePost Tool : POSTing file nonitor.xm

Si npl ePost Tool : PCSTing file nonitor2. xn

Si npl ePost Tool : PCSTing file np500. xm

Si npl ePost Tool : POSTing file sd500. xm

Si npl ePost Tool : POSTing file sol r.xm

Si npl ePost Tool : PCSTing file spellchecker. xn

Si npl ePost Tool : PCSTing file utf8-exanple.xn

Si npl ePost Tool : POSTing file vidcard. xm

Si npl ePost Tool : COMM Tting Solr index changes..

Ti me spent: 0:00:00.633

$

That's it! Solr has indexed the documents contained in the files.

Apache Solr Reference Guide 4.4 6

Ask Questions

Now that you have indexed documents, you can perform queries. The simplest way is by building a URL that includes the query parameters. This
is exactly the same as building any other HTTP URL.

For example, the following query searches all document fields for "video™:
http://1 ocal host: 8983/ sol r/ sel ect ?q=vi deo

Notice how the URL includes the host name (I ocal host), the port number where the server is listening (8983), the application name (sol r), the
request handler for queries (sel ect), and finally, the query itself (q=vi deo).

The results are contained in an XML document, which you can examine directly by clicking on the link above. The document contains two parts.
The first part is the r esponseHeader , which contains information about the response itself. The main part of the reply is in the result tag, which
contains one or more doc tags, each of which contains fields from documents that match the query. You can use standard XML transformation
techniques to mold Solr's results into a form that is suitable for displaying to users. Alternatively, Solr can output the results in JSON, PHP, Ruby
and even user-defined formats.

Just in case you are not running Solr as you read, the following screen shot shows the result of a query (the next example, actually) as viewed in
Mozilla Firefox. The top-level response contains a | st named r esponseHeader and a result named response. Inside result, you can see the
three docs that represent the search results.

ano Mozilla Firefox
J. http:/ /localhost. ./ select?q=video [=+ l

-
|. localhost:8983 [solr[select?q=video v C'] (_"‘l' Gooz_Q) @

This XML file does not appear to have any style information associated with it. The document tree is shown below.

M
|
|
|

— <response> :
— <Ist name="responscHeader"> |
<int name="status">0</int> |
<int name="QTime">0</int> I
— <lst name="params"> :
<str name="q">video</str> |
</Ist> |
</lst> |
— <result name="response” numFound="3" start="0"> !
— <doc> :
— <arr name="cat"> |
<str>electronics</str> |
<str>music</str> |
</arr> I
— <arr name="features"> :
<str>iTunes, Podcasts, Audiobooks</str> |
— <str> |
Stores up to 15,000 songs, 25,000 photos, or 150 hours of video |
</str> I
- <str> L
2.5-inch, 320x240 color TFT LCD display with LED backlight
</str>
<str>Up to 20 hours of battery life</str>
— <str>
Plays AAC, MP3, WAV, AIFF, Audible, Apple Lossless, H.264 video
</str>
— <Str>
Notes, Calendar, Phone book, Hold button, Date display, Photo wallet, Built-in games, JPEG photo playback, Upgradeable
firmware, USB 2.0 compatibility, Playback speed control, Rechargeable capability, Battery level indication
</str>
</arr>
<str name="id">MA147LL/A</str>
<bool name="inStock">true</hool>
<str name="includes">earbud headphones, USB cable</str>
<str name="manu">Apple Computer Inc.</str>
<date name="manufacturedate_dt">2005-10-12T08:00:00Z</date>
<str name="name">Apple 60 GB iPod with Video Playback Black</str>
<int name="popularity">10</int>
<float name="price">399 O</float>
<str name="store">37.7752,-100.0232</str>
<float name="weight">5.5</float>
</doc>

*‘D‘dﬂmw Pt PTG B s I ot D rr bl B, | ot e ——eS
An XML response to a query.

Once you have mastered the basic idea of a query, it is easy to add enhancements to explore the query syntax. This one is the same as before

Apache Solr Reference Guide 4.4 7

http://localhost:8983/solr/select?q=video

but the results only contain the ID, name, and price for each returned document. If you don't specify which fields you want, all of them are
returned.

http://1ocal host: 8983/ sol r/ sel ect ?g=vi deo&f | =i d, nane, pri ce

Here is another example which searches for "black" in the nane field only. If you do not tell Solr which field to search, it will search default fields,
as specified in the schema.

http://1ocal host: 8983/ sol r/ sel ect ?2g=nane: bl ack
You can provide ranges for fields. The following query finds every document whose price is between $0 and $400.
http://1ocal host: 8983/ sol r/sel ect ?2g=pri ce: 0%20TO¥R0400&f | =i d, nane, pri ce

Faceted browsing is one of Solr's key features. It allows users to narrow search results in ways that are meaningful to your application. For
example, a shopping site could provide facets to narrow search results by manufacturer or price.

Faceting information is returned as a third part of Solr's query response. To get a taste of this power, take a look at the following query. It adds
facet=true andfacet.fiel d=cat.

http://1ocal host: 8983/ sol r/sel ect ?2g=pri ce: 0%20TO¥R0400&f | =i d, nane, pri ce&f acet =t rue&f acet . fi el d=cat

In addition to the familiar r esponseHeader and response from Solr, a f acet _count s element is also present. Here is a view with the
responseHeader and response collapsed so you can see the faceting information clearly.

Apache Solr Reference Guide 4.4 8

http://localhost:8983/solr/select?q=video&fl=id,name,price
http://localhost:8983/solr/select?q=name:black
http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price
http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price&facet=true&facet.field=cat

An XML Response with faceting

<?xm version="1.0" encodi ng="UTF- 8" ?>
<response>
<l st name="responseHeader" >
</lst>
<result nanme="response" nunfFound="9" start="0">
<doc>
<str nanme="id">SOLR1000</str>

<str name="nane">Solr, the Enterprise Search Server</str>
<fl oat nanme="price">0.0</fl oat ></ doc>

</result>
<l st nanme="facet counts">
<l st nane="facet_queries"/>
<l st nanme="facet_fields">
<l st nanme="cat">
<int name="el ectroni cs">6</int>
<int name="nenory">3</int>
<int name="search">2</int>
<int name="sof tware">2</int>
<i nt name="canera">1</int>
<int name="copier">1</int>
<int name="nul tifunction printer">1</int>
<i nt name="rnusi c">1</int>
<int name="printer">1</int>
<int name="scanner">1</int>
<i nt name="connector">0</int>
<int name="currency">0</int>
<i nt name="graphi cs card">0</int>
<int name="hard drive">0</int>
<int name="nonitor">0</int>
</|st>
</|st>
<l st nane="facet_dates"/>
<l st name="facet_ranges"/>
</|st>
</ response>

The facet information shows how many of the query results have each possible value of the cat field. You could easily use this information to
provide users with a quick way to narrow their query results. You can filter results by adding one or more filter queries to the Solr request. Here is
a request further constraining the request to documents with a category of "software".

http://1ocal host: 8983/ sol r/sel ect ?2g=pri ce: 0%20TO¥20400&f | =i d, nane, pri ce&f acet =t rue&f acet . fi el d=cat & q=cat : sc

A Quick Overview

Having had some fun with Solr, you will now learn about all the cool things it can do.

Here is a typical configuration:

Apache Solr Reference Guide 4.4 9

http://localhost:8983/solr/select?q=price:0%20TO%20400&fl=id,name,price&facet=true&facet.field=cat&fq=cat:software

Server

Web server ‘

Web

- application

«

Document
database

.
—_— .

Solr

In the scenario above, Solr runs alongside another application in a Web server. For example, an online store application would provide a user
interface, a shopping cart, and a way to make purchases. The store items would be kept in some kind of database.

Solr makes it easy to add the capability to search through the online store through the following steps:

1. Define a schema. The schema tells Solr about the contents of documents it will be indexing. In the online store example, the schema
would define fields for the product name, description, price, manufacturer, and so on. Solr's schema is powerful and flexible and allows
you to tailor Solr's behavior to your application. See Documents, Fields, and Schema Design for all the details.

2. Deploy Solr to your application server.

3. Feed Solr the document for which your users will search.

4. Expose search functionality in your application.

Because Solr is based on open standards, it is highly extensible. Solr queries are RESTful, which means, in essence, that a query is a simple
HTTP request URL and the response is a structured document: mainly XML, but it could also be JSON, CSV, or some other format. This means
that a wide variety of clients will be able to use Solr, from other web applications to browser clients, rich client applications, and mobile devices.
Any platform capable of HTTP can talk to Solr. See Client APIs for details on client APIs.

Solr is based on the Apache Lucene project, a high-performance, full-featured search engine. Solr offers support for the simplest keyword
searching through to complex queries on multiple fields and faceted search results. Searching has more information about searching and queries.

If Solr's capabilities are not impressive enough, its ability to handle very high-volume applications should do the trick.
A relatively common scenario is that you have so many queries that the server is unable to respond fast enough to each one. In this case, you

can make copies of an index. This is called replication. Then you can distribute incoming queries among the copies in any way you see fit. A
round-robin mechanism is one simple way to do this.

Apache Solr Reference Guide 4.4 10

Replication
Master

slavel slave2 slave3

Another useful technique is sharding. If you have so many documents that you simply cannot fit them all on a single box for RAM or index size
reasons, you can split an index into multiple pieces, called shards. Each shard lives on its own physical server. An incoming query is sent to all
the shard servers, which respond with matching results.

Single Server Distributed

Shard1 Shard 2

If you have huge numbers of documents and users, you might need to combine the techniques of sharding and replication. In this case, Solr's
new SolrCloud functionality may be more effective for your needs. SolrCloud includes a number of features to simplify the process of distributing
the index and the queries, and manage the resulting nodes.

Distributed + Replication

Shard 1 Master Shard 2 Master Shard 3 Master

slavel slavel slavel

.8 R

slave2 slave2 slave2
For full details on sharding and replication, see Legacy Scaling and Distribution. We've split the SolrCloud information into it's own section, called
SolrCloud.

Best of all, this talk about high-volume applications is not just hypothetical: some of the famous Internet sites that use Solr today are Macy's,
EBay, and Zappo's.

Apache Solr Reference Guide 4.4 11

For more information, take a look at https://wiki.apache.org/solr/PublicServers.

A Step Closer

You already have some idea of Solr's schema. This section describes Solr's home directory and other configuration options.

When Solr runs in an application server, it needs access to a home directory. The home directory contains important configuration information and
is the place where Solr will store its index.

The crucial parts of the Solr home directory are shown here:

<sol r- hore-di rectory>/
sol r. xm
conf/
sol rconfig. xm
schema. xm
dat a/

You supply sol r. xm , sol rconfi g. xnl , and scherma. xm to tell Solr how to behave. By default, Solr stores its index inside data.

sol r. xm specifies configuration options for your Solr core, and also allows you to configure multiple cores. For more information on sol r. xm
see The Well-Configured Solr Instance.

sol rconfi g. xm controls high-level behavior. You can, for example, specify an alternate location for the data directory. For more information on
sol rconfi g. xm , see The Well-Configured Solr Instance.

schema. xnl describes the documents you will ask Solr to index. Inside schema. xm , you define a document as a collection of fields. You get to

define both the field types and the fields themselves. Field type definitions are powerful and include information about how Solr processes
incoming field values and query values. For more information on schena. xm , see Documents, Fields, and Schema Design.

Apache Solr Reference Guide 4.4 12

https://wiki.apache.org/solr/PublicServers

Upgrading Solr

If you are already using Solr 4.3 or 4.3.1, Solr 4.4 should not present any major problems. However, you should review the CHANGES. t xt file
found in your Solr package for changes and updates that may effect your existing implementation.

Upgrading from 4.3.x

If you are upgrading directly from Solr 4.3.0 to 4.4, Solr 4.3.1 included several major bug fixes, which are also included in Solr 4.4. Notable fixes:
the new shard splitting feature in particular was made much more stable, with five fixed bugs; sol r. xm shar edLi b didn't work in Solr 4.3.0;
and SolrCore reloading was broken when the UpdateLog was enabled - this last bug affected both Solr 4.2.1 and 4.3.0.

Solr 4.3.0 introduced a new sol r. xm "discovery" mode and format, which is now the default in Solr 4.4. The pre-4.3.0 sol r. xm "legacy" mode
and format will no longer be supported in Solr 5.0. For a thorough treatment of these issues, including how to migrate from "legacy" to "discovery"
sol r. xm configurations, see Solr Cores and solr.xml.

The new "deleteshard" collections API unloads all replicas of a given shard and then removes it from the cluster state - it will remove only those
shards which are INACTIVE (e.g. post-shard-split parent shards) or have no range (created for custom sharding).

More shard splitting bugs were fixed: the "splitshard" APl wasn't calling commit on new sub shards before switching shard states; and multiple
bugs related to sub shard recovery and replication were fixed.

Ti er edMer gePol i cy and the various subtypes of LogMer gePol i cy no longer have an explicit "set UseConpoundFi | " method. Instead the
behavior of new segments is determined by the | ndexW i t er configuration, and the Mer gePol i cy is only consulted to determine if merge
segments should use the compound file format (based on the value of "set NoCFSRat i 0"). If you have explicitly configured one of these classes
using <ner gePol i cy> and include an init arg like this...

<bool name="useConpoundFi | e" >t rue</bool >

=

...this will now be treated as if you specified...

<useConpoundFi | e>t r ue</ useConpoundFi | e>

...directly on the <i ndexConf i g> (overriding any value already set using that syntax) and a warning will be logged to update your configuration.
Users with an explicitly declared <ner gePol i cy> are encouraged to review the current javadocs for their Mer gePol i cy subclass and review
their configured options carefully. See SOLR-4941, SOLR-4934 and LUCENE-5038 for more information.

The signature of LogWat cher . r egi st er Li st ener has changed, from (Li st ener Confi g, CoreCont ai ner) to (Li stenerConfig).
Users implementing their own Log\Wat cher classes will need to change their code accordingly.

Byt eFi el d and Shor t Fi el d have been deprecated and will be removed in Solr 5.0. If you are still using these field types, you should migrate
your fields to Tri el nt Fi el d.

Finally, the Admin Ul now displays the dashboard even if Solr is down.

As with any Solr update, it is recommended that you re-index your content.

Upgrading from Older Versions of Solr

This is a summary of some of the key issues related to upgrading in previous versions of Solr. Users upgrading from older versions are strongly
encouraged to consult CHANGES. t xt the details of all changes since the version they are upgrading from.

® As of Solr 4.3 the slf4j/logging jars are no longer included in the Solr webapp to allow for more flexibility in logging.

® Minor changes were made to the Schema API response format in Solr 4.3

® In Solr 4.1 the method Solr uses to identify node names for SolrCloud was changed. If you are using SolrCloud and upgrading from Solr
4.0, you may have issues with unknown or lost nodes. If this occurs, you can manually set the host parameter either in sol r. xm or as
a system variable. More information can be found in the section on SolrCloud.

® |f you are upgrading from Solr 3.x, you should familiarize yourself with the Major Changes from Solr 3 to Solr 4.

Apache Solr Reference Guide 4.4 13

http://lucene.apache.org/solr/4_4_0/changes/Changes.html
http://lucene.apache.org/core/4_4_0/core/org/apache/lucene/index/MergePolicy.html
https://issues.apache.org/jira/browse/SOLR-4941
https://issues.apache.org/jira/browse/SOLR-4934
https://issues.apache.org/jira/browse/LUCENE-5038

Using the Solr Administration User Interface

This section discusses the Solr Administration User Interface (“Admin UI").

The Overview of the Solr Admin Ul explains how the features of the user interface that are new with Solr 4, what's on the initial Admin Ul page,
and how to configure the interface. In addition, there are pages describing each screen of the Admin Ul:

Getting Assistance shows you how to get more information about the Ul.

Logging explains the various logging levels available and how to invoke them.

Cloud Screens display information about nodes when running in SolrCloud mode.

Core Admin explains how to get management information about each core.

Java Properties shows the Java information about each core.

Thread Dump lets you see detailed information about each thread, along with state information.

® Core-Specific Tools is a section explaining additional screens available for each named core.
® Analysis - lets you analyze the data found in specific fields.
Config - shows the current configuration of the sol r confi g. xm file for the core.
Dataimport - shows you information about the current status of the Data Import Handler.
Documents - provides a simple form allowing you to execute various Solr indexing commands directly from the browser.
Ping - lets you ping a named core and determine whether the core is active.
Plugins/Stats - shows statistics for plugins and other installed components.
Query - lets you submit a structured query about various elements of a core.
Replication - shows you the current replication status for the core, and lets you enable/disable replication.
Schema - describes the schema. xm file for the core.
Schema Browser - displays schema data in a browser window.

Overview of the Solr Admin Ul

Solr features a Web interface that makes it easy for Solr administrators and programmers to view Solr configuration details, run queries and
analyze document fields in order to fine-tune a Solr configuration and access online documentation and other help.

. rr,
With Solr 4, the Solr avacne (/2 H wstance W Syztem v
Admin has been SOIr ' & Start 2013-05-13T16:49:22.392 Physical Memary
completely redesigned. @ Host 10.0.011
The rledeSIgn_ \[I1va[? & Dashboard Ly CWD /Applications/solr-4.2.1/example
gomr}teted Wl_t dt ese =} Logging |y Instance /Applications/solr-4.2.1/example/solr/collection1
€netits in mind: £ Core Admin | y Data [Applications/solr-4.2.1/example[solr/collection1/data
= Swap Space
- . Index /Applications/solr-4.2.1/example/solr/collection1/data/index
® load pages Java Properties -
qUiCkel’ = Thread Dump =] Versions
® access and)
sow SOIr-spec 4.2.1.2013.03.26.08.26.55
Contr-OI ; _ solr-impl 4.2.1 1461071 - mark - 2013-03-26 08:26:55 File Descriptor Count
functionality PR o
from the 7 lucene-spec 4.2.1
Dashboard lucene-impl 4.2.1 1461071 - mark - 2013-03-26 08:23:34
* re-use the
same servlets - v -
] L -Memor
that access Y
Solr-related © Runtime Apple Inc. Java HotSpot(TM) 64-Bit Server VM (1.6.0_45 20.45-b0..
data from an B Processors 4
external
interface, and
® ignore any
differences
between] Documentation 4 Issue Tracker g IRC Channel (] Community forum || Solr Query Syntax
working with

one or multiple cores.

Accessing the URL http://hostname:8983/solr/admin/ (if running Jetty on the default port of 8983), will show the main dashboard, which is divided
into two parts.

A left-side of the screen is a menu under the Solr logo that provides the navigation through the screens of the Ul. The first set of links are for
system-level information and configuration and provide access to Logging, Core Admin and Java Properties, among other things. At the end of
this information is a list of Solr cores configured for this instance. Clicking on a core name shows a secondary menu of information and
configuration options for the core specifically. Items in this list include the Schema, Config, Plugins, and an ability to perform Queries on indexed
data.

The center of the screen shows the detail of the option selected. This may include a sub-navigation for the option or text or graphical
representation of the requested data. See the sections in this guide for each screen for more details.

Apache Solr Reference Guide 4.4 14

http://hostname:8983/solr/admin/

Configuring the Admin Ul in sol rconfi g. xm

You can configure the Solr Admin Ul by editing the file sol r confi g. xm .

The <admi n> block in the sol rconfi g. xm file determines the default query to be displayed in the Query section of the core-specific pages.

The default is *: *, which is to find all documents. In this example, we have changed the default to the term sol r.

<adm n>
<def aul t Quer y>sol r </ def aul t Query>
</ adm n>

Related Topics

® Configuring solrconfig.xml

Getting Assistance

At the bottom of each screen of the Admin Ul is a set of links that can be used to get more assistance with configuring and using Solr.

| Documentation rﬁi Issue Tracker L IRC Channel | Community forum o Solr Query Syntax

Assistance icons

These icons include the following links.

Link Description
Documentation | Navigates to the Apache Solr documentation hosted on http://lucene.apache.org/solr/.

Issue Tracker Navigates to the JIRA issue tracking server for the Apache Solr project. This server resides at
http://issues.apache.org/jira/browse/SOLR.

IRC Channel Connects you to the web interface for Solr's IRC channel. This channel is found on Irc.freenode.net, Port 7000, #solr
channel.

Community Connects you to the Solr community forum, which at the current time is a set of mailing lists and their archives.

forum

Solr Query Navigates to the Apache Wiki page describing the Solr query syntax: http://wiki.apache.org/solr/SolrQuerySyntax.

Syntax

These links cannot be modified without editing the admi n. ht m in the sol r. war that contains the Admin Ul files.

Logging
The Logging page shows messages from Solr's log files.

When you click the link for "Logging", a page similar to the one below will be displayed:

Apache Solr Reference Guide 4.4

15

http://lucene.apache.org/solr/
http://issues.apache.org/jira/browse/SOLR
http://Irc.freenode.net
http://wiki.apache.org/solr/UsingMailingLists
http://wiki.apache.org/solr/SolrQuerySyntax

N
\)

Apache

Solr

& Dashboard

| JUL (org.sif4j.impl JDK14LoggerFactory)
[} Logging
Time Level Logger Message
£
=f Core Admin
_ ¥
_| Java Properties

= Thread Dump

& collectionl

15:58:19 WARNING SolrCore New index directory detected: old=null new=solr/collectionl/data/index/

The Main Logging Screen

While this example shows logged messages for only one core, if you have multiple cores in a single instance, they will each be listed, with the

level for each.

Selecting a Logging Level

When you select the Level link on the left, you see the
hierarchy of classpaths and classnames for your instance. A
row highlighted in yellow indicates that the class has logging
capabilities. Click on a highlighted row, and a menu will
appear to allow you to change the log level for that class.
Characters in boldface indicate that the class will not be
affected by level changes to root.

For an explanation of the various logging levels, see
Configuring Logging.

Cloud Screens

When running in SolrCloud mode, an option will appear in
the Admin Ul between Logging and Core Admin for Cloud.
It's not possible at the current time to manage the nodes of

7/
Apache .4.

& Dashboard

() Logging
£ Level

&1 Core Admin

7| Java Properties

£ Thread Dump

collectionl

| JUL (org.sifajimplJDK 14LoggerFactory)

root
global
Javax
™ management
- mbeanserver
org
~ apache
i http
~ impl
client
DefaultHttpClient
conn
i+ DefaultClientConnectionOperator
i+ IdleConnectionHandler
tseem
i+ ConnPoolByRoute
* ThreadSafeClientConnManager

FINEST
FINER
FINE
CONFIG

~ INFO

WARNING
SEVERE
OFF
UNSET

null
INFO
null
INFO
INFO
null
INFO
INFO

the SolrCloud cluster, but you can view them and open the Solr Admin Ul on each node to view the status and statistics for the node and each

core on each node.

Click on the Cloud option in the left-hand navigation, and a small sub-menu appears with options called "Tree", "Graph", "Graph (Radial)" and

"Dump". The default view (which is "Tree") shows a graph of each core and the addresses of each node. This example shows a very simple

two-node cluster with a single core:

Apache Solr Reference Guide 4.4

16

Apache

Solr

@ Dashboard
(=) Logging

== Cloud

A, Graph
¥
Zf Core Admin
*| Java Properties

= Thread Dump

3
‘n\’

shardl ®10.0.1.11
collectionl
shard2 @®10.0.1.13
|=] Documentation 4% Issue Tracker g IRC Channel [Community forum

® |eader
O Active

O Dowr
D Down

O Recovery Failed

|2 Solr Query Syntax

The "Graph (Radial)" option provides a different visual view of each node. Using the same simple two-node cluster, the radial graph view looks

like:

Apache

Solr

& Dashboard
(& Logging

== Cloud

&
4E Graph (Radial)
El

ZE Core Admin

__ Java Properties

= Thread Dump

3
. -\’

10.0.1.1@mardZ

collectionl

shamill0.0.1.11

|=] Documentation * Issue Tracker ,j{& IRC Channel [Community forum

® Leader
O Active

O Recovery Failed

|e2| Solr Query Syntax

The "Tree" option shows a directory structure of the files in ZooKeeper, including cl ust er st at e. j son, configuration files, and other status and

information files. In this example, we show the leader definition files for the core named "“collection1":

f/
7
Apache o,
-

Solr

@ Dashboard
L3 Logging
== Cloud
- Tree
A
*®
1 Core Admin
Java Properties

Thread Dump

@ collectionl

[clusterstate.json

4 [collections

.

collection1

leader_elect

a.

leaders
shard1
shard2

| [configs

., llive_nodes

| loverseer

| loverseer_elect

| |zookeeper

version

aversion
children_count
ctime

cversion

czxid
dataLength
ephemeralOwner
mtime

mzxid

pzxid

1

o

o

o

Sun Nov 04 20:21:08 UTC 2012 (1352060468273)
o

99

105

88608634508214270

Sun Nov 04 20:21:08 UTC 2012 (1352060468273)
99

99

"core":"collectionl",

“node_nam

“base_url

"mbp.local: 7983 solr®,

tp://mbp. local:7983/solr"}

Apache Solr Reference Guide 4.4

17

The final option is "Dump", which allows you to download an XML file with all the ZooKeeper configuration files.

Core Admin

The Core Admin screen lets you manage your cores.

The buttons at the top of the screen let you add a new core, unload the core displayed, rename the currently displayed core, swap the existing
core with one that you specify in a drop-down box, reload the current core, and optimize the current core.

The main display and available actions correspond to the commands used with the CoreAdminHandler, but provide another way of working with
your cores.

Apache "’¢ Add Core =0 Rename | @ Swap = Reload = & Optimize
Solr ~
oir collectionl [Core
@ Dashboard test_core_shard]_re startTime less than a minute ago
(5] Logging instanceDir solr/collectionl/
< Cloud dataDir: solr/collectionl/data/
= Core Admin i Index
7| Java Properties JastModified B
= Thread Dump —_ 1
numDocs [
@ collectionl T 0
@ test_core_shardl_r. deletedDocs: -
optimized «
current L4
directory: org.apache.lucene.store.NRTCachingDirectory:NRTCachingDirectory(org.apache.lucene.store NIOFSDirectory@/Applications/solr-

4.1.0/shard1/solr/collection] /data/index lockFactory=org.apache.|ucene.store.NativeFSLockFactory@sfl4a3ce; maxCacheMB=48.0
maxMergeSizeMB=4.0)

|=] Documentation . Issue Tracker gk IRC Channel (7] Community forum [o] Solr Query Syntax

Java Properties

The Java Properties screen provides easy access to one of the most essential components of a top-performing Solr systems With the Java
Properties screen, you can see all the properties of the JVM running Solr, including the class paths, file encodings, JVM memory settings,
operating system, and more.

]/
'/
Apache ‘- awt.nativeDoubleBuffering true
Sol r - awt.toolkit apple.awt.CToolkit
file.encoding MacRoman
& Dashboard file_encoding.pkg sun.io
file.separator !
(- Logging
fip.nonProxyHosts local|*local| 169.254 /16/*.169.254/16
. Core Admin
= gopherProxySet false
8 oabe s hittp.nonPraxyHosts locall~.locall 169.254/161.169.254/16
= Thread Dump Java.awt.graphicsenv apple.awt.CGraphicsEnvironment
Java.awt.printerjob apple.awt.CPrinterjob
@ collectionl Jjava.class.path [Users/cassandra4work/Downloads/apache-solr-4.0.0/example/lib/jetty-xmi-8.1.2.¥20120308 jar

JUsers fcassandra4work/Downloads/apache-solr-4.0.0fexample/lib /jetty-http-8.1.2.v20120308 jar

JUsers fcassandradwork/Downloads /apache-solr-#.0.0 fexample/lib /jetty-server-8.1.2.v20120308.jar

JUsers fcassandradwork/Downloads /apache-solr-4.0.0fexample/lib /jetty-serviet-8.1.2.v20120308. jar

[Users/cassandra4work/Downloads/apache-solr-4.0.0/example/lib/jetty-deploy-8.1.2.v20120308.jar

/Users fcassandra4work/Downloads/apache-solr-4.0.0 fexample/lib /jetty-io-8.1.2.v20120308.jar

Thread Dump

The Thread Dump screen lets you inspect the currently active threads on your server. Each thread is listed and access to the stacktraces is
available where applicable. Icons to the left indicate the state of the thread: for example, threads with a green check-mark in a green circle are in
a "RUNNABLE" state. On the right of the thread name, a down-arrow means you can expand to see the stacktrace for that thread.

Apache Solr Reference Guide 4.4 18

Apache

Solr

@ Dashboard

-
| l‘~

= Show all Stacktraces

) Loggimn
&1 Logging name cpuTime |
=k Core Admin userTime
*| Java Properties @ DestroyJavaVM (26) 3536.3050ms

3393.5180ms
; i Thread Dump

& pool-1-thread-1 (25) 65.8300ms

Ed 63.7670ms
@ collectionl _

. HashSessionScavenger-0 (23) 1.3790ms
= 0.7880ms
Poller SunPKCS11-Darwin (22) 18.1240ms

14.1830ms

& 01p1566301264-21 Acceptor)d SockerConnector@0.0.0.0:8983 (21) @ 30.8460ms

29.2750ms

& qtpl566301264-20 (20) 4.4950ms

3.0650ms

& qipl566301264-19 (19) & 93.9410ms

85.0270ms

When you move your cursor over a thread name, a box floats over the name with the state for that thread. Thread states can be:

State Meaning

NEW A thread that has not yet started.

RUNNABLE A thread executing in the Java virtual machine.

BLOCKED A thread that is blocked waiting for a monitor lock.

WAITING A thread that is waiting indefinitely for another thread to perform a particular action.

TIMED_WAITING | A thread that is waiting for another thread to perform an action for up to a specified waiting time.

TERMINATED A thread that has exited.

When you click on one of the threads that can be expanded, you'll see the stacktrace, as in the example below:

Apache

Solr

@ Dashboard

v
| l‘~

= Hide all Stacktraces
(=) Logging

name cpuTime /
=f Core Admin userTime
= Java Properties & DestroyjavaVM (26) 3536.3050ms

3393.5180ms
; i Thread Dump

2 pool-1-thread-1 (25) 65.8300ms
L] 63.7670ms
@ collectionl
» sun.misc.Unsafe.park(Native Method)
Jjava.util.concurrent.locks.LockSupport.park{LockSupport.java:156)
Jjava.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await
(AbstractQueuedSynchronizer.java:1987)
Jjava.util.concurrent.LinkedBlockingQueue.take(LinkedBlockingQueue. java:399)
java.util.concurrent. ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:947)
java.util.concurrent. ThreadPoolExecutor§Worker.run(ThreadPoolExecutor.java:907)
Jjava.lang.Thread.run(Thread.java:680)

HashSessionScavenger-0 (23) @ 1.3790ms
E] 0.7880ms

* java.lang.Object.wait{Native Method)
s java.util.TimerThread.mainLoop(Timer.java:509)

Inspecting a thread

You can also check the Show all Stacktraces button to automatically enable expansion for all threads.

Apache Solr Reference Guide 4.4

Core-Specific Tools

In the left-hand

7y,

navigation bar, you will| apache Ps |l statistics Admin Extra
]
S.ee a DU”'down menu SOI r’ ’ Last Modified: 9 minutes ago
titled "Core Selector". Num Docs: 32
C!lcklng on t_he menu | g pachboard DEM":;*DD[E (3]2
will show a list of Solr S -
. h h (53 Logging Version: 3
cores, with a searc ; Segment Count: 1
box that can be used =F Core Admin Ontimized: ¥
. g - ptimized:
to find a specific core Java Properties Current: ¥
(handy if you have a = Thread Dump L
|0t Of cores). When yOU Replication (Master) |
select a core, such as | " o -
collectionl in the Master: 1368467675589 2 24.63 KB

example, a secondary i Overview
menu opens under the -]

core name with the
administration options
available for that
particular core.

After selecting the T
core, the central part off (1
the screen shows &
Statistics and other

information about the

|~| Documentation * Issue Tracker _@. IRC Channel [<] Community forum |« Solr Query Syntax

core you chose. You can define a file called admi n- ext r a. ht nl that includes links or other information you would like to display in the "Admin
Extra" part of this main screen.

On the left side, under the core name, are links to other screens that display information or provide options for the specific core chosen. The
core-specific options are listed below, with a link to the section of this Guide to find out more:

Analysis - lets you analyze the data found in specific fields.

Config - shows the current configuration of the sol r confi g. xm file for the core.

Dataimport - shows you information about the current status of the Data Import Handler.

Documents - provides a simple form allowing you to execute various Solr indexing commands directly from the browser.
Ping - lets you ping a named core and determine whether the core is active.

Plugins/Stats - shows statistics for plugins and other installed components.

Query - lets you submit a structured query about various elements of a core.

Replication - shows you the current replication status for the core, and lets you enable/disable replication.

Schema - describes the schema. xm file for the core.

Schema Browser - displays schema data in a browser window.

Analysis Screen

The Analysis screen lets you inspect how data will be handled according to the field, field type and =
dynamic rule configurations found in schema. xm . You can analyze how content would be handled .

during indexing or during query processing and view the results separately or at the same time. Ideally, | ==
you would want content to be handled consistently, and this screen allows you to validate the settings ...
in the field type or field analysis chains. H

Enter content in one or both boxes at the top of the screen, and then choose the field or field type
definitions to use for analysis.

The standard output (shown if "Verbose Output" is not checked) will display the step of the analysis and the output based on the current settings.
If you click the Verbose Output check box, you see more information, including transformations to the input (such as, convert to lower case, strip

extra characters, etc.) and the bytes, type and detailed position information. The information displayed | ...

will vary depending on the settings of the field or field type. Each step of the process is displayed in a =
separate section, with an abbreviation for the tokenizer or filter that is applied in that step. Hover or
click on the abbreviation, and you'll see the name and path of the tokenizer or filter.

In the examples on the right (click either screenshot for a larger image), several transformations are
applied to the text string "Running is a sport.” We've used the field "text", which has rules that remove
the "is" and "a" and the word "running" has been changed to its basic form, "run". This is because we

have defined the field type, t ext _en in this scenario, to remove stop words (small words that usually do not provide a great deal of context) and
"stem" terms when possible to find more possible matches (this is particularly helpful with plural forms of words). If you click the question mark
next to the Analyze Fieldname/Field Type pull-down menu, the Schema Browser window will open, showing you the settings for the field
specified.

The section Understanding Analyzers, Tokenizers, and Filters describes in detail what each option is and how it may transform your data.

Apache Solr Reference Guide 4.4 20

https://cwiki.apache.org/confluence/download/attachments/32604182/analysis_verbose.png
https://cwiki.apache.org/confluence/download/attachments/32604182/analysis_normal.png

Config Screen

The Config screen shows you the current sol rconfi g. xm for the core you selected. This screenshot shows the beginning of the Query section
of sol rconfig. xnl .

rry,
Apache .

Solr

& Dashboard

<query>

(=) Logging
E Core Admin
3 Java Properties

= Thread Dump

"] collection1

<maxBooleanClauses>1024</maxBooleanClauses>

The sol rconfi g. xm file cannot be edited with this screen, so a text editor of some kind must be used. While the schema. xm defines the
structure of your content, sol r conf i g. xm defines the behavior of Solr as it indexes content and responds to queries. Many of the options
defined with sol rconfi g. xml are described throughout the rest of this Guide. In particular, you will want to review these sections:

® Indexing and Basic Data Operations

® Searching
® The Well-Configured Solr Instance

Dataimport Screen

The Dataimport screen shows the configuration of the DatalmportHandler (DIH) and allows you to start
indexing data, as defined by the options selected on the screen and defined in the configuration file.
Click the screenshot on the right to see a larger image of this screen.

The configuration file defines the location of the data and how to perform the SQL queries for the data =—
you want. The options on the screen control how the data is imported to Solr. For more information
about data importing with DIH, see the section on Uploading Structured Data Store Data with the Data

Import Handler.

Documents Screen

The Documents screen provides a simple form allowing you to execute various Solr indexing commands in a variety of formats directly from the
browser.

The screen allows you
to:

¢ Copy
documents in
JSON, CSV or
XML and
submit them to
the index

® Upload
documents (in
JSON, CSV or
XML)

® Construct
documents by
selecting fields

Apache Solr Reference Guide 4.4 21

https://cwiki.apache.org/confluence/download/attachments/32604184/dataimport.png

and field
rr.
values Apache "' Request-Handler (qt) i:;"':;::_ccess
" . - Jupdate 5
The first step is to Solr bocument pe {
define the "responseHeader”: {
RequestHandler to use| @ Dashboard ISON - ;:::s :;,
(aka, 'qt'). By default & Logging Document(s) " '
/ updat e will be . _ {"id":"change.me","title":"change.me"} }
defined. To use Solr B¢ Core Admin
Cell, for example, 2 Java Properties
ﬁgﬁg?ei ige request = Thread Dump
/updat e/ extract. -
collectionl v
Then choose the o
Document Type to _
define the type of !
document to load. The hd Commit Within
remaining parameters 5 1000
will change depending oo Overwrite
on the document type - true
selected. = Boost
& 1.0
When using the JSON =) £1 Documentation

document type, the
functionality is similar to using a requestHandler on the command line. Instead of putting the documents in a curl command, they can instead be
input into the Document entry box. The document structure should still be in proper JSON format.

Then you can choose when documents should be added to the index (Commit Within), whether existing documents should be overwritten with
incoming documents with the same id (if this is not true, then the incoming documents will be dropped), and, finally, if a document boost should
be applied.

This option will only add or overwrite documents to the index; for other update tasks, see the Solr Command option.

CSVv

When using the CSV document type, the functionality is similar to using a requestHandler on the command line. Instead of putting the documents
in a curl command, they can instead be input into the Document entry box. The document structure should still be in proper CSV format, with
columns delimited and one row per document.

Then you can choose when documents should be added to the index (Commit Within), and whether existing documents should be overwritten
with incoming documents with the same id (if this is not true, then the incoming documents will be dropped).

Document Builder

The Document Builder provides a wizard-like interface to enter fields of a document

File Upload

The File Upload option allows choosing a prepared file and uploading it. If using only / updat e for the Request-Handler option, you will be limited
to XML, CSV, and JSON.

However, to use the ExtractingRequestHandler (aka Solr Cell), you can modify the Request-Handler to / updat e/ ext r act . You must have this
defined in your sol r conf i g. xm file, with your desired defaults. You should also update the & i t er al . i d shown in the Extracting Req.
Handler Params so the file chosen is given a unique id.

Then you can choose when documents should be added to the index (Commit Within), and whether existing documents should be overwritten
with incoming documents with the same id (if this is not true, then the incoming documents will be dropped).

Solr Command

The Solr Command option allows you use XML or JSON to perform specific actions on documents, such as defining documents to be added or
deleted, updating only certain fields of documents, or commit and optimize commands on the index.

The documents should be structured as they would be if using / updat e on the command line.

XML

When using the XML document type, the functionality is similar to using a requestHandler on the command line. Instead of putting the documents

Apache Solr Reference Guide 4.4 22

in a curl command, they can instead be input into the Document entry box. The document structure should still be in proper Solr XML format, with
each document separated by <doc> tags and each field defined.

Then you can choose when documents should be added to the index (Commit Within), and whether existing documents should be overwritten
with incoming documents with the same id (if this is not true, then the incoming documents will be dropped).

This option will only add or overwrite documents to the index; for other update tasks, see the Solr Command option.
Related Topics

® Uploading Data with Index Handlers
® Uploading Data with Solr Cell using Apache Tika

Ping
Choosing Ping under a core name issues a pi ng request to check whether a server is up.

Ping is configured using a r equest Handl er in the sol rconfi g. xni file:

<I'-- ping/heal thcheck -->
<r equest Handl er nanme="/adm n/ pi ng" cl ass="sol r. Pi ngRequest Handl er" >
<l st name="invariants">
<str name="q">sol r pi ngquery</str>
</lst>
<l st name="defaul ts">
<str name="echoParans">al | </str>
</lst>
<l-- An optional feature of the PingRequestHandler is to configure the
handl er with a "heal thcheckFile" which can be used to enabl e/ di sabl e
t he Pi ngRequest Handl er.
relative paths are resol ved against the data dir
-->
<!-- <str nanme="heal t hcheckFil e">server-enabled.txt</str> -->
</ request Handl er >

The Ping option doesn't open a page, but the status of the request can be seen on the core overview page shown when clicking on a collection
name. The length of time the request has taken is displayed next to the Ping option, in milliseconds.

Plugins & Stats Screen

The Plugins screen shows information and statistics about Solr's status and performance. You can find information about the performance of
Solr's caches, the state of Solr's searchers, and the configuration of searchHandlers and requestHandlers.

Choose an area of interest on the right, and then drill down into more specifics by clicking on one of the names that appear in the central part of
the window. In this example, we've chosen to look at the Searcher stats, from the Core area:

Apache Solr Reference Guide 4.4 23

rr.
"

Apache
ol

Solr

@ Dashboard

(=) Logging

=f Core Admin
Java Properties

Thread Dump

(7] collection1

T
[

E Plugins / Stats

SURL: https://svn.apache.org/reposasf/lucene/dev/branches/lucene_solr_4_0/solr/core/src/java/org/apache/solr/

Searcher@e2942da main

StandardDirectoryReader _2:3 _0(4.0.0.2):C32)
org.apache.lucene.store.NRTCachingDirectory:NRTCachingDirectory(org.apache.lucene. stol
JUsers/cassandra4work/Downloads/apache-solr-4.0.0/example/solr/collectionl
/datafindex lockFactory=org.apache.lucene.store NativeFSLockFactory@24e72f0c;

maxCacheMB=48.0 maxMergeSizeMB=4.0)

2012-11-04T17:46:52.041Z

|l CACHE & Searcher@e2942da main
|l CORE class: org.apache.solr.search.SolrindexSearcher
version 1.0
™ HIGHLIGHTING o ‘
description: index searcher
OTHER ore:
) QUERYHANDLER search/SolrindexSearcher java §
&) UPDATEHANDLER stats: searcherName:
caching true
@ Watch Changes numbDocs: 32
maxDoc! 32
© Refresh Values
reader:
readerDir:
indexVersion: 3
openedAt:

registeredAt:

warmupTime:

= core

& searcher

2012-11-04T17:46:53.077Z
o

Searcher Statistics

The display is a snapshot taken when the page is loaded. You can get updated status by choosing to either Watch Changes or Refresh Values.
Watching the changes will highlight those areas that have changed, while refreshing the values will reload the page with updated information.

Query Screen

You can use Query, shown under the name of each core, to submit a search query to a Solr server and analyze the results. In the example in the
screenshot, a query has been submitted, and the screen shows the query results sent to the browser as JSON.

The query was sent to
a core named 17 -
"collection1”. We used Apache ‘. Request-Handler (qgt) b
Solr's default query for Solr -~ fselect .
_thls screen (a_s defined common responseHeader”: {
n S.OI !’COI’\fI g._xn1), & Dashboard q ‘status®: 0,
which is *: *. This "QTime": 7,
query will find all [Logging "params": {
re_cords in the index for & Core Admin indemt”: "true”,
this core. We kept the i ; g,
other defaults, but the .| Java Properties q _" "1373998634785",
table below explains = Thread Dump) ‘wt': "]son”
these options, which sort ,
are also covered in ’

i collection1 hd "response”: {
detail in later parts of start, rows . .
his Guide o~ numFound”: 32,
this ' it - "start": 0.

. ¥ fl "docs": [
The response is shown r I
to the right of the form. a o "id": "GE1803GTEST",
Requests to Solr are ; "name": "Test with some GB1B030 encoded characters",
simply HTTP requests, — “features”: [
and the query LF Raw Query Parameters "No accents here”,
submitted is shown in = ey1=vall&key2 =val2 CEE— TR,
light type above the & wt "This is a feature (translated)”,
results; if you click on = EERRELE
this it will zpen a new +~ Query B Al "This document 1s very shiny (translated)”
browser window with indent L et 6
just this request and [debugquery priees o .
ithout the [& price_c": "0,UsD",

response (withou _ = O gismax *inStock": true,
rest of the Solr Admin _ "_version_": 1440741985651523600
Ul). The rest of the [edismax 1,
response is shown in Chi 1
JSON, which is part of [facet "id": "SP2s14N”,
the request (see the O spatial “name”: “"Samsung SpinPoint P120 SP2514N - hard drive - 250 GB - ATA-133",
wt :j son part at the - P "manu”: "Samsung Electronics Co. Ltd.",

end).

The response has at least two sections, but may have several more depending on the options chosen. The two sections it always has are the
responseHeader and the r esponse. The r esponseHeader includes the status of the search (st at us), the processing time (QTi ne), and the
parameters (par ans) that were used to process the query.

The r esponse includes the documents that matched the query, in doc sub-sections. The fields return depend on the parameters of the query
(and the defaults of the request handler used). The number of results is also included in this section.

Apache Solr Reference Guide 4.4

24

This screen allows you to experiment with different query options, and inspect how your documents were indexed. The query parameters
available on the form are some basic options that most users want to have available, but there are dozens more available which could be simply
added to the basic request by hand (if opened in a browser). The table below explains the parameters available:

Field

Request-handler

fq

sort

start, rows

fl

wt
indent

debugQuery

dismax
edismax
hi

facet

spatial

spellcheck

Related Topics

® Searching

Description

Specifies the query handler for the request. If a query handler is not specified, Solr processes the response with the
standard query handler.

The query event. See Searching for an explanation of this parameter.
The filter queries. See Common Query Parameters for more information on this parameter.

Sorts the response to a query in either ascending or descending order based on the response's score or another specified
characteristic.

start is the offset into the query result starting at which documents should be returned. The default value is 0, meaning
that the query should return results starting with the first document that matches. This field accepts the same syntax as the
start query parameter, which is described in Searching. r ows is the number of rows to return.

Defines the fields to return for each document. You can explicitly list the stored fields you want to have returned by
separating them with either a comma or a space. In Solr 4, the results of functions can also be included in the f | list.

Specifies the Response Writer to be used to format the query response. Defaults to XML if not specified.
Click this button to request that the Response Writer use indentation to make the responses more readable.

Click this button to augment the query response with debugging information, including "explain info" for each document
returned. This debugging information is intended to be intelligible to the administrator or programmer.

Click this button to enable the Dismax query parser. See The DisMax Query Parser for further information.
Click this button to enable the Extended query parser. See The Extended DisMax Query Parser for further information.
Click this button to enable highlighting in the query response. See Highlighting for more information.

Enables faceting, the arrangement of search results into categories based on indexed terms. See Faceting for more
information.

Click to enable using location data for use in spatial or geospatial searches. See Spatial Search for more information.

Click this button to enable the Spellchecker, which provides inline query suggestions based on other, similar, terms. See
Spell Checking for more information.

Replication Screen

The Replication screen shows you the current replication state for the named core you have specified. In Solr, replication is for the index only.
SolrCloud has supplanted much of this functionality, but if you are still using index replication, you can see the replication state, as shown below:

Apache Solr Reference Guide 4.4 25

Apache

Solr

@ Dashboard

~
q l“

i Refresh Status [Index
[Logging - Master: 1349981878137 3 2B.75KB
] Core Admin Disable Replication

1| Java Properties #% Settings replication enable: o

— Thread Dump (Master): replicateAfter: commit

"] collection1
=

pe

&

Replication

LT

B E

In this example, replication is enabled and will be done after each commit. Because this server is the Master, it is showing only the config settings
for the master. On the master, you can disable replication by clicking the Disable Replication button.

In Solr, the replication is initiated by the slave servers so there is more value by looking at the Replication screen on the slave nodes. This
screenshot shows the Replication screen for a slave:

y) ’
Apache "‘ U Refresh Status ¥ Kerations:
Solr ~
By Replicate now
[Index
& Dashboard *® Disable Polling Master: 0 1 65 bytes
= Logging Slave: 0 1 65 bytes
<k Core Admin
Java Properties A Settings: master url: http://localhost: 7888 solr/collection1
Thread Dump polling enable: <
(¥ collectionl A Settings
= (Master):
replication enable:
replicateAfter: commit
confFiles:
admin-extra.html, admi bottom.html, admi p.html, elevate.xml, LucidStemRules_en.txt,
protwords.txt, schema.xml, solrconfig.xml, stopwords.txt, synonyms.txt
“TZ Replication
I
[15]

You can click the Refresh Status button to show the most current replication status, or choose to get a new snapshot from the master server.

More details on how to configure replication is available in the section called Index Replication.

Schema Screen

The Schema option displays the schenma. xmi file, a configuration file that describes the data to be indexed and searched.

Apache Solr Reference Guide 4.4 26

rry.
»
Apache r
]
Solr ~
& Dashboard
(53 Logging
=5 Core Admin
_ <field name="id" type="string" indexed="true" stored="true" required="true" multivalued="false" />
2| Java Properties <field name="sku" type="text_en splitting tight" indexed="true" stored="true" omitNorms="true"/>
= Thread Dump <field name="name" type="text general" indexed="true" stored="true"/>
<field name="manu" type="text general" indexed="true" stored="true" omitNorms="true"'/>
<field name="cat" type="string" indexed="true" stored="true" multivalued="true"/>
" 3
%] collectionl <field name="features" type="text_general' indexed="true" stored="true" multiValued="true"/>
- <field name="includes" type="text_general" indexed="true" stored="true" termVectors="true" termPositions="true
£ <field name="weight" type="float" indexed="true" stored="true"/>
o <field name="price" type="float" indexed="true" stored="true"/>
chema
= <field name="popularity" type="int" indexed="true" stored="true" />
S <field name="inStock" type="boolean" indexed="true" stored="true" />
<field name="store" type="location" indexed="true" stored="true"/>
T

The schema. xm file cannot be edited from this screen, but it provides easy access to view the file if needed. Editing is done by modifying the file
with a text editor. As described in detail in a later section, the scherma. xm allows you to define the types of data in your content (field types), the
fields your documents will be broken into, and any dynamic fields that should be generated based on patterns of field names in the incoming
documents. These options are described in the section called Documents, Fields, and Schema Design.

This screen is related to the Schema Browser Screen, in that they both display information from the schema, but the Schema Browser provides a
way to drill into the analysis chain and displays linkages between field types, fields, and dynamic field rules.

Schema Browser Screen

The Schema Browser screen lets you see schema data in a browser window. If you have accessed this window from the Analysis screen, it will
be opened to a specific field, dynamic field rule or field type. If there is nothing chosen, use the pull-down menu to choose the field or field type.

rr,
P
Apache s et -
Sol r r Feld Field-Type: org.apache.solr.schema.TextField
el
Pl Gap 100
text Docs: 21
& Dashboard Copied from
. author Indexed Tokenized Multivalued
=2 Logging -
cat Properties o « ¥4
= Core Admin content Schema v v v
7 Java Properties content_tvpe
: R description Index
= Thread Dump features
includes (® Index Analyzer: org.apache.solr.analysis. TokenizerChain
keywords
collectionl & manu
(@) Query Analyzer: org.apache.solr.analysis.TokenizerChain
A name
Gl calrcena
resourcename .
= title @ Load Term Info 10 Top-Terms: (2) Histagram
£ ur electronics 296
= - inc 65
27
and
Eid 9
ush
Icd !
7 notes
20
|l Jschema Browser memory
& one
X
|| Documentation 4 Issue Tracker ML IRC Channel [Community forum |ss] Solr Query Syntax

The screen provides a great deal of useful information about each particular field. In the example above, we have chosen the t ext field. On the
right side of the center window, we see the field name, and a list of fields that populate this field because they are defined to be copied to the

t ext field. Click on one of those field names, and you can see the definitions for that field. We can also see the field type, which would allow us
to inspect the type definitions as well.

In the left part of the center window, we see the field type again, and the defined properties for the field. We can also see how many documents
have populated this field. Then we see the analyzer used for indexing and query processing. Click the icon to the left of either of those, and you'll

Apache Solr Reference Guide 4.4 27

see the definitions for the tokenizers and/or filters that are used. The output of these processes is the information you see when testing how
content is handled for a particular field with the Analysis Screen.

Under the analyzer information is a button to Load Term Info. Clicking that button will show the top N terms that are in the index for that field.
Click on a term, and you will be taken to the Query Screen to see the results of a query of that term in that field. If you want to always see the
term information for a field, choose Autoload and it will always appear when there are terms for a field. A histogram shows the number of terms
with a given frequency in the field.

Apache Solr Reference Guide 4.4 28

Documents, Fields, and Schema Design

This section discusses how Solr organizes its data into documents and fields, as well as how to work with the Solr schema file, schema. xnmi . It
includes the following topics:

Overview of Documents, Fields, and Schema Design: An introduction to the concepts covered in this section.

Solr Field Types: Detailed information about field types in Solr, including the field types in the default Solr schema.
Defining Fields: Describes how to define fields in Solr.

Copying Fields: Describes how to populate fields with data copied from another field.

Dynamic Fields: Information about using dynamic fields in order to catch and index fields that do not exactly conform to other field definitions in
your schema.

Schema API: Use curl commands to read various parts of a schema or create new fields and copyField rules.

Other Schema Elements: Describes other important elements in the Solr schema: Unique Key, Default Search Field, and the Query Parser
Operator.

Putting the Pieces Together: A higher-level view of the Solr schema and how its elements work together.
DocValues: Describes how to create a docValues index for faster lookups.

Schemaless Mode: Automatically add previously unknown schema fields using value-based field type guessing.

Overview of Documents, Fields, and Schema Design

The fundamental premise of Solr is simple. You give it a lot of information, then later you can ask it questions and find the piece of information you
want. The part where you feed in all the information is called indexing or updating. When you ask a question, it's called a query.

One way to understand how Solr works is to think of a loose-leaf book of recipes. Every time you add a recipe to the book, you update the index
at the back. You list each ingredient and the page number of the recipe you just added. Suppose you add one hundred recipes. Using the index,
you can very quickly find all the recipes that use garbanzo beans, or artichokes, or coffee, as an ingredient. Using the index is much faster than

looking through each recipe one by one. Imagine a book of one thousand recipes, or one million.

Solr allows you to build an index with many different fields, or types of entries. The example above shows how to build an index with just one field,
i ngredi ents. You could have other fields in the index for the recipe's cooking style, like Asi an, Caj un, or vegan, and you could have an index
field for preparation times. Solr can answer questions like "What Cajun-style recipes that have blood oranges as an ingredient can be prepared in
fewer than 30 minutes?"

The schema is the place where you tell Solr how it should build indexes from input documents.

How Solr Sees the World

Solr's basic unit of information is a document, which is a set of data that describes something. A recipe document would contain the ingredients,
the instructions, the preparation time, the cooking time, the tools needed, and so on. A document about a person, for example, might contain the
person's name, biography, favorite color, and shoe size. A document about a book could contain the title, author, year of publication, number of

pages, and so on.

In the Solr universe, documents are composed of fields, which are more specific pieces of information. Shoe size could be a field. First name and
last name could be fields.

Fields can contain different kinds of data. A name field, for example, is text (character data). A shoe size field might be a floating point number so
that it could contain values like 6 and 9.5. Obviously, the definition of fields is flexible (you could define a shoe size field as a text field rather than
a floating point number, for example), but if you define your fields correctly, Solr will be able to interpret them correctly and your users will get
better results when they perform a query.

You can tell Solr about the kind of data a field contains by specifying its field type. The field type tells Solr how to interpret the field and how it can
be queried.

When you add a document, Solr takes the information in the document's fields and adds that information to an index. When you perform a query,
Solr can quickly consult the index and return the matching documents.

Field Analysis

Field analysis tells Solr what to do with incoming data when building an index. A more accurate name for this process would be processing or
even digestion, but the official name is analysis.

Apache Solr Reference Guide 4.4 29

Consider, for example, a biography field in a person document. Every word of the biography must be indexed so that you can quickly find people
whose lives have had anything to do with ketchup, or dragonflies, or cryptography.

However, a biography will likely contains lots of words you don't care about and don't want clogging up your index—words like "the", "a", "to", and
so forth. Furthermore, suppose the biography contains the word "Ketchup", capitalized at the beginning of a sentence. If a user makes a query for
"ketchup”, you want Solr to tell you about the person even though the biography contains the capitalized word.

The solution to both these problems is field analysis. For the biography field, you can tell Solr how to break apart the biography into words. You
can tell Solr that you want to make all the words lower case, and you can tell Solr to remove accents marks.

Field analysis is an important part of a field type. Understanding Analyzers, Tokenizers, and Filters is a detailed description of field analysis.

Solr Field Types

The field type defines how Solr should interpret data in a field and how the field can be queried. There are many field types included with Solr by
default, and they can also be defined locally.

Topics covered in this section:
® Field Type Definitions and Properties
® Field Types Included with Solr
® Working with Currencies and Exchange Rates
® Working with Dates
® Working with External Files and Processes

® Field Properties by Use Case

Related Topics

® SchemaXML-DataTypes
® FieldType Javadoc

Field Type Definitions and Properties

A field type includes four types of information:
The name of the field type
An implementation class name

L]
L]
* |If the field type is Text Fi el d, a description of the field analysis for the field type
® Field attributes

Field Type Definitions in schema. xmn

Field types are defined in schenma. xmi , with the t ypes element. Each field type is defined between f i el dType elements. Here is an example
of a field type definition for a type called t ext _general :

Apache Solr Reference Guide 4.4 30

http://wiki.apache.org/solr/SchemaXml#Data_Types
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/schema/FieldType.html

<fiel dType nane="text_general" class="solr. TextFi el d" positionlncrementGp="100">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt
enabl ePosi ti onl ncrenents="true" />
<I-- in this exanple, we will only use synonyns at query tine
<filter class="solr.SynonynFilterFactory" synonyns="index_synonyns.txt"
i gnor eCase="true" expand="fal se"/>
-->
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt
enabl ePosi tionl ncrenments="true" />
<filter class="solr.SynonynFilterFactory" synonyns="synonymns.txt"
i gnor eCase="true" expand="true"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

The first line in the example above contains the field type name, t ext _gener al , and the name of the implementing class, sol r. Text Fi el d.
The rest of the definition is about field analysis, described in Understanding Analyzers, Tokenizers, and Filters.

The implementing class is responsible for making sure the field is handled correctly. In the class names in schema. xni |, the string sol r is

shorthand for or g. apache. sol r. schena or or g. apache. sol r. anal ysi s. Therefore, sol r. Text Fi el d is really
org. apache. sol r. schema. Text Fi el d. .

Field Type Properties

The field type cl ass determines most of the behavior of a field type, but optional properties can also be defined. For example, the following
definition of a date field type defines two properties, sort M ssi ngLast and onmi t Nor ns.

<fiel dType nane="date" class="solr. DateField"
sort M ssi ngLast="true" omitNornms="true"/>

The properties that can be specified for a given field type fall into three major categories:

® Properties specific to the field type's class.

® General Properties Solr supports for any field type.

® Field Default Properties that can be specified on the field type that will be inherited by fields that use this type instead of the default
behavior.

General Properties

Property Description Values

positionincrementGap For multivalued fields, specifies a distance between multiple values, which prevents spurious phrase integer
matches

autoGeneratePhraseQueries = For text fields. If true, Solr automatically generates phrase queries for adjacent terms. If false, terms true or
must be enclosed in double-quotes to be treated as phrases. false

docValuesFormat Defines a custom DocVal uesFor nat to use for fields of this type. This requires that a schema-aware n/a

codec, such as the SchemaCodecFact ory has been configured in solrconfig.xml.

postingsFormat Defines a custom Post i ngsFor mat to use for fields of this type. This requires that a schema-aware n/a
codec, such as the SchemaCodecFact ory has been configured in solrconfig.xml.

Apache Solr Reference Guide 4.4 31

.ﬁ. Lucene index back-compatibility is only supported for the default codec. If you choose to customize the post i ngsFor nat or
docVal uesFor mat in your schema.xml, upgrading to a future version of Solr may require you to either switch back to the
default codec and optimize your index to rewrite it into the default codec before upgrading, or re-build your entire index from
scratch after upgrading.

Field Default Properties

Property Description Values
indexed If true, the value of the field can be used in queries to retrieve matching documents true or
false
stored If true, the actual value of the field can be retrieved by queries true or
false
docValues If true, the value of the field will be put in a column-oriented DocValues structure true or
false
sortMissingFirst Control the placement of documents when a sort field is not present. As of Solr 3.5, these work for all true or
sortMissingLast numeric fields, including Trie and date fields. false
multiValued If true, indicates that a single document might contain multiple values for this field type true or
false
omitNorms If true, omits the norms associated with this field (this disables length normalization and index-time true or
boosting for the field, and saves some memory). Defaults to true for all primitive (non-analyzed) field false
types, such as int, float, data, bool, and string. Only full-text fields or fields that need an index-time boost
need norms.
omitTermFreqAndPositions ' If true, omits term frequency, positions, and payloads from postings for this field. This can be a true or
performance boost for fields that don't require that information. It also reduces the storage space false

required for the index. Queries that rely on position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all fields that are not text fields.

omitPositions Similar to oni t Ter nFr eqAndPosi t i ons but preserves term frequency information true or
false
termVectors These options instruct Solr to maintain full term vectors for each document, optionally including the true or
termPositions position and offset information for each term occurrence in those vectors. These can be used to false
termOffsets accelerate highlighting and other ancillary functionality, but impose a substantial cost in terms of index

size. They are not necessary for typical uses of Solr

Field Types Included with Solr

The following table lists the field types that are available in Solr. The or g. apache. sol r. schema package includes all the classes listed in this
table.

Class Description

BCDiIntField Binary-coded decimal (BCD) integer. BCD is a relatively inefficient encoding that offers the benefits of
quick decimal calculations and quick conversion to a string.

BCDLongField Binary-coded decimal long integer.

BCDStrField Binary-coded decimal string.

BinaryField Binary data.

BoolField Contains either true or false. Values of "1", "t", or "T" in the first character are interpreted as true. Any

other values in the first character are interpreted as false.

ByteField Contains an array of bytes. deprecated, use TrielntField instead

CurrencyField Supports currencies and exchange rates. See the section Working with Currencies and Exchange
Rates.

DateField Represents a point in time with millisecond precision. See the section Working with Dates.

DoubleField Double (64-bit IEEE floating point).

Apache Solr Reference Guide 4.4 32

ExternalFileField Pulls values from a file on disk. See the section Working with External Files and Processes.

FloatField Floating point (32-bit IEEE floating point).

IntField Integer (32-bit signed integer).

LatLonType Spatial Search: a latitude/longitude coordinate pair. The latitude is specified first in the pair.
LongField Long integer (64-bit signed integer).

PointType Spatial Search: An arbitrary n-dimensional point, useful for searching sources such as blueprints or

CAD drawings.

PreAnalyzedField Provides a way to send to Solr serialized token streams, optionally with independent stored values of a
field, and have this information stored and indexed without any additional text processing. Useful if you
want to submit field content that was already processed by some existing external text processing
pipeline (e.g. tokenized, annotated, stemmed, inserted synonyms, etc.), while using all the rich
attributes that Lucene's TokenSt r eamprovides via token attributes.

RandomSortField Does not contain a value. Queries that sort on this field type will return results in random order. Use a
dynamic field to use this feature.

ShortField Short integer. deprecated, use TrielntField instead

SortableDoubleField The Sortable fields provide correct numeric sorting. If you use the plain types (Doubl eFi el d,
I nt Fi el d, and so on) sorting will be lexicographical instead of numeric.

SortableFloatField Numerically sorted floating point.
SortablelntField Numerically sorted integer.
SortableLongField Numerically sorted long integer.

SpatialRecursivePrefixTreeFieldType (RPT for short) Spatial Search: Accepts latitude comma longitude strings or other shapes in WKT

format.
StrField String (UTF-8 encoded string or Unicode).
TextField Text, usually multiple words or tokens.
TrieDateField Date field accessible for Lucene TrieRange processing.
TrieDoubleField Double field accessible Lucene TrieRange processing.
TrieField If this type is used, a "type" attribute must also be specified, with a value of either: integer, long, float,

double, date. Using this field is the same as using any of the Trie fields.

TrieFloatField Floating point field accessible Lucene TrieRange processing.

TrielntField Int field accessible Lucene TrieRange processing.

TrieLongField Long field accessible Lucene TrieRange processing.

UUIDField Universally Unique Identifier (UUID). Pass in a value of "NEW" and Solr will create a new UUID.

The Mul ti Ter mAwar eConponent has been added to relevant sol r . Text Fi el d entries in schena. xm (e.g., wildcards, regex, prefix, range,
etc.) to allow automatic lowercasing for multi-term queries.

Further, you can now optionally specify anal yzer Type="nul ti ter i’ in schenma. xn ; if you don't, anal yzer will process the fields according
to their specific attributes.

Working with Currencies and Exchange Rates

The cur r ency FieldType provides support for monetary values to Solr/Lucene with query-time currency conversion and exchange rates. The
following features are supported:

Point queries

Range queries

Function range queries (new in Solr 4.2)

Sorting

Currency parsing by either currency code or symbol

Symmetric & asymmetric exchange rates (asymmetric exchange rates are useful if there are fees associated with exchanging the
currency)

Apache Solr Reference Guide 4.4 33

Configuring Currencies

The cur r ency field type is defined in schenma. xm . This is the default configuration of this type:

<fiel dType nane="currency" class="solr.CurrencyFi el d" precisionStep="8"
def aul t Currency="USD" currencyConfig="currency.xm" />

In this example, we have defined the name and class of the field type, and defined the def aul t Curr ency as "USD", for U.S. Dollars. We have
also defined a cur r encyConf i g to use a file called "currency.xml". This is a file of exchange rates between our default currency to other
currencies. There is an alternate implementation that would allow regular downloading of currency data. See Exchange Rates below for more.
At indexing time, money fields can be indexed in a native currency. For example, if a product on an e-commerce site is listed in Euros, indexing
the price field as "1000,EUR" will index it appropriately. The price should be separated from the currency by a comma, and the price must be
encoded with a floating point value (a decimal point).

During query processing, range and point queries are both supported.

Exchange Rates

You configure exchange rates by specifying a provider. Natively, two provider types are supported: Fi | eExchangeRat ePr ovi der or
OpenExchangeRat esOr gPr ovi der .

FileExchangeRateProvider

This provider requires you to provide a file of exchange rates. It is the default, meaning that to use this provider you only need to specify the file
path and name as a value for cur r encyConf i g in the definition for this type.

There is a sample currency. xm file included with Solr, found in the same directory as the schema. xm file. Here is a small snippet from this
file:

<currencyConfig version="1.0">
<rates>
<!-- Updated from http://ww. exchangerate.com at 2011-09-27 -->
<rate from="USD' to="ARS" rate="4.333871" coment =" ARGENTI NA Peso" />
<rate from="USD' to="AUD" rate="1.025768" comment ="AUSTRALI A Dollar" />
<rate fron="USD' to="EUR' rate="0.743676" coment="European Euro" />
<rate fronm="USD' to="CAD"' rate="1.030815" coment="CANADA Dol lar" />

<l-- Cross-rates for some common currencies -->
<rate fronF"EUR' to="GBP" rate="0.869914" />
<rate fron="EUR' to="NOK" rate="7.800095" />
<rate from="GBP" to="NOK" rate="8.966508" />

<l-- Asymmetrical rates -->
<rate from"EUR' to="USD"' rate="0.5" />
</rates>

</ currencyConfi g>

OpenExchangeRatesOrgProvider

With Solr 4, you can configure Solr to download exchange rates from OpenExchangeRates.Org, with updates rates between USD and 158
currencies hourly. These rates are symmetrical only.

In this case, you need to specify the pr ovi der O ass in the definitions for the field type. Here is an example:

Apache Solr Reference Guide 4.4 34

http://www.OpenExchangeRates.Org

<fi el dType nane="currency" class="solr. CurrencyFi el d" precisionStep="8"
provi der G ass="sol r. OpenExchangeRat esOr gPr ovi der"
refreshlnterval =" 60"
ratesFil eLocation="http://internal.server/rates.json"/>

Theref reshl nt erval is minutes, so the above example will download the newest rates every 60 minutes.

Working with Dates

Dat eFi el d represents a point in time with millisecond precision. The format is:

YYYY- MM DDThh: mm ssZ

YYYY is the year.

MMis the month.

DD is the day of the month.

hh is the hour of the day as on a 24-hour clock.

nmis minutes.

Ss is seconds.

Note that no time zone can be specified; the time given should be expressed in Coordinated Universal Time (UTC). Here is an example value:
1972- 05-20T17: 33: 18Z

You can include fractional seconds if you wish, although trailing zeros are not allowed and any precision beyond milliseconds will be ignored.
Here is another example value with milliseconds included:

1972-05-20T17: 33:18. 772Z

In addition, Dat eFi el d also supports date math. This makes it easy to create times relative to the current time. This represents a point in time
two months from now:

+2MONTHS

This is one day ago:

- 1DAY

Use a slash to indicate rounding. This represents the beginning of the current hour:

/ HOUR

You can combine terms. The following is six months and three days in the future, at the beginning of the day:

+6MONTHS+3DAYS/ DAY

Working with External Files and Processes

The Ext ernal Fi | eFi el d Type

The Ext er nal Fi | eFi el d type makes it possible to specify the values for a field in a file outside the Solr index. For such a field, the file contains
mappings from a key field to the field value. Another way to think of this is that, instead of specifying the field in documents as they are indexed,
Solr finds values for this field in the external file.

. External fields are not searchable. They can be used only for function queries or display. For more information on function
queries, see the section on Function Queries.

The Ext er nal Fi | eFi el d type is handy for cases where you want to update a particular field in many documents more often than you want to
update the rest of the documents. For example, suppose you have implemented a document rank based on the number of views. You might want
to update the rank of all the documents daily or hourly, while the rest of the contents of the documents might be updated much less frequently.
Without Ext er nal Fi | eFi el d, you would need to update each document just to change the rank. Using Ext er nal Fi | eFi el d is much more
efficient because all document values for a particular field are stored in an external file that can be updated as frequently as you wish.

In schema. xm , the definition of this field type might look like this:

Apache Solr Reference Guide 4.4 35

<fi el dType nane="entryRankFile" keyFi el d="pkld" defVal ="0" stored="fal se"
i ndexed="f al se" class="solr.External Fil eFi el d" val Type="pfloat"/>

The keyFi el d attribute defines the key that will be defined in the external file. It is usually the unique key for the index, but it doesn't need to be
as long as the keyFi el d can be used to identify documents in the index. A def Val defines a default value that will be used if there is no entry in
the external file for a particular document.

The val Type attribute specifies the actual type of values that will be found in the file. The type specified must be either a float field type, so valid
values for this attribute are pf | oat, f1 oat ortfl oat. This attribute can be omitted.

Format of the External File

The file itself is located in Solr's index directory, which by default is $SOLR_HOMVE/ dat a. The name of the file should be ext er nal _fi el dname
or ext ernal _fi el dnane. *. For the example above, then, the file could be named ext er nal _ent r yRankFi | e or
external _entryRankFile.txt.

@ If any files using the name pattern . * (such as . t xt) appear, the last (after being sorted by name) will be used and previous
versions will be deleted. This behavior supports implementations on systems where one may not be able to overwrite a file (for
example, on Windows, if the file is in use).

The file contains entries that map a key field, on the left of the equals sign, to a value, on the right. Here are a few example entries:
doc33=1. 414

doc34=3. 14159

doc40=42

The keys listed in this file do not need to be unique. The file does not need to be sorted, but Solr will be able to perform the lookup faster if it is.

Reloading an External File

As of Solr 4.1, it's possible to define an event listener to reload an external file when either a searcher is reloaded or when a new searcher is
started. See the section Query Related Listeners for more information, but a sample definition in sol r confi g. xml might look like this:

<listener event="newSearcher"

cl ass="org. apache. sol r. schena. Ext er nal Fi | eFi el dRel oader"/ >
<listener event="firstSearcher"

cl ass="org. apache. sol r. schena. Ext ernal Fi | eFi el dRel oader"/ >

Pre-Analyzing a Field Type

The Pr eAnal yzedFi el d type provides a way to send to Solr serialized token streams, optionally with independent stored values of a field, and
have this information stored and indexed without any additional text processing applied in Solr. This is useful if user wants to submit field content
that was already processed by some existing external text processing pipeline (e.g., it has been tokenized, annotated, stemmed, synonyms
inserted, etc.), while using all the rich attributes that Lucene's TokenStream provides (per-token attributes).

The serialization format is pluggable using implementations of PreAnalyzedParser interface. There are two out-of-the-box implementations:
® JsonPreAnalyzedParser: as the name suggests, it parses content that uses JSON to represent field's content. This is the default parser
to use if the field type is not configured otherwise.

® SimplePreAnalyzedParser: uses a simple strict plain text format, which in some situations may be easier to create than JSON.

There is only one configuration parameter, par ser | npl . The value of this parameter should be a fully qualified class name of a class that
implements PreAnalyzedParser interface. The default value of this parameter is or g. apache. sol r. schena. JsonPr eAnal yzedPar ser .

Field Properties by Use Case

Here is a summary of common use cases, and the attributes the fields or field types should have to support the case. An entry of true or false in
the table indicates that the option must be set to the given value for the use case to function correctly. If no entry is provided, the setting of that
attribute has no impact on the case.

Apache Solr Reference Guide 4.4 36

http://wiki.apache.org/solr/TokenStream
http://wiki.apache.org/solr/PreAnalyzedParser
http://wiki.apache.org/solr/JsonPreAnalyzedParser
http://wiki.apache.org/solr/SimplePreAnalyzedParser
http://wiki.apache.org/solr/PreAnalyzedParser

Use Case

search within field
retrieve contents
use as unique key

sort on field

use field boosts >

document boosts affect searches within field

highlighting

faceting °

add multiple values, maintaining order

field length affects doc score

MoreLikeThis °

Notes:

1 Recommended but not necessary.
2 Wil be used if present, but not necessary.

3 (if termVectors=true)

indexed

true

true

true

true 4

true

stored multiValued omitNorms termVectors

true
false
false true 1
false
false
true 2
true
false

true 6

4 A tokenizer must be defined for the field, but it doesn't need to be indexed.
5 Described in Understanding Analyzers, Tokenizers, and Filters.
8 Term vectors are not mandatory here. If not true, then a stored field is analyzed. So term vectors are recommended, but only required if

st or ed=f al se.

Defining Fields

termPositions

true 3

Once you have the field types set up, defining the fields themselves is simple. All you do is supply a name and a field type. If you wish, you can
also provide options that will override the options for the field type.

Fields are defined in the fields element of schena. xni . The following example defines a field named pri ce with a type of sf| oat .

<field nane="price" type="sfloat"

i ndexed="true" stored="true"/>

Fields can have the same options as field types. The field type options serve as defaults which can be overridden by options defined per field.
Included below is the table of field type properties from the section Field Type Definitions and Properties:

Property

indexed

stored
docValues
sortMissingFirst
sortMissingLast

multiValued

omitNorms

Apache Solr Reference Guide 4.4

Description Values
If true, the value of the field can be used in queries to retrieve matching documents true or
false
If true, the actual value of the field can be retrieved by queries true or
false
If true, the value of the field will be put in a column-oriented DocValues structure true or
false
Control the placement of documents when a sort field is not present. As of Solr 3.5, these work for all true or
numeric fields, including Trie and date fields. false
If true, indicates that a single document might contain multiple values for this field type true or
false
If true, omits the norms associated with this field (this disables length normalization and index-time true or
boosting for the field, and saves some memory). Defaults to true for all primitive (non-analyzed) field false
types, such as int, float, data, bool, and string. Only full-text fields or fields that need an index-time boost
need norms.
37

omitTermFregAndPositions | If true, omits term frequency, positions, and payloads from postings for this field. This can be a true or
performance boost for fields that don't require that information. It also reduces the storage space false
required for the index. Queries that rely on position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all fields that are not text fields.

omitPositions Similar to omi t Ter nFr egAndPosi t i ons but preserves term frequency information true or
false
termVectors These options instruct Solr to maintain full term vectors for each document, optionally including the true or
termPositions position and offset information for each term occurrence in those vectors. These can be used to false
termOffsets accelerate highlighting and other ancillary functionality, but impose a substantial cost in terms of index

size. They are not necessary for typical uses of Solr

Related Topics

® SchemaXML-Fields
® Field Options by Use Case

Copying Fields

You might want to interpret some document fields in more than one way. Solr has a mechanism for making copies of fields so that you can apply
several distinct field types to a single piece of incoming information.

The name of the field you want to copy is the source, and the name of the copy is the destination. In schema. xn , it's very simple to make copies
of fields:

<copyFi el d source="cat" dest="text" maxChars="30000" />

If the text field has data of its own in input documents, the contents of cat will be added to the index for text. The maxChar s parameter, an i nt
parameter, establishes an upper limit for the number of characters to be copied. This limit is useful for situations in which you want to control the

size of index files.

Both the source and the destination of copyFi el d can contain asterisks, which will match anything. For example, the following line will copy the
contents of all incoming fields that match the wildcard pattern * _t to the text field.:

<copyField source="*_t" dest="text" nmaxChars="25000" />

. ThecopyFi el d command can use a wildcard (*) character in the dest parameter only if the sour ce parameter contains one
as well. copyFi el d uses the matching glob from the source field for the dest field name into which the source content is

copied.

Related Topics

® SchemaXML-Copy Fields

Dynamic Fields

Dynamic fields allow Solr to index fields that you did not explicitly define in your schema. This is useful if you discover you have forgotten to define
one or more fields. Dynamic fields can make your application less brittle by providing some flexibility in the documents you can add to Solr.

A dynamic field is just like a regular field except it has a name with a wildcard in it. When you are indexing documents, a field that does not match
any explicitly defined fields can be matched with a dynamic field.

For example, suppose your schema includes a dynamic field with a name of * _i . If you attempt to index a document with a cost _i field, but no
explicit cost _i field is defined in the schema, then the cost _i field will have the field type and analysis defined for * _i .

Dynamic fields are also defined in the fields element of schema. xni . Like fields, they have a name, a field type, and options.

Apache Solr Reference Guide 4.4 38

http://wiki.apache.org/solr/SchemaXml#Fields
http://wiki.apache.org/solr/FieldOptionsByUseCase
http://wiki.apache.org/solr/SchemaXml#Copy_Fields

<dynami cField name="*_i" type="int" indexed="true" stored="true"/>

It is recommended that you include basic dynamic field mappings (like that shown above) in your schena. xm . The mappings can be very useful.

Related Topics

® SchemaXML-Dynamic Fields

Other Schema Elements

This section describes several other important elements of schenma. xm .

Unique Key

The uni queKey element specifies which field is a unigue identifier for documents. Although uni queKey is not required, it is nearly always
warranted by your application design. For example, uni queKey should be used if you will ever update a document in the index.

You can define the unique key field by naming it:

<uni queKey>i d</ uni queKey>

Starting with Solr 4, schema defaults and copyFi el ds cannot be used to populate the uni queKey field. You also can't use
UUI DUpdat ePr ocessor Fact ory to have uni queKey values generated automatically.

Further, the operation will fail if the uni queKey field is used, but is multivalued (or inherits the multivalueness from the fi el dt ype). However,
uni queKey will continue to work, as long as the field is properly used.

Default Search Field

If you are using the Lucene query parser, queries that don't specify a field name will use the def aul t Sear chFi el d. The DisMax and Extended
DisMax query parsers do not use this value.

@ Use of the def aul t Sear chKey is deprecated in Solr versions 3.6 and higher. Instead, you should use the df parameter. At
some point, the def aul t Sear chKey parameter may be removed.

For more information about query parsers, see the section on Query Syntax and Parsing.

Query Parser Default Operator

In queries with multiple terms, Solr can either return results where all conditions are met or where one or more conditions are met. The operator
controls this behavior. An operator of AND means that all conditions must be fulfilled, while an operator of OR means that one or more conditions
must be true.

In schema. xm , the sol r Quer yPar ser element controls what operator is used if an operator is not specified in the query. The default operator
setting only applies to the Lucene query parser, not the DisMax or Extended DisMax query parsers, which internally hard-code their operators to
OR.

.a The query parser default operator parameter has been deprecated in Solr versions 3.6 and higher. You are instead encouraged
to specify the query parser g. op parameter in your request handler.

Similarity

Similarity is a Lucene class used to score a document in searching. This class can be changed in order to provide a more custom sorting. With
Solr 4, you can configure a different si m | ari ty for each field, meaning that scoring a document will differ depending on what's in each field.
However, you can still configure a global si mi | ari ty is configured in the schema.xml file, where an implicit instance of

Defaul t SimlarityFactory is used.

Apache Solr Reference Guide 4.4 39

http://wiki.apache.org/solr/SchemaXml#Dynamic_fields

A global <si mi | ari t y> declaration can be used to specify a custom similarity implementation that you want Solr to use when dealing with your
index. A similarity can be specified either by referring directly to the name of a class with a no-argument constructor:

<simlarity class="solr.DefaultSimlarityFactory"/>

or by referencinga Si m | ari t yFact ory implementation, which may take optional initialization parameters:

<simlarity class="solr.DFRSimlarityFactory">
<str name="basi cMbdel ">P</str>
<str nanme="afterEffect">L</str>
<str name="nornmalization">H2</str>
<fl oat nanme="c">7</fl oat>
</[simlarity>

Beginning with Solr 4, similarity factories can be specified on individual field types:

<fiel dType nane="text _ib">
<anal yzer/ >
<simlarity class="solr.IBSimlarityFactory">
<str name="distribution">SPL</str>
<str name="| anbda" >DF</str>
<str nanme="nornali zation">H2</str>
</simlarity>
</fieldType>

This example uses | BSi mi | ari t yFact ory (using the Information-Based model), but there are several similarity implementations that can be
used. For Solr 4.2, Sweet Spot Si mi | ari t yFact ory has been added. Other options include BM25Si ni | ari t yFact ory,
DFRSi mi | ari tyFactory, SchemaSi ni | ari t yFact ory and others. For details, see the Solr Javadocs for the similarity factories.

Related Topics

¢ SchemaXML-Miscellaneous Settings
® UniqueKey

Schema API

The Solr schema API allows using a REST API to get information about the schema. xm for each collection (or core for standalone Solr),
including defined field types, fields, dynamic fields, and copy field declarations. In Solr 4.2 and 4.3, it only allows GET (read-only) access, but in
Solr 4.4, new fields and copyField directives may be added to the schema. Future Solr releases will extend this functionality to allow more schema
elements to be updated.

To enable schema modification with this API, the schema will need to be managed and mutable. See the section Managed Schema Definition in
SolrConfig for more information.

The API allows two output modes for all calls: JISON or XML. When requesting the complete schema, there is another output mode which is XML
modeled after the schema.xml file itself.

The base address for the APl is ht t p: / / <host >: <por t >/ <cont ext - pat h>, where <cont ext - pat h> is usually sol r, though you may have
configured it differently. Example base address: htt p: // 1 ocal host: 8983/ sol r.

In the API entry points and example URLs below, you may alternatively specify a Solr core name where it says collection.

® API Entry Points
® Retrieve schema information
® Retrieve the Entire Schema
List Fields
List a Specific Field
List Dynamic Fields
List a Specific Dynamic Field Rule

Apache Solr Reference Guide 4.4 40

http://lucene.apache.org/solr/4_2_0/solr-core/org/apache/solr/search/similarities/package-summary.html
http://wiki.apache.org/solr/SchemaXml#Miscellaneous_Settings
http://wiki.apache.org/solr/UniqueKey
http://localhost:8983/solr

List Field Types
List a Specific Field Type
List Copy Fields
Show Schema Name
Show the Schema Version
List UniqueKey
Show Global Similarity
Get the Default Query Operator
® Modify the schema
® Create new schema fields
® Create one new schema field
® Create new copyField directives
® Related Topics

API Entry Points

/ col | ecti on/ schenma: retrieve the entire schema

/col | ection/schema/ fi el ds: retrieve information about all defined fields, or create new fields with optional copyField directives
/col | ection/schema/ fi el ds/ name: retrieve information about a named field, or create a new named field with optional copyField directives
/col | ection/ schema/ dynami cfi el ds: retrieve information about dynamic field rules

/col | ection/ schema/ dynamni cfi el ds/ name: retrieve information about a named dynamic rule

/col | ection/schema/ fi el dt ypes: retrieve information about field types

/col | ection/schena/ fi el dt ypes/ name: retrieve information about a named field type

/col | ection/ schema/ copyfi el ds: retrieve information about copy fields, or create new copyField directives

/ col | ecti on/ schema/ nane: retrieve the schema name

/col | ecti on/ schema/ ver si on: retrieve the schema version

/ col | ecti on/ schema/ uni quekey: retrieve the defined uniqueKey

/col | ection/schema/sim|arity: retrieve the global similarity definition

/ col | ection/ schema/ sol rquerypar ser/ def aul t oper at or : retrieve the default operator

Retrieve schema information

Retrieve the Entire Schema
GET /col |l ection/schema
Input

Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

wt string ' No json Defines the format of the response. The options are json, xml or schema.xml. If not specified, JISON will
be returned by default.

Output

Output Content

The output will include all fields, field types, dynamic rules and copy field rules. The schema name and version are also included.

Examples

Input
Get the entire schema in JSON.

Apache Solr Reference Guide 4.4 41

curl http://1ocal host:8983/solr/collectionl/schema?wt =j son

Get the entire schema in XML.

curl http://1ocal host:8983/solr/collectionl/schema?w =xnl

Get the entire schema in "schema.xml" format.

curl http://local host:8983/solr/collectionl/schema?w =schema. xni

Output
The samples below have been truncated to only show a few snippets of the output.

Example output in JSON:

Apache Solr Reference Guide 4.4

42

{

"responseHeader": {
"status":0,
"Qri ne": 5},
"schema": {
"name": "exanpl e",
"version": 1.5,
"uni queKey":"id",
"fieldTypes": [{
"name": "al phaOnl ySort ™",
"class":"sol r. Text Fi el d",
"sort M ssinglLast":true,
"om t Nornms":true,
"anal yzer":{
"t okeni zer":{
"class": "sol r. Keywor dTokeni zer Factory"},
"filters":[{
"class":"solr. Lower CaseFilterFactory"},

{

"class":"solr.TrinFilterFactory"},

{
"class":"solr.PatternRepl aceFil t er Factory"”,
"replace":"all",

"replacenent":"",
"pattern®:"(["a-z])"}]}},

"fields":[{

name":" _version_",
"type":"long",

"i ndexed":true,

"stored":true},

name": "aut hor",
"type":"text_general ",
"indexed": true,
"stored":true},

nane":"cat",
"type":"string",
“mul ti Val ued": true,
"i ndexed":true,
"stored":true},

"copyFields":[{
"source":"aut hor",
"dest":"text"},
"source":"cat",
"dest":"text"},

"source":"content",

"dest":"text"},

"source": "aut hor",
"dest":"author_s"}]}}

Apache Solr Reference Guide 4.4

Example output in XML:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>

<l st name="responseHeader" >
<int name="status">0</int>
<int nanme="Qrli me">5</int>
</lst>
<l st name="schema" >
<str nanme="nane">exanpl e</str>
<fl oat name="versi on">1.5</fl oat >
<str name="uni queKey">i d</str>
<arr name="fiel dTypes">
<l st>
<str name="nane">al phaOnl ySort</str>
<str name="cl ass">solr. TextFi el d</str>
<bool nane="sortM ssi ngLast">true</bool >
<bool nane="om t Nor ns" >t r ue</ bool >
<l st nane="anal yzer">
<l st name="tokeni zer">
<str name="cl ass">sol r. Keywor dTokeni zer Fact ory</str>
</lst>
<arr name="filters">
<l st>
<str name="cl ass">sol r. Lower CaseFi | t er Fact ory</str>
</lst>
<l st>
<str nanme="cl ass">solr. TrinFilterFactory</str>
</lst>
<l st>
<str name="cl ass">solr. PatternRepl aceFil terFactory</str>
<str name="replace">al |l </str>
<str name="repl acenment"/>
<str name="pattern">(["a-z])</str>
</lst>
</arr>
</lst>
</lst>

<l st>
<str nane="source">aut hor</str>
<str nane="dest">aut hor_s</str>
</lst>
<larr>
</|st>
</ response>

Example output in schema.xml format:

Apache Solr Reference Guide 4.4

<?xm version="1.0" encodi ng="UTF-8"?>
<schema nanme="exanpl e" version="1.5">
<uni queKey>i d</ uni queKey>
<types>
<fiel dType nane="al phaOnl ySort" cl ass="solr. TextFi el d" sortM ssi ngLast="true"
om t Nor ms="true">

<anal yzer>
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/ >

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.TrinFilterFactory"/>
<filter class="solr.PatternRepl aceFilterFactory" replace="all" replacenent=""

pattern="(["a-z])"/>
</ anal yzer >
</fieldType>

<copyFi el d source="url" dest="text"/>
<copyFi el d source="price" dest="price_c"/>
<copyFi el d source="aut hor" dest="aut hor_s"/>

</ schenma>

List Fields

GET /col l ection/schena/fields
Input
Path Parameters

Key Description

collection | The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

wt | string No json

Output

Output Content

The output will include each field and any defined configuration for each field. The defined configuration can vary for each field, but will minimally
include the field nane, the t ype, ifitis i ndexed and if it is st or ed. If nul ti Val ued is defined as either true or false (most likely true), that will

also be shown. See the section Defining Fields for more information about each parameter.

Examples

Input
Get a list of all fields.

curl http://1ocal host:8983/solr/collectionl/schena/fields?w=json

Output
The sample output below has been truncated to only show a few fields.

Apache Solr Reference Guide 4.4 45

"fields": [

{
"i ndexed": true,
"name": "_version_",
"stored": true,
"type": "long"

}

{
"i ndexed": true,
"name": "author",
"stored": true,
"type": "text_general"

3

{
"i ndexed": true,
"mul ti Val ued": true,
"name": "cat",
"stored": true,
"type": "string"

}

1,
"responseHeader": {
"Qlinme": 1,
"status": O

List a Specific Field

GET /col l ection/schema/fields/fieldnanme

Input

Path Parameters

Key Description
collection = The collection (or core) name.

fieldname The specific field name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

wt string ' No json Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

Output

Output Content

The output will include each field and any defined configuration for the field. The defined configuration can vary for a field, but will minimally
include the field nane, the t ype, ifitis i ndexed and if it is st or ed. If nul ti Val ued is defined as either true or false (most likely true), that will

also be shown. See the section Defining Fields for more information about each parameter.

Apache Solr Reference Guide 4.4 46

Examples

Input
Get the 'author field.

curl http://1ocal host:8983/solr/collectionl/schena/fields/author?w =json
Output
{
"field": {
"i ndexed": true,
"name": "author",
"stored": true,
"type": "text_general"
I
"responseHeader": {
"Qrime": 2,
"status": O
}
}

List Dynamic Fields

GET /col |l ection/ schema/ dynam cfi el ds

Input

Path Parameters

Key Description

collection | The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

wt | string No json

Output

Output Content

The output will include each dynamic field rule and the defined configuration for each rule. The defined configuration can vary for each rule, but
will minimally include the dynamic field nane, the t ype, ifitis i ndexed and if it is st or ed. See the section Dynamic Fields for more information

about each parameter.

Examples

Input
Get a list of all dynamic field declarations

Apache Solr Reference Guide 4.4 47

curl

http://1 ocal host: 8983/ solr/coll ectionl/schema/ dynanicfi el ds?wt =j son

Output

The sample output below has been truncated.

"dynami cFi el ds": [

{
"i ndexed": true,
"name": "*_coordinate",
"stored": false,
"type": "tdouble"
H
{
"mul ti Val ued": true,
"name": "ignored_*",
"type": "ignored"
b
{
"name": "random *",
"type": "randont
b
{
"indexed": true,
"mul ti Val ued": true,
"nane": "attr_*",
"stored": true,
"type": "text_general"”
H
{
"i ndexed": true,
"mul ti Val ued": true,
"name": "*_txt",
"stored": true,
"type": "text_general"
}
I.
"responseHeader": {
"Qrinme": 1,
"status": O
}

List a Specific Dynamic Field Rule

GET /col |l ection/ schema/ dynam cfi el ds/ nane

Input

Path Parameters

Key

Description

collection = The collection (or core) name.

Apache Solr Reference Guide 4.4

48

name The name of the dynamic field rule.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

wt | string No json
default.

Output

Output Content

The output will include the requested dynamic field rule and any defined configuration for the rule. The defined configuration can vary for each
rule, but will minimally include the dynamic field nane, the t ype, ifitis i ndexed and if it is st or ed. See the section Dynamic Fields for more

information about each parameter.

Examples
Input
Get the details of the "*_s" rule.
curl http://local host:8983/solr/collectionl/schena/dynanicfiel ds/*_s?w =j son
Output
{
"dynam cfield": {
"indexed": true,
"name": "* s",
"stored": true,
"type": "string"
}s
"responseHeader": {
"Qrinme": 1,
"status": O
}
}

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by

List Field Types

GET /coll ection/schema/fiel dtypes

Input

Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

Apache Solr Reference Guide 4.4

49

wt | string No json Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

Output

Output Content

The output will include each field type and any defined configuration for the type. The defined configuration can vary for each type, but will
minimally include the field type name and the cl ass. If query or index analyzers, tokenizers, or filters are defined, those will also be shown with
other defined parameters. See the section Solr Field Types for more information about how to configure various types of fields.

Examples

Input
Get a list of all field types.

curl http://local host:8983/solr/collectionl/schena/fieldtypes?w=json

Output
The sample output below has been truncated to show a few different field types from different parts of the list.

Apache Solr Reference Guide 4.4 50

"fieldTypes": [
{
"anal yzer": {
"class": "solr. Tokeni zer Chai n",
"filters": [
{

"class": "solr.LowerCaseFilterFactory"
"class": "solr.TrinFilterFactory"

"class": "solr.PatternRepl aceFilterFactory",
"pattern": "(["a-2z])",

"replace": "all",

"repl acemrent": ""

}
I
"t okeni zer": {
"class": "solr.KeywordTokeni zer Fact ory"

}
b
"class": "solr. TextField",
"dynam cFields": [],
"fields": [],
"name": "al phaOnlySort",
"om t Norms": true,
"sort M ssinglLast": true

"class": "solr.TrieFl oatField",
"dynam cFi el ds": [

"* fs",

e g
1,
"fields": [

"price",

"wei ght "
1,
"nane": "float",
"posi tionlncrement Gap": "0",
"precisionStep": "0"

List a Specific Field Type

GET /col |l ection/schena/fi el dt ypes/ nane

Input

Path Parameters

Apache Solr Reference Guide 4.4

51

Key Description
collection | The collection (or core) name.

name The name of the field type.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description
wit string No json
default.

Output

Output Content

The output will include each field type and any defined configuration for the type. The defined configuration can vary for each type, but will
minimally include the field type nane and the cl ass. If query and/or index analyzers, tokenizers, or filters are defined, those will be shown with

other defined parameters. See the section Solr Field Types for more information about how to configure various types of fields.

Examples

Input
Get details of the "date" field type.

curl

http://1ocal host: 8983/ solr/coll ectionl/schena/fieldtypes/date?w =j son

Output
The sample output below has been truncated.

"fieldType": {
"class": "solr.TrieDateField",
"dynam cFi el ds": [
"*_dts",
e g
1,
"fields": [
"l ast _nodi fi ed"
1,
"nane": "date",
"positionlncrement Gap": "0",
"precisionStep": "0"
H
"responseHeader": {
"Qrine": 2,
"status": O

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by

List Copy Fields

GET /col |l ection/ schema/ copyfi el ds

Input

Apache Solr Reference Guide 4.4

52

Path Parameters

Key Description

collection | The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

wt string No json Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

Output

Output Content

The output will include the sour ce and dest ination of each copy field rule defined in schenma. xm . For more information about copying fields,

see the section Copying Fields.

Examples

Input
Get a list of all copyfields.

curl http://1ocal host:8983/solr/collectionl/schena/fields?w=json

The sample output below has been truncated to the first few copy definitions.

Output
{
"copyFields": [
{
"dest": "
"source":
H
{
"dest": "
"source":
H
{
"dest": "
"source":
H
{
"dest": "
"source":
H
1,
"responseHeader":
"Qrime": 3,
"status": O
}
}

text",
"aut hor"

text",
"cat”

text",
"content"”

text",
"content _type"

{

Apache Solr Reference Guide 4.4

53

Show Schema Name

GET /col |l ection/ schema/ nane

Input
Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

wit string No json
default.

Output

Output Content
The output will be simply the name given to the schema.

Examples

Input
Get the schema name.

curl http://local host:8983/solr/collectionl/schena/ name?wt =j son

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by

Output

"responseHeader": {
"status":O0,
"Qrinme": 1},

"name": "exanpl e"}

Show the Schema Version

CGET /col | ection/schena/ versi on

Input

Path Parameters

Key Description

collection | The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

Apache Solr Reference Guide 4.4

54

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by

wt | string No json
default.

Output

Output Content

The output will simply be the schema version in use.
Examples

Input
Get the schema version

http://1 ocal host: 8983/ solr/coll ecti onl/schema/ versi on?wt =j son

curl
Output
{
"responseHeader": {
"status":0,
"Qrine": 2},

"version": 1.5}

List UniqueKey

GET /col |l ecti on/ schema/ uni quekey
Input
Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description
Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

wit string No json

Output

Output Content

The output will include simply the field name that is defined as the uniqueKey for the index.
Examples

Input
List the uniqueKey.

curl http://local host:8983/solr/collectionl/schema/uni quekey?w =j son

Apache Solr Reference Guide 4.4 55

Output

The sample output below has been truncated to the first few copy definitions.

"responseHeader": {
"status":0,
"Qrinme": 2},

"uni queKey":"id"}

Show Global Similarity

GET /collection/schema/simlarity
Input
Path Parameters

Key Description

collection | The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

wt | string No json
default.

Output

Output Content

The output will include the class name of the global similarity defined (if any).

Examples

Input
Get the similarity implementation.

Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by

curl http://local host:8983/solr/collectionl/schema/sinmlarity?w=json
Output
{
"responseHeader": {
"status":O0,
"Qri nme": 1},

"simlarity":{

"class":"org.apache.solr.search.simlarities.DefaultSimlarityFactory"}}

Get the Default Query Operator

GET /col |l ection/ schema/ sol rquer ypar ser/ def aul t oper at or

Apache Solr Reference Guide 4.4

56

Input
Path Parameters

Key Description

collection = The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key | Type Required Default Description

json Defines the format of the response. The options are json or xml. If not specified, JSON will be returned by
default.

wit string No

Output

Output Content

The output will include simply the default operator if none is defined by the user.
Examples

Input
Get a list of all copyfields.

curl
http://1ocal host: 8983/ solr/col |l ecti onl/ schena/ sol rqueryparser/def aul t operat or ?wt =j son

Output

"responseHeader": {
"status": 0,
"Qrine": 2},

"defaul t Operator":"OR"}

Modify the schema

Create new schema fields

PCST /col | ection/schena/fields

To enable schema modification, the schema will need to be managed and mutable. See the section Managed Schema Definition in SolrConfig for
more information.

Input
Path Parameters

Key Description

collection | The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?".

Apache Solr Reference Guide 4.4 57

Key | Type Required Default Description

wt string = No json Defines the format of the response. The options are json or xml. If not specified, json will be returned by
default.

Request body

Only JSON format is supported in the request body. The JSON must contain an array of one or more new field specifications, each of which must
include mappings for the new field's nane and t ype. All attributes specifiable on a schema <fi el d name="..." ... /> declaration may be
specified here - see Defining Fields.

Additionally, copyFi el d destination(s) may optionally be specified. Note that each specified copyField destination must be an existing schema
field (and not a dynamic field). In particular, since the new fields specified in a new field creation request are defined all at once, you cannot
specify a copyFi el d that targets another new field in the same request - instead, you have to make two requests, defining the copyFi el d
destination in the first new field creation request, then specifying that field as a copyFi el d destination in the second new field creation request.

The cur| utility can provide the request body via its - - dat a- bi nary option.

Output

Output Content
The output will be the response header, containing a status code, and if there was a problem, an associated error message.

Example output in the default JSON format:

{

"responseHeader": {
"status":0,
"Qrine":8}}

Examples

Input

Add two new fields:

curl http://1ocal host:8983/solr/collectionl/schema/fields -X POST -H
"Content-type: application/json' --data-binary '

[

{
"name": "sel |l - by",
"type":"tdate",
"stored":true

}

{
"nane":"catchal | ",
"type":"text_general ",
"stored":fal se

}

K

Add a third new field and copy it to the “"catchall” field created above:

Apache Solr Reference Guide 4.4 58

curl http://local host:8983/solr/collectionl/schema/fields -X POST -H
"Content-type: application/json' --data-binary '
[

{
"name": "department",
"type":"string",
"docVal ues": "true",
"default":"no departnent",
"copyFields": ["catchall"]
}

Create one new schema field

PUT /col |l ection/schena/fiel ds/ nane

To enable schema modification, the schema will need to be managed and mutable. See the section Managed Schema Definition in SolrConfig for
more information.

Input

Path Parameters

Key Description
collection | The collection (or core) name.

name The new field name.

Query Parameters

The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

wit string No json Defines the format of the response. The options are json or xml. If not specified, json will be returned by
default.

Request body

Only JSON format is supported in the request body. The body must include a set of mappings, minimally for the new field's name and t ype. All
attributes specifiable on a schema <fi el d nane="..." ... /> declaration may be specified here - see Defining Fields.

Additionally, copyFi el d destination(s) may optionally be specified. Note that each specified copyField destination must be an existing schema
field (and not a dynamic field).

The cur | utility can provide the request body via its - - dat a- bi nary option.

Output

Output Content
The output will be the response header, containing a status code, and if there was a problem, an associated error message.

Example output in the default JSON format:

"responseHeader": {
"status":O0,

"Qrine": 4}}

Apache Solr Reference Guide 4.4 59

Examples

Input

Add a new field named "narrative":

curl http://local host:8983/solr/collectionl/schena/fields/narrative -X PUT -H
' Content-type: application/json --data-binary '

{
"type":"text_general ",
"stored":true,
"ternVectors":true,
"ternmPositions":true,
"termOffsets":true

}

Add a new field named "color" and copy it to two fields, named "narrative" and "catchall", which must already exist in the schema:

curl http://local host:8983/solr/collectionl/schena/fields/color -X PUT -H
"Content-type:application/json' --data-binary '

{
"type":"string",
"stored":true,
"copyFields": [
"narrative",
"catchal I "
]
b

Create new copyField directives

PCOST /col | ection/ schema/ copyfi el ds

To enable schema modification, the schema will need to be managed and mutable. See the section Managed Schema Definition in SolrConfig for
more information.

Input
Path Parameters
Key Description
collection | The collection (or core) name.
Query Parameters
The query parameters can be added to the API request after a '?".

Key ' Type Required Default Description

wit string No json Defines the format of the response. The options are json or xml. If not specified, json will be returned by
default.

Request body

Only JSON format is supported in the request body. The body must contain an array of zero or more copyField directives, each containing a
mapping from sour ce to the source field name, and from dest to an array of destination field name(s).

sour ce field names must either be an existing field, or be a field name glob (with an asterisk either at the beginning or the end, or consist entirely

Apache Solr Reference Guide 4.4 60

of a single asterisk). dest field names must either be existing fields, or, if sour ce is a glob, dest fields may be globs that match an existing

dynamic field.

The cur| utility can provide the request body via its - - dat a- bi nary option.

Output

Output Content

The output will be the response header, containing a status code, and if there was a problem, an associated error message.

Example output in the default JSON format:

{

"responseHeader": {
"status":0,
"Qrine": 2}}

Examples

Input

Copy the "affiliations" field to the "relations" field, and the "shelf" field to the "location" and "catchall" fields:

curl http://1ocal host:8983/solr/collectionl/schena/copyfields -X POST -H
"Content-type: application/json' --data-binary '
[

{
"source":"affiliations",
"dest": [

"rel ations"
]
}
{
"source":"shel f"
"dest": |
"l ocation",
"catchal I "
]
}

K

Copy all fields names matching "“finance_*" to the "*_s" dynamic field:

curl http://1ocal host:8983/solr/collectionl/schena/copyfields -X POST -H
'Content-type:application/json' --data-binary

[

"source":"finance_*"
"dest": |
nx g

1

Related Topics

Apache Solr Reference Guide 4.4

61

® Managed Schema Definition in SolrConfig

Putting the Pieces Together

At the highest level, schena. xni is structured as follows. This example is not real XML, but it gives you an idea of the structure of the file.

<schema>
<types>
<fields>
<uni queKey>
<def aul t Sear chFi el d>
<sol r QueryPar ser def aul t Oper at or >
<copyFi el d>
</ schema>

Obviously, most of the excitement is in types and fields, where the field types and the actual field definitions live. These are supplemented by
copyFi el ds. Sandwiched between fields and the copyFi el d section are the unique key, default search field, and the default query operator.

Choosing Appropriate Numeric Types

For general numeric needs, use the sortable field types, Sort abl el nt Fi el d, Sort abl eLongFi el d, Sort abl eFl oat Fi el d, and
Sor t abl eDoubl eFi el d. These field types will sort numerically instead of lexicographically, which is the main reason they are preferable over
their simpler cousins, | nt Fi el d, LongFi el d, Fl oat Fi el d, and Doubl eFi el d.

If you expect users to make frequent range queries on numeric types, consider using Tri eFi el d. It offers faster speed for range queries at the
expense of increasing index size.

Working With Text

Handling text properly will make your users happy by providing them with the best possible results for text searches.

One technique is using a text field as a catch-all for keyword searching. Most users are not sophisticated about their searches and the most
common search is likely to be a simple keyword search. You can use copyFi el d to take a variety of fields and funnel them all into a single text
field for keyword searches. In the example schema representing a store, copyFi el d is used to dump the contents of cat , nane, manu,
features, andi ncl udes into a single field, t ext . In addition, it could be a good idea to copy | Dinto t ext in case users wanted to search for a
particular product by passing its product number to a keyword search.

Another technique is using copyFi el d to use the same field in different ways. Suppose you have a field that is a list of authors, like this:
Schildt, Herbert; Wbl pert, Lewis; Davies, P.

For searching by author, you could tokenize the field, convert to lower case, and strip out punctuation:

schildt / herbert / wolpert / lewis / davies / p

For sorting, just use an untokenized field, converted to lower case, with punctuation stripped:

schildt herbert wol pert lewi s davies p

Finally, for faceting, use the primary author only via a St ri ngFi el d:

Schi l dt, Herbert

Related Topics

® SchemaXML

DocValues

An exciting addition to Solr functionality was introduced in Solr 4.2. This functionality has been around in Lucene for a while, but is now available
to Solr users.

DocValues are a way of building the index that is more efficient for some purposes.

Apache Solr Reference Guide 4.4 62

http://wiki.apache.org/solr/SchemaXml

Why DocValues?

The standard way that Solr builds the index is with an inverted index. This style builds a list of terms found in all the documents in the index and
next to each term is a list of documents that the term appears in (as well as how many times the term appears in that document). This makes
search very fast - since users search by terms, having a ready list of term-to-document values makes the query process faster.

For other features that we now commonly associate with search, such as sorting, faceting, and highlighting, this approach is not very efficient. The
faceting engine, for example, must look up each term that appears in each document that will make up the result set and pull the document IDs in
order to build the facet list. In Solr, this is maintained in memory, and can be slow to load (depending on the number of documents, terms, etc.).

In Lucene 4.0, a new approach was introduced. DocValue fields are now column-oriented fields with a document-to-value mapping built at index

time. This approach promises to relieve some of the memory requirements of the fieldCache and make lookups for faceting, sorting, and grouping
much faster.

How to Use DocValues

To use docValues, you only need to enable it for a field that you will use it with. As with all schema design, you need to define a field type and
then define fields of that type with docValues enabled. All of these actions are done in schema. xni .

Enabling a field for docValues only requires adding docVal ues="t r ue" to the field definition, as in this example (from Solr's default
schema. xnl):

<field nane="nmanu_exact" type="str" indexed="fal se" stored="fal se" docVal ues="true"
defaul t=""/>

., Ifyou have already indexed data into your Solr index, you will need to completely re-index your content after changing your field
definitions in schema. xm in order to successfully use docValues.

DocValues are only available for specific field types. The types chosen determine the underlying Lucene docValue type that will be used. The
available Solr field types are:

® String fields of type St r Fi el d. If this type is used, the field must be either required or have a default value, meaning every document
must have a value for this field.
® |[f the field is single-valued (i.e., multi-valued is false), Lucene will use the SORTED type.
® |f the field is multi-valued, Lucene will use the SORTED_SET type.
® Any Trie* fields. If this type is used, the field must be either required or have a default value, meaning every document must have a value
for this field.
® |[f the field is single-valued (i.e., multi-valued is false), Lucene will use the NUMERIC type.
® |f the field is multi-valued, Lucene will use the SORTED_SET type.
® UUID fields

These Lucene types are related to how the values are sorted and stored. For more information, please refer to the Solr Wiki at
http://wiki.apache.org/solr/DocValues.

It's important that the fields be populated (either with values on every document or a default value that is applied if it is missing from the
document) to avoid an error. Because docValue columns are stored in sorted order, with the first value being an ordinal number starting at 0, the
distinction between "empty" and "first" is not possible with docValues.

There is an additional configuration option available, which is to modify the docVal uesFor mat used by the field type. The default implementation
loads everything into memory, but in some cases you may wish to keep most data on disk. This option may be less performant, but it tries to
maintain reasonable performance (and it's still better than fieldCache). You can do this by defining docVal uesFor mat =" Di sk" on the field type,
as in this example:

<fi el dType nane="string_ondi sk" class="solr. StrFi el d" docVal uesFormat="Di sk" />

Please note that the docVal uesFor mat option may change in future releases.

Lucene index back-compatibility is only supported for the default codec. If you choose to customize the docVal uesFor mat in
your schema.xml, upgrading to a future version of Solr may require you to either switch back to the default codec and optimize
your index to rewrite it into the default codec before upgrading, or re-build your entire index from scratch after upgrading.

Apache Solr Reference Guide 4.4 63

http://wiki.apache.org/solr/DocValues

Related Topics

DocValues are quite new to Solr. For more background see:

® |ntroducing Lucene Index Doc Values, by Simon Willnauer, at SearchWorkings.org
® Fun with DocValues in Solr 4.2, by David Arthur, at SearchHub.org

Schemaless Mode

Schemaless Mode is a set of Solr features that, when used together, allow users to rapidly construct an effective schema by simply indexing
sample data, without having to manually edit the schema. These Solr features, all specified in sol rconfi g. xni , are:

1. Managed schema: Schema modifications are made through Solr APIs rather than manual edits - see Managed Schema Definition in
SolrConfig.

2. Field value class guessing: Previously unseen fields are run through a cascading set of value-based parsers, which guess the Java class
of field values - parsers for Boolean, Integer, Long, Float, Double, and Date are currently available.

3. Automatic schema field addition, based on field value class(es): Previously unseen fields are added to the schema, based on field value
Java classes, which are mapped to schema field types - see Solr Field Types.

These three features are pre-configured in the exanpl e/ exanpl e- schenal ess/ sol r/ directory in the Solr distribution. To start Solr in this
pre-configured schemaless mode, go to the exanpl e/ directory and start up Solr, setting the sol r. sol r. hone system property to this directory
on the command line:

java -Dsolr.solr. home=exanpl e-schenal ess/solr -jar start.jar

The schema in exanpl e- schemal ess/ sol r/ col | ecti onl/ conf/ is shipped with only two fields, i d and _ver si on_, as can be seen from
calling the / schema/ fi el ds Schema API - curl http://1 ocal host: 8983/ sol r/ schema/fi el ds outputs:

"responseHeader": {
"status":0,
"Qrine": 1},

"fields":[{

nanme":" version_",
"type":"long",

"i ndexed":true,
"stored":true},

"name":"id",
"type":"string",
"mul ti Val ued": f al se,
"i ndexed": true,
"required":true,
"stored":true,

"uni queKey":true}]}

Adding a CSV document will cause its fields that are not in the schema to be added, with fieldTypes based on values:

curl "http://local host: 8983/ sol r/update?conmi t=true" -H "Content-type: application/csv"
-d !

id,Artist, Al bum Rel eased, Rati ng, FronDi stri butor, Sold

44C, A d Shews, Mead for Wl ki ng, 1988-08- 13, 0. 01, 14, 0’

Output indicating success:

Apache Solr Reference Guide 4.4 64

http://www.searchworkings.org/blog/-/blogs/introducing-lucene-index-doc-values
http://searchhub.org/2013/04/02/fun-with-docvalues-in-solr-4-2/
http://localhost:8983/solr/schema/fields

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st name="responseHeader"><i nt nane="status">0</int><i nt nane="QTli ne">106</i nt ></| st>
</ response>
The fields now in the schema (output from cur| http://1 ocal host: 8983/ sol r/ schena/ fi el ds):
{
"responseHeader": {
"status":0,
"Qrine": 1},
"fields":[{
"nane": " A buni,
"type":"text_general"}, // Field value guessed as String -> text_genera
fiel dType
{
"nane":"Artist",
"type":"text_general"}, // Field value guessed as String -> text_genera
fiel dType
{
"nane":"FronDi stri butor",
"type":"tlongs"}, /1 Field value guessed as Long -> tlongs fiel dType
{
"name": "Rating",
"type":"tdoubl es"}, /1 Field val ue guessed as Doubl e -> tdoubles fiel dType
{
"nanme": " Rel eased",
"type":"tdates"}, /1 Field value guessed as Date -> tdates fiel dType
{
"name": " Sol d",
"type":"tlongs"}, /1 Field value guessed as Long -> tlongs fiel dType
{
"name":"_version_",
H
{
"name":"id",
1}

Once a field has been added to the schema, its field type is fixed. As a consequence, adding documents with field value(s) that conflict with the
previously guessed field type will fail. For example, after adding the above document, the Sol d field has fieldType t | ongs, but the document
below has a non-integral decimal value in this field:

curl "http://Iocal host: 8983/ sol r/update?conmit=true" -H "Content-type: application/csv"
-d

i d, Description, Sol d

19F, Cassettes by the pound, 4. 93"

Output indicating failure:

Apache Solr Reference Guide 4.4 65

http://localhost:8983/solr/schema/fields

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st nanme="responseHeader" >
<int name="status">400</int>
<int name="Qli me">7</int>
</|st>
<l st name="error">
<str name="nsg">ERROR [doc=19F] Error adding field 'Sold' = 4.93
string: "4.93"</str>
<i nt name="code">400</int>
</lst>
</ response>

nmsg=For

i nput

Apache Solr Reference Guide 4.4

66

Understanding Analyzers, Tokenizers, and Filters

This sections describes how Solr breaks down and works with textual data. It covers the following topics:

Overview of Analyzers, Tokenizers, and Filters: A conceptual introduction to Solr's analyzers, tokenizers, and filters.

What Is An Analyzer?: Detailed conceptual information about Solr analyzers.

What Is A Tokenizer?: Detailed conceptual information about Solr tokenizers.

What Is a Filter?: Detailed conceptual information about Solr filters.

Tokenizers: Information about configuring tokenizers, and about the tokenizer factory classes included in this distribution of Solr.
Filter Descriptions: Information about configuring filters, and about the filter factory classes included in this distribution of Solr.
CharFilterFactories: Information about filters for pre-processing input characters.

Language Analysis: Information about tokenizers and filters for character set conversion or for use with specific languages.

Running Your Analyzer: Detailed information about testing and running your Solr analyzer.

Overview of Analyzers, Tokenizers, and Filters

Field analyzers are used both during ingestion, when a document is indexed, and at query time. An analyzer examines the text of fields and
generates a token stream. Analyzers may be a single class or they may be composed of a series of tokenizer and filter classes.

Tokenizers break field data into lexical units, or tokens. Filters examine a stream of tokens and keep them, transform or discard them, or create
new ones. Tokenizers and filters may be combined to form pipelines, or chains, where the output of one is input to the next. Such a sequence of
tokenizers and filters is called an analyzer and the resulting output of an analyzer is used to match query results or build indices.

Although the analysis process is used for both indexing and querying, the same analysis process need not be used for both operations. For
indexing, you often want to simplify, or normalize, words. For example, setting all letters to lowercase, eliminating punctuation and accents,
mapping words to their stems, and so on. Doing so can increase recall because, for example, "ram", "Ram" and "RAM" would all match a query
for "ram". To increase query-time precision, a filter could be employed to narrow the matches by, for example, ignoring all-cap acronyms if you're
interested in male sheep, but not Random Access Memory.

The tokens output by the analysis process define the values, or terms, of that field and are used either to build an index of those terms when a
new document is added, or to identify which documents contain the terms your are querying for.

This section will show you how to configure field analyzers and also serves as a reference for the details of configuring each of the available
tokenizer and filter classes. It also serves as a guide so that you can configure your own analysis classes if you have special needs that cannot be
met with the included filters or tokenizers.

For more information on Solr's analyzers, tokenizers, and filters, see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

What Is An Analyzer?

An analyzer examines the text of fields and generates a token stream. Analyzers are specified as a child of the <f i el dType> element in the
schema. xm configuration file that can be found in the sol r/ conf directory, or wherever sol r confi g. xm is located.

In normal usage, only fields of type sol r. Text Fi el d will specify an analyzer. The simplest way to configure an analyzer is with a single
<anal yzer > element whose class attribute is a fully qualified Java class name. The named class must derive from
org. apache. |l ucene. anal ysi s. Anal yzer . For example:

<fiel dType nane="nanetext" class="solr. TextField">
<anal yzer cl ass="org. apache. | ucene. anal ysi s. Wi t espaceAnal yzer"/>
</fieldType>

In this case a single class, Wi t espaceAnal yzer, is responsible for analyzing the content of the named text field and emitting the
corresponding tokens. For simple cases, such as plain English prose, a single analyzer class like this may be sufficient. But it's often necessary to
do more complex analysis of the field content.

Even the most complex analysis requirements can usually be decomposed into a series of discrete, relatively simple processing steps. As you will

Apache Solr Reference Guide 4.4 67

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

soon discover, the Solr distribution comes with a large selection of tokenizers and filters that covers most scenarios you are likely to encounter.
Setting up an analyzer chain is very straightforward; you specify a simple <anal yzer > element (no class attribute) with child elements that name
factory classes for the tokenizer and filters to use, in the order you want them to run.

For example:

<fiel dType nane="nanetext" class="solr. TextField">
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"/>
</ anal yzer >
</fieldType>

Note that classes in the or g. apache. sol r. anal ysi s package may be referred to here with the shorthand sol r. prefix.

In this case, no Analyzer class was specified on the <anal yzer > element. Rather, a sequence of more specialized classes are wired together
and collectively act as the Analyzer for the field. The text of the field is passed to the first item in the list (sol r . St andar dTokeni zer Fact ory),
and the tokens that emerge from the last one (sol r. Engl i shPorterFi | t er Fact ory) are the terms that are used for indexing or querying any
fields that use the "nametext" f i el dType.

Analysis Phases

Analysis takes place in two contexts. At index time, when a field is being created, the token stream that results from analysis is added to an index
and defines the set of terms (including positions, sizes, and so on) for the field. At query time, the values being searched for are analyzed and the
terms that result are matched against those that are stored in the field's index.

In many cases, the same analysis should be applied to both phases. This is desirable when you want to query for exact string matches, possibly
with case-insensitivity, for example. In other cases, you may want to apply slightly different analysis steps during indexing than those used at
query time.

If you provide a simple <anal yzer > definition for a field type, as in the examples above, then it will be used for both indexing and queries. If you
want distinct analyzers for each phase, you may include two <anal yzer > definitions distinguished with a type attribute. For example:

<fiel dType nane="nanmetext" class="solr. TextField">
<anal yzer *type="index"{*}>
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="sol r.KeepWrdFilterFactory" words="keepwords.txt"/>
<filter class="solr.SynonynFilterFactory" synonyns="syns.txt"/>
</ anal yzer >
<anal yzer *type="query"{*}>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

In this theoretical example, at index time the text is tokenized, the tokens are set to lowercase, any that are not listed in keepwor ds. t xt are
discarded and those that remain are mapped to alternate values as defined by the synonym rules in the file syns. t xt . This essentially builds an
index from a restricted set of possible values and then normalizes them to values that may not even occur in the original text.

At query time, the only normalization that happens is to convert the query terms to lowercase. The filtering and mapping steps that occur at index
time are not applied to the query terms. Queries must then, in this example, be very precise, using only the normalized terms that were stored at
index time.

What Is A Tokenizer?

The job of a tokenizer is to break up a stream of text into tokens, where each token is (usually) a sub-sequence of the characters in the text. An
analyzer is aware of the field it is configured for, but a tokenizer is not. Tokenizers read from a character stream (a Reader) and produce a

Apache Solr Reference Guide 4.4 68

sequence of Token objects (a TokenStream).

Characters in the input stream may be discarded, such as whitespace or other delimiters. They may also be added to or replaced, such as
mapping aliases or abbreviations to normalized forms. A token contains various metadata in addition to its text value, such as the location at
which the token occurs in the field. Because a tokenizer may produce tokens that diverge from the input text, you should not assume that the text
of the token is the same text that occurs in the field, or that its length is the same as the original text. It's also possible for more than one token to
have the same position or refer to the same offset in the original text. Keep this in mind if you use token metadata for things like highlighting
search results in the field text.

<fiel dType nane="text" class="solr. TextField">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
</ anal yzer >
</fieldType>

The class named in the tokenizer element is not the actual tokenizer, but rather a class that implements the

org. apache. sol r. anal ysi s. Tokeni zer Fact ory interface. This factory class will be called upon to create new tokenizer instances as
needed. Objects created by the factory must derive from or g. apache. | ucene. anal ysi s. TokenSt r eam which indicates that they produce
sequences of tokens. If the tokenizer produces tokens that are usable as is, it may be the only component of the analyzer. Otherwise, the
tokenizer's output tokens will serve as input to the first filter stage in the pipeline.

A TypeTokenFi | t er Fact ory is available that creates a TypeTokenFi | t er that filters tokens based on their TypeAttribute, which is set in
factory. get St opTypes.

When To use a CharFilter vs. a TokenFilter

There are several pairs of CharFilters and TokenFilters that have related (ie: Mappi ngChar Fi | t er and ASCI | Fol di ngFi | t er) or nearly
identical (ie: Pat t er nRepl aceChar Fi | t er Fact ory and Pat t er nRepl aceFi | t er Fact or y) functionality and it may not always be obvious
which is the best choice.

The decision about which to use depends largely on which Tokenizer you are using, and whether you need to preprocess the stream of
characters.

For example, suppose you have a tokenizer such as St andar dTokeni zer and although you are pretty happy with how it works overall, you
want to customize how some specific characters behave. You could modify the rules and re-build your own tokenizer with j avacc, but it might be
easier to simply map some of the characters before tokenization with a Char Fi | t er.

TokenizerFactories
Solr provides the following Tokeni zer Fact or i es (Tokenizers and TokenFilters):

sol r. Keywor dTokeni zer Fact ory

Creates or g. apache. | ucene. anal ysi s. cor e. Keywor dTokeni zer.

Treats the entire field as a single token, regardless of its content. For example:

http://exanpl e. conl | - amrexanpl e?Text =- Hel | 0" ==>
"http://exanpl e.con | -amtexanpl e?Text =-Hel | o

sol r. Letter Tokeni zer Factory

Creates or g. apache. | ucene. anal ysi s. Let t er Tokeni zer.

Creates tokens consisting of strings of contiguous letters. Any non-letter characters will be discarded. For example:

"l can't"==>"|", "can","t"

sol r. Wi t espaceTokeni zer Fact ory

Apache Solr Reference Guide 4.4 69

Creates or g. apache. | ucene. anal ysi s. Wi t espaceTokeni zer.
Creates tokens of characters separated by splitting on white space.
sol r. Lower CaseTokeni zer Fact ory

Creates or g. apache. | ucene. anal ysi s. Lower CaseTokeni zer.

Creates tokens by lowercasing all letters and dropping non-letters. For example:

uI Can: t" ::>ui ||' "Can", ||t||

sol r. St andar dTokeni zer Fact ory

Creates or g. apache. | ucene. anal ysi s. st andar d. St andar dTokeni zer.

A good general purpose tokenizer that strips many extraneous characters and sets token types to meaningful values. Token types are only useful
for subsequent token filters that are type-aware of the same token types. There aren't any filters that use StandardTokenizer's types.

What Is a Filter?

Like tokenizers, filters consume input and produce a stream of tokens. Filters also derive from or g. apache. | ucene. anal ysi s. TokenStr eamr
. Unlike tokenizers, a filter's input is another TokenStream. The job of a filter is usually easier than that of a tokenizer since in most cases a filter
looks at each token in the stream sequentially and decides whether to pass it along, replace it or discard it.

A filter may also do more complex analysis by looking ahead to consider multiple tokens at once, although this is less common. One hypothetical
use for such a filter might be to normalize state names that would be tokenized as two words. For example, the single token “california” would be
replaced with "CA", while the token pair "rhode" followed by "island" would become the single token "RI".

Because filters consume one TokenSt r eamand produce a new TokenSt r eam they can be chained one after another indefinitely. Each filter in
the chain in turn processes the tokens produced by its predecessor. The order in which you specify the filters is therefore significant. Typically, the
most general filtering is done first, and later filtering stages are more specialized.

<fiel dType nane="text" class="solr. TextField">
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"/>
</ anal yzer >
</fieldType>

This example starts with Solr's standard tokenizer, which breaks the field's text into tokens. Those tokens then pass through Solr's standard filter,
which removes dots from acronyms, and performs a few other common operations. All the tokens are then set to lowercase, which will facilitate
case-insensitive matching at query time.

The last filter in the above example is a stemmer filter that uses the Porter stemming algorithm. A stemmer is basically a set of mapping rules that
maps the various forms of a word back to the base, or stem, word from which they derive. For example, in English the words "hugs", "hugging"
and "hugged" are all forms of the stem word "hug". The stemmer will replace all of these terms with "hug", which is what will be indexed. This

means that a query for "hug" will match the term "hugged"”, but not "huge".

Conversely, applying a stemmer to your query terms will allow queries containing non stem terms, like "hugging", to match documents with
different variations of the same stem word, such as "hugged". This works because both the indexer and the query will map to the same stem

("hug").
Word stemming is, obviously, very language specific. Solr includes several language-specific stemmers created by the Snowball generator that
are based on the Porter stemming algorithm. The generic Snowball Porter Stemmer Filter can be used to configure any of these language

stemmers. Solr also includes a convenience wrapper for the English Snowball stemmer. There are also several purpose-built stemmers for
non-English languages. These stemmers are described in Language Analysis.

Tokenizers

Apache Solr Reference Guide 4.4 70

http://wiki.apache.org/solr/StandardTokenizer
http://snowball.tartarus.org/

You configure the tokenizer for a text field type in schema. xm with a <t okeni zer > element, as a child of <anal yzer >:

<fiel dType nane="text" class="solr. TextField">
<anal yzer type="index">
<t okeni zer class="solr. StandardTokeni zer Factory"/>
<filter class="solr. StandardFilterFactory"/>
</ anal yzer >
</fieldType>

The class attribute names a factory class that will instantiate a tokenizer object when needed. Tokenizer factory classes implement the
org. apache. sol r. anal ysi s. Tokeni zer Fact ory. A TokenizerFactory's cr eat e() method accepts a Reader and returns a TokenStream.
When Solr creates the tokenizer it passes a Reader object that provides the content of the text field.

Arguments may be passed to tokenizer factories by setting attributes on the <t okeni zer > element.

<fi el dType nane="seni col onDel i m ted" class="solr. TextField">
<anal yzer type="query">
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="; "/>
<anal yzer >

</fieldType>

The following sections describe the tokenizer factory classes included in this release of Solr.

For more information about Solr's tokenizers, see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Tokenizers discussed in this section:

Standard Tokenizer

Classic Tokenizer

Keyword Tokenizer

Letter Tokenizer

Lower Case Tokenizer
N-Gram Tokenizer

Edge N-Gram Tokenizer

ICU Tokenizer

Path Hierarchy Tokenizer
Regular Expression Pattern Tokenizer
Type Tokenizer

UAX29 URL Email Tokenizer
White Space Tokenizer
Related Topics

Standard Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter characters are discarded, with the
following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token.

® Words are split at hyphens, unless there is a number in the word, in which case the token is not split and the numbers and hyphen(s) are
preserved.

® Recognizes Internet domain names and email addresses and preserves them as a single token.

The Standard Tokenizer supports Unicode standard annex UAX#29 word boundaries with the following token types: <ALPHANUM>, <NUM>,
<SQUTHEAST_ASI AN>, <I DEOGRAPHI C>, and <H RAGANA>.

Factory class: solr.StandardTokenizerFactory
Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by maxTokenLengt h.

Apache Solr Reference Guide 4.4 71

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://unicode.org/reports/tr29/#Word_Boundaries

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please", "email", "john.doe@foo.com", "by", "03-09", "re", "m37-xq"

Classic Tokenizer

The Classic Tokenizer preserves the same behavior as the Standard Tokenizer of Solr versions 3.1 and previous. It does not use the Unicode
standard annex UAX#29 word boundary rules that the Standard Tokenizer uses. This tokenizer splits the text field into tokens, treating whitespace
and punctuation as delimiters. Delimiter characters are discarded, with the following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token.

® Words are split at hyphens, unless there is a number in the word, in which case the token is not split and the numbers and hyphen(s) are
preserved.

® Recognizes Internet domain names and email addresses and preserves them as a single token.
Factory class: solr.ClassicTokenizerFactory
Arguments:
maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by maxTokenLengt h.

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please”, "email", "john.doe@foo.com"”, "by", "03-09", "re", "m37-xq"

Keyword Tokenizer

This tokenizer treats the entire text field as a single token.
Factory class: solr.KeywordTokenizerFactory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/>
</ anal yzer >

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Letter Tokenizer

This tokenizer creates tokens from strings of contiguous letters, discarding all non-letter characters.

Apache Solr Reference Guide 4.4 72

http://unicode.org/reports/tr29/#Word_Boundaries
http://unicode.org/reports/tr29/#Word_Boundaries

Factory class: solr.LetterTokenizerFactory
Arguments: None

Example:

<anal yzer>
<t okeni zer class="solr. LetterTokeni zerFactory"/>
</ anal yzer >

In: "l can't."

out: "I", "can"”, "t"

Lower Case Tokenizer

Tokenizes the input stream by delimiting at non-letters and then converting all letters to lowercase. Whitespace and non-letters are discarded.
Factory class: sol r. Lower CaseTokeni zer Fact ory

Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. Lower CaseTokeni zer Factory"/ >
</ anal yzer >

In: "l just LOVE my iPhone!"

Out: "i", "just”,

non non

love", "my", "iphone"

N-Gram Tokenizer

Reads the field text and generates n-gram tokens of sizes in the given range.

Factory class: sol r. NG anifokeni zer Fact ory

Arguments:

minGramSize: (integer, default 1) The minimum n-gram size, must be > 0.
maxGramsSize: (integer, default 2) The maximum n-gram size, must be >= minGramSize.
Example:

Default behavior. Note that this tokenizer operates over the whole field. It does not break the field at whitespace. As a result, the space character
is included in the encoding.

<anal yzer >
<t okeni zer cl ass="sol r. NG anfTokeni zer Factory"/>
</ anal yzer >

In: "hey man"
Out: "h", "e", "y" " " "m" "a" "n" "he", "ey", "y . " m", "ma", "an"
Example:

With an n-gram size range of 4 to 5:

Apache Solr Reference Guide 4.4 73

<anal yzer >
<t okeni zer cl ass="sol r. NG anTTokeni zer Factory" m nG anf5i ze="4" maxG anti ze="5"/>
</ anal yzer >

In: "bicycle"

Out: "bicy", "icyc", "cycl”, "ycle”, "bicyc”, "icycl”, "cycle”

Edge N-Gram Tokenizer

Reads the field text and generates edge n-gram tokens of sizes in the given range.

Factory class: sol r. EdgeNG aniTokeni zer Fact ory

Arguments:

minGramsSize: (integer, default 1) The minimum n-gram size, must be > 0.

maxGramSize: (integer, default 1) The maximum n-gram size, must be >= minGramSize.

side: (“front" or "back", default "front") Whether to compute the n-grams from the beginning (front) of the text or from the end (back).
Example:

Default behavior (min and max default to 1):

<anal yzer>
<t okeni zer cl ass="sol r. EdgeNG anfTokeni zer Fact ory"/ >
</ anal yzer >

In: "babaloo”
Out: "b"
Example:

Edge n-gram range of 2 to 5

<anal yzer>
<t okeni zer cl ass="sol r. EdgeNG anTokeni zer Factory" m nG anfSi ze="2" maxG anSi ze="5"/>
</ anal yzer >

In: "babaloo”
QOut:"ba", "bab", "baba", "babal"
Example:

Edge n-gram range of 2 to 5, from the back side:

<anal yzer>

<t okeni zer cl ass="sol r. EdgeNG anfTokeni zer Factory" m nG anfi ze="2" maxG& anSi ze="5"
si de="back"/ >
</ anal yzer >

In: "babaloo"

Out: "00", "loo", "aloo", "baloo"

Apache Solr Reference Guide 4.4

ICU Tokenizer

This tokenizer processes multilingual text and tokenizes it appropriately based on its script attribute.
Factory class: solr.ICUTokenizerFactory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r.| CUTokeni zer Factory"/>
</ anal yzer >

In: "Testing "™

Out: "Testing", ™, ™, ™

Path Hierarchy Tokenizer

This tokenizer creates synonyms from file path hierarchies.
Factory class: solr.PathHierarchyTokenizerFactory
Arguments:

del i mi t er: (character, no default) You can specify the file path delimiter and replace it with a delimiter you provide. This can be useful for
working with backslash delimiters.

r epl ace: (character, no default) Specifies the delimiter character Solr uses in the tokenized output.

Example:

<fiel dType nane="text _path" class="solr. TextFi el d" positionlncrenment Gap="100">
<anal yzer >
<t okeni zer cl ass="sol r. Pat hHi erarchyTokeni zer Factory" delimter="\
</ anal yzer >
</fieldType>

replace="/"/>

In: "c:\usn\local\apache"

Out: "c:", "c:/usr", "c:/usr/local”, "c:/usr/local/apache"

Regular Expression Pattern Tokenizer

This tokenizer uses a Java regular expression to break the input text stream into tokens. The expression provided by the pattern argument can be
interpreted either as a delimiter that separates tokens, or to match patterns that should be extracted from the text as tokens.

See the Javadocs for java.util.regex.Pattern for more information on Java regular expression syntax.

Factory class: sol r. Patt er nTokeni zer Factory

Arguments:

pat t er n: (Required) The regular expression, as defined by in j ava. util . regex. Pattern.

gr oup: (Optional, default -1) Specifies which regex group to extract as the token(s).The value -1 means the regex should be treated as a delimiter
that separates tokens.Non-negative group numbers (>= 0) indicate that character sequences matching that regex group should be converted to
tokens. Group zero refers to the entire regex, groups greater than zero refer to parenthesized sub-expressions of the regex, counted from left to
right.

Example:

A comma separated list. Tokens are separated by a sequence of zero or more spaces, a comma, and zero or more spaces.

Apache Solr Reference Guide 4.4 75

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

<anal yzer >
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="\s* \s*"/>
</ anal yzer >

In: "fee,fie, foe , fum, foo"
out: "fee”, "fie", "foe". “fum", "foo"
Example:

Extract simple, capitalized words. A sequence of at least one capital letter followed by zero or more letters of either case is extracted as a token.

<anal yzer>

<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="\[A-Z\]\[A-Za-z\]"
group="0"/>
</ anal yzer >

In: "Hello. My name is Inigo Montoya. You killed my father. Prepare to die."

Out: "Hello", "My", "Inigo", "Montoya". "You", "Prepare"

Example:

Extract part numbers which are preceded by "SKU", "Part" or "Part Number", case sensitive, with an optional semi-colon separator. Part numbers

must be all numeric digits, with an optional hyphen. Regex capture groups are numbered by counting left parenthesis from left to right. Group 3 is
the subexpression "[0-9-]+", which matches one or more digits or hyphens.

<anal yzer >

<t okeni zer class="solr.PatternTokeni zer Fact ory"
pattern="(SKUl Part (\sNumber)?): 2As(\[0-9-\]+)" group="3"/>
</ anal yzer >

In: "SKU: 1234, Part Number 5678, Part: 126-987"

Out: "1234", "5678", "126-987"

Type Tokenizer

This tokenizer filters tokens by its type, with either an exclude or include list.
Factory class: solr.TypeTokenFilterFactory

Arguments:

t ypes: Defines the location of a file of types to filter.

enabl ePosi tionl ncrenent s: If true, the token will be incremented by position.
useWi t eLi st : If true, the file defined in t ypes should be used as include list.

Example:

<anal yzer>
<filter class="solr.TypeTokenFilterFactory" types="stoptypes.txt"
enabl ePosi ti onl ncrenents="true" useWiteList="fal se"/>
</ anal yzer >

Apache Solr Reference Guide 4.4 76

UAX29 URL Email Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter characters are discarded, with the
following exceptions:

® Periods (dots) that are not followed by whitespace are kept as part of the token.

® Words are split at hyphens, unless there is a number in the word, in which case the token is not split and the numbers and hyphen(s) are
preserved.

® Recognizes top-level (.com) Internet domain names; email addresses; file:://,http(s)://,andftp:// addresses; IPv4 and IPv6
addresses; and preserves them as a single token.

The UAX29 URL Email Tokenizer supports Unicode standard annex UAX#29 word boundaries with the following token types: <ALPHANUM>,
<NUM>, URL, EMAI L, <SOUTHEAST_ASI AN>, <I DEOGRAPHI C>, and <HI RAGANA>.

Factory class: solr.UAX29URLEmailTokenizerFactory
Arguments:
maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by maxTokenLengt h.

Example:

<anal yzer >
<t okeni zer cl ass="sol r. UAX29URLEn=i | Tokeni zer Fact ory"/ >
</ anal yzer >

In: "Visit http://accarol.com/contact.htm?from=external&a=10 or e-mail bob.cratchet@accarol.com"

Out: "Visit", "http://accarol.com/contact.htm?from=external&a=10", "or", "email", "bob.cratchet@accarol.com"

White Space Tokenizer

Simple tokenizer that splits the text stream on whitespace and returns sequences of non-whitespace characters as tokens. Note that any
punctuation will be included in the tokenization.

Factory class: sol r. Wi t espaceTokeni zer Fact ory
Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
</ anal yzer >

In: "To be, or what?"

Out: "To", "be,", "or", "what?"

Related Topics

® TokenizerFactories

Filter Descriptions

You configure each filter with a <f i | t er > element in schema. xm as a child of <anal yzer >, following the <t okeni zer > element. Filter
definitions should follow a tokenizer or another filter definition because they take a TokenSt r eamas input. For example.

Apache Solr Reference Guide 4.4 77

file:://
http://unicode.org/reports/tr29/#Word_Boundaries
http://accarol.com/contact.htm?from=external&a=10
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenizerFactories

<fiel dType nane="text" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>..
</ anal yzer >
</fieldType>

The class attribute names a factory class that will instantiate a filter object as needed. Filter factory classes must implement the

org. apache. sol r. anal ysi s. TokenFi | t er Fact ory interface. Like tokenizers, filters are also instances of TokenStream and thus are
producers of tokens. Unlike tokenizers, filters also consume tokens from a TokenStream. This allows you to mix and match filters, in any order
you prefer, downstream of a tokenizer.

Arguments may be passed to tokenizer factories to modify their behavior by setting attributes on the <fi | t er > element. For example:

<fiel dType nane="semicol onDel imted" class="solr. TextField">
<anal yzer type="query">
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern="; " />
<filter class="solr.LengthFilterFactory" *m n="2" max="7"/>
</ anal yzer >
</fieldType>

The following sections describe the filter factories that are included in this release of Solr.

For more information about Solr's filters, see http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

Filters discussed in this section:

ASCII Folding Filter
Beider-Morse Filter

Classic Filter

Common Grams Filter
Collation Key Filter

Edge N-Gram Filter
English Minimal Stem Filter
Hunspell Stem Filter
Hyphenated Words Filter
ICU Folding Filter

ICU Normalizer 2 Filter
ICU Transform Filter

Keep Words Filter

KStem Filter

Length Filter

Lower Case Filter

N-Gram Filter

Numeric Payload Token Filter
Pattern Replace Filter
Phonetic Filter

Porter Stem Filter

Position Filter Factory
Remove Duplicates Token Filter
Reversed Wildcard Filter
Shingle Filter

Snowball Porter Stemmer Filter
Standard Filter

Stop Filter

Synonym Filter

Token Offset Payload Filter
Trim Filter

Type As Payload Filter
Word Delimiter Filter
Related Topics

Apache Solr Reference Guide 4.4 78

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

ASCII Folding Filter

This filter converts alphabetic, numeric, and symbolic Unicode characters which are not in the Basic Latin Unicode block (the first 127 ASCII
characters) to their ASCII equivalents, if one exists. This filter converts characters from the following Unicode blocks:

C1 Controls and Latin-1 Supplement (PDF)
Latin Extended-A (PDF)

Latin Extended-B (PDF)

Latin Extended Additional (PDF)

Latin Extended-C (PDF)

Latin Extended-D (PDF)

IPA Extensions (PDF)

Phonetic Extensions (PDF)

Phonetic Extensions Supplement (PDF)
General Punctuation (PDF)
Superscripts and Subscripts (PDF)
Enclosed Alphanumerics (PDF)
Dingbats (PDF)

Supplemental Punctuation (PDF)
Alphabetic Presentation Forms (PDF)
Halfwidth and Fullwidth Forms (PDF)

Factory class: solr.ASCIIFilterFactory
Arguments: None

Example:

<anal yzer >
<filter class="solr.ASCI|IFilterFactory"/>
</ anal yzer >

In: "&" (Unicode character O0E1)

Out: "&" (ASCII character 160)

Beider-Morse Filter

Implements the Beider-Morse Phonetic Matching (BMPM) algorithm, which allows identification of similar names, even if they are spelled
differently or in different languages. More information about how this works is available in the section on Phonetic Matching.

Factory class: solr.BeiderMorseFilterFactory
Arguments:

nameType: Types of names. Valid values are GENERIC, ASHKENAZI, or SEPHARDIC. If not processing Ashkenazi or Sephardic hames, use
GENERIC.

rul eType: Types of rules to apply. Valid values are APPROX or EXACT.
concat : Defines if multiple possible matches should be combined with a pipe ("").
| anguageSet : The language set to use. The value "auto” will allow the Filter to identify the language, or a comma-separated list can be supplied.

Example:

<anal yzer >
<filter class="solr.BeiderMrseFilterFactory" naneType="GENERI C' rul eType=" APPROX"
concat ="true" |anguageSet ="aut o"
</filter>
</ anal yzer >

Classic Filter

This filter takes the output of the Classic Tokenizer and strips periods from acronyms and "'s" from possessives.

Apache Solr Reference Guide 4.4 79

http://www.unicode.org/charts/PDF/U0080.pdf
http://www.unicode.org/charts/PDF/U0100.pdf
http://www.unicode.org/charts/PDF/U0180.pdf
http://www.unicode.org/charts/PDF/U1E00.pdf
http://www.unicode.org/charts/PDF/U2C60.pdf
http://www.unicode.org/charts/PDF/UA720.pdf
http://www.unicode.org/charts/PDF/U0250.pdf
http://www.unicode.org/charts/PDF/U1D00.pdf
http://www.unicode.org/charts/PDF/U1D80.pdf
http://www.unicode.org/charts/PDF/U2000.pdf
http://www.unicode.org/charts/PDF/U2070.pdf
http://www.unicode.org/charts/PDF/U2460.pdf
http://www.unicode.org/charts/PDF/U2700.pdf
http://www.unicode.org/charts/PDF/U2E00.pdf
http://www.unicode.org/charts/PDF/UFB00.pdf
http://www.unicode.org/charts/PDF/UFF00.pdf

Factory class: solr.ClassicFilterFactory
Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="solr.d assi cTokeni zer Factory"/>
<filter class="solr.d assicFilterFactory"/>

</ anal yzer >

In: "I.B.M. cat's can't"

Tokenizer to Filter: "I.B.M", "cat's", "can't

Out: "IBM", "cat", "can't"

Common Grams Filter

This filter creates word shingles by combining common tokens such as stop words with regular tokens. This is useful for creating phrase queries
containing common words, such as "the cat." Solr normally ignores stop words in queried phrases, so searching for "the cat" would return all
matches for the word "cat."

Factory class: solr.CommonGramsFilterFactory

Arguments:

wor ds: (a common word file in .txt format) Provide the name of a common word file, such as st opwor ds. t xt .

f or mat : (optional) If the stopwords list has been formatted for Snowball, you can specify f or nat =" snowbal | " so Solr can read the stopwords
file.

i gnor eCase: (boolean) If true, the filter ignores the case of words when comparing them to the common word file.

Example:

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.CommonG ansFilterFactory" words="stopwords.txt"
i gnor eCase="true"/>
</ anal yzer >

In: "the Cat"
Tokenizer to Filter: "the", "Cat"

Out: "the_cat"

Collation Key Filter

Collation allows sorting of text in a language-sensitive way. It is usually used for sorting, but can also be used with advanced searches. We've
covered this in much more detail in the section on Unicode Collation.

Edge N-Gram Filter

This filter generates edge n-gram tokens of sizes within the given range.
Factory class: solr.EdgeNGramFilterFactory

Arguments:

m nG anfi ze: (integer, default 1) The minimum gram size.

Apache Solr Reference Guide 4.4 80

maxQ& anti ze: (integer, default 1) The maximum gram size.
Example:

Default behavior.

<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/>
<filter class="solr.EdgeNG anFilterFactory"/>

</ anal yzer >

In: "four score and twenty"

Tokenizer to Filter: "four", "score", "and", "twenty"
Out: ", "s", "a", "t"
Example:

Arange of 1to 4.

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.EdgeNG anFilterFactory" m nG anSi ze="1"
</ anal yzer >

maxG anti ze="4"/ >

In: “four score"

Tokenizer to Filter: "four", "score"
out: "f". "fo". "fou”, "four", "s". "sc", "sco", "scor"
Example:

A range of 4 to 6.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.EdgeNG anFilterFactory" m nG anSi ze="4"
</ anal yzer >

maxG anti ze="6"/ >

In: "four score and twenty"

Tokenizer to Filter: "four", "score", "and", "twenty"

Out: "four", "sco", "scor"

English Minimal Stem Filter

This filter stems plural English words to their singular form.
Factory class: solr.EnglishMinimalStemFilterFactory
Arguments: None

Example:

Apache Solr Reference Guide 4.4

81

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/>
<filter class="solr.EnglishMninal StenfilterFactory"/>
</ anal yzer >

In: "dogs cats"
Tokenizer to Filter: "dogs", "cats"

Out: "dog", "cat"

Hunspell Stem Filter

The Hunspell Stem Filter provides support for several languages. You must provide the dictionary (. di ¢) and rules (. af f) files for each language
you wish to use with the Hunspell Stem Filter. You can download those language files here. Be aware that your results will vary widely based on
the quality of the provided dictionary and rules files. For example, some languages have only a minimal word list with no morphological
information. On the other hand, for languages that have no stemmer but do have an extensive dictionary file, the Hunspell stemmer may be a
good choice.

Factory class: solr.HunspellStemFilterFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.Hunspell StentilterFactory"
di ctionary="en_GB. di c"
affix="en_GB. af f"
i gnor eCase="true" />
</ anal yzer >

In: "jump jumping jumped"

Hyphenated Words Filter

This filter reconstructs hyphenated words that have been tokenized as two tokens because of a line break or other intervening whitespace in the
field test. If a token ends with a hyphen, it is joined with the following token and the hyphen is discarded. Note that for this filter to work properly,
the upstream tokenizer must not remove trailing hyphen characters. This filter is generally only useful at index time.

Factory class: solr.HyphenatedWordsFilterFactory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="sol r.Hyphenat edWrdsFilterFactory"/>
</ anal yzer >

In: "A hyphen- ated word"

Tokenizer to Filter: "A", "hyphen-", "ated", "word"

Apache Solr Reference Guide 4.4 82

http://wiki.apache.org/solr/Hunspell
http://wiki.services.openoffice.org/wiki/Dictionaries

Out: "A", "hyphenated", "word"

ICU Folding Filter

This filter is a custom Unicode normalization form that applies the foldings specified in Unicode Technical Report 30 in addition to the
NFKC_Casef ol d normalization form as described in ICU Normalizer 2 Filter. This filter is a better substitute for the combined behavior of the
ASCII Folding Filter, Lower Case Filter, and ICU Normalizer 2 Filter.

To use this filter, see sol r/ cont ri b/ anal ysi s- ext ras/ READVE. t xt for instructions on which jars you need to add to your
solr_home/lib.

Factory class: solr.ICUFoldingFilterFactory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.|CUFol dingFilterFactory"/>

</ anal yzer >

For detailed information on this normalization form, see http://www.unicode.org/reports/tr30/tr30-4.html.

ICU Normalizer 2 Filter

This filter factory normalizes text according to one of five Unicode Normalization Forms as described in Unicode Standard Annex #15:

NFC: (name="nfc" mode="compose") Normalization Form C, canonical decomposition

NFD: (name="nfc" mode="decompose") Normalization Form D, canonical decomposition, followed by canonical composition
NFKC: (name="nfkc" mode="compose") Normalization Form KC, compatibility decomposition

NFKD: (name="nfkc" mode="decompose") Normalization Form KD, compatibility decomposition, followed by canonical composition
NFKC_Casefold: (name="nfkc_cf" mode="compose") Normalization Form KC, with additional Unicode case folding. Using the ICU
Normalizer 2 Filter is a better-performing substitution for the Lower Case Filter and NFKC normalization.

Factory class: solr.ICUNormalizer2FilterFactory

Arguments:

name: (string) The name of the normalization form; nf c, nf d, nf kc, nf kd, nf kc_cf

node: (string) The mode of Unicode character composition and decomposition; conpose or deconpose

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.|CUNormalizer2FilterFactory"/>
</ anal yzer >

For detailed information about these Unicode Normalization Forms, see http://unicode.org/reports/tr15/.

To use this filter, see sol r/ cont ri b/ anal ysi s- ext ras/ README. t xt for instructions on which jars you need to add to your
sol r_hone/lib.

ICU Transform Filter

This filter applies ICU Tranforms to text. This filter supports only ICU System Transforms. Custom rule sets are not supported.
Factory class: solr.ICUTransformFilterFactory

Arguments:

i d: (string) The identifier for the ICU System Transform you wish to apply with this filter. For a full list of ICU System Transforms, see

Apache Solr Reference Guide 4.4 83

http://www.unicode.org/reports/tr30/tr30-4.html
http://www.unicode.org/reports/tr30/tr30-4.html
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/
http://userguide.icu-project.org/transforms/general

http://[demo.icu-project.org/icu-bin/translit? TEMPLATE_FILE=data/translit_rule_main.html.

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.|CUTransfornFilterFactory" id="Traditional-Sinplified"/>
</ anal yzer >

For detailed information about ICU Transforms, see http://userguide.icu-project.org/transforms/general.

To use this filter, see sol r/ cont ri b/ anal ysi s- ext ras/ READVE. t xt for instructions on which jars you need to add to your
solr_home/lib.

Keep Words Filter

This filter discards all tokens except those that are listed in the given word list. This is the inverse of the Stop Words Filter. This filter can be useful
for building specialized indices for a constrained set of terms.

Factory class: solr.KeepWordFilterFactory
Arguments:

wor ds: (required) Path of a text file containing the list of keep words, one per line. Blank lines and lines that begin with "#" are ignored. This may
be an absolute path, or a simple filename in the Solr config directory.

i gnor eCase: (true/false) If true then comparisons are done case-insensitively. If this argument is true, then the words file is assumed to contain
only lowercase words. The default is false.

Example:

Where keepwor ds. t xt contains:
happy

funny

silly

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="sol r.KeepWrdFilterFactory" words="keepwords.txt"/>
</ anal yzer >

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"
Out: "funny"

Example:

Same keepwor ds. t xt , case insensitive:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt" ignoreCase="true"/>
</ anal yzer >

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"

Apache Solr Reference Guide 4.4 84

http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html
http://userguide.icu-project.org/transforms/general

Out: "Happy", "funny"”
Example:

Using LowerCaseFilterFactory before filtering for keep words, no i gnor eCase flag.

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.KeepWrdFilterFactory" words="keepwords.txt"/>
</ anal yzer >

In: "Happy, sad or funny"
Tokenizer to Filter: "Happy", "sad", "or", "funny"
Filter to Filter: "happy", "sad", "or", "funny"

Out: "happy", "funny”

KStem Filter

KStem is an alternative to the Porter Stem Filter for developers looking for a less aggressive stemmer. KStem was written by Bob Krovetz, ported
to Lucene by Sergio Guzman-Lara (UMASS Amherst). This stemmer is only appropriate for English language text.

Factory class: solr.KStemFilterFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.KStenFilterFactory"/>

</ anal yzer >

In: "jump jumping jumped"

Tokenizer to Filter: "jump”, "jumping”, “jumped"

Out: "jump", "jump”, “jump"

Length Filter

This filter passes tokens whose length falls within the min/max limit specified. All other tokens are discarded.
Factory class: solr.LengthFilterFactory

Arguments:

m n: (integer, required) Minimum token length. Tokens shorter than this are discarded.

max: (integer, required, must be >= min) Maximum token length. Tokens longer than this are discarded.

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.LengthFilterFactory" mn="3" max="7"/>
</ anal yzer >

Apache Solr Reference Guide 4.4 85

In: "turn right at Albugquerque"
Tokenizer to Filter: "turn", "right", "at", "Albuquerque"

Out: "turn", "right"

Lower Case Filter

Converts any uppercase letters in a token to the equivalent lowercase token. All other characters are left unchanged.
Factory class: solr.LowerCaseFilterFactory

Arguments: None

Example:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>

</ anal yzer >

In: "Down With CamelCase"
Tokenizer to Filter: "Down", "With", "CamelCase"

Out: "down", "with", "camelcase"

N-Gram Filter

Generates n-gram tokens of sizes in the given range.
Factory class: solr.NGramFilterFactory

Arguments:

m nG anSi ze: (integer, default 1) The minimum gram size.
maxQ& anti ze: (integer, default 2) The maximum gram size.
Example:

Default behavior.

<anal yzer>
<t okeni zer cl ass="solr. St andardTokeni zer Factory"/>
<filter class="solr.NG antilterFactory"/>

</ anal yzer >

In: "four score"

Tokenizer to Filter: "four", "score"

non

Out: "f", "o", "u", "r", "fo", "ou", "ur", "s", "c", "o", "r", "e", "sc", "co", "or",

re
Example:

Arange of 1to 4.

Apache Solr Reference Guide 4.4

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.NGanFilterFactory" *m nG anfi ze="1" maxQG anfi ze="4"/ >
</ anal yzer >

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "f*, "fo", "fou", "four", "s", "sc", "sco", "scor"
Example:

Arange of 3to 5.

<anal yzer>

<t okeni zer cl ass="solr. St andar dTokeni zer Factory"/>

<filter class="solr.NGanFilterFactory" *m nG anti ze="3" maxG anfSi ze="5"/>
</ anal yzer >

In: "four score"
Tokenizer to Filter: "four", "score"

Out: "fou", "our", "four", "sco", "cor", "ore", "scor", "core", "score"

Numeric Payload Token Filter

This filter adds a numeric floating point payload value to tokens that match a given type. Refer to the Javadoc for the
or g. apache. | ucene. anal ysi s. Token class for more information about token types and payloads.

Factory class: solr.NumericPayloadTokenFilterFactory

Arguments:

payl oad: (required) A floating point value that will be added to all matching tokens.

t ypeMat ch: (required) A token type name string. Tokens with a matching type name will have their payload set to the above floating point value.

Example:

<anal yzer>

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.NumericPayl oadTokenFilterFactory" payl oad="0.75"
t ypeMat ch="wor d"/ >
</ anal yzer >

In: "bing bang boom"
Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0.75], "bang"[0.75], "boom"[0.75]

Pattern Replace Filter

This filter applies a regular expression to each token and, for those that match, substitutes the given replacement string in place of the matched
pattern. Tokens which do not match are passed though unchanged.

Factory class: solr.PatternReplaceFilter

Apache Solr Reference Guide 4.4 87

Arguments:
pat t er n: (required) The regular expression to test against each token, as perj ava. util . regex. Pattern.

repl acenent : (required) A string to substitute in place of the matched pattern. This string may contain references to capture groups in the regex
pattern. See the Javadoc for java.util.regex.Matcher.

repl ace: ("all" or "first", default "all") Indicates whether all occurrences of the pattern in the token should be replaced, or only the first.
Example:

Simple string replace:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PatternReplaceFilter" pattern="cat" replacenent="dog"/>
</ anal yzer >

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat"
Out: "dog", "condogenate”, "dogydog"

Example:

String replacement, first occurrence only:

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.PatternRepl aceFilter" pattern="cat" repl acenent="dog"
*replace="first"/>
</ anal yzer >

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat”
Out: "dog", "condogenate”, "dogycat"
Example:

More complex pattern with capture group reference in the replacement. Tokens that start with non-numeric characters and end with digits will
have an underscore inserted before the numbers. Otherwise the token is passed through.

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.PatternReplaceFilter" pattern="(\D+)(\d+)$"
repl acenent =" $1_$2"/>
</ anal yzer >

In: "cat f001234 9987 blah1234foo"
Tokenizer to Filter: “cat", "fo01234", "9987", "blah1234foo"

Out: "cat", "foo_1234", "9987", "blah1234foo"

Phonetic Filter

This filter creates tokens using one of the phonetic encoding algorithms in the or g. apache. conmons. codec.language package.

Apache Solr Reference Guide 4.4 88

Factory class: solr.PhoneticFilterFactory
Arguments:

{{encoder }}: (required) The name of the encoder to use. The encoder name must be one of the following (case insensitive): "DoubleMetaphone”,
"Metaphone", "Soundex", "RefinedSoundex", "Caverphone", or "ColognePhonetic"

i nj ect : (true/false) If true (the default), then new phonetic tokens are added to the stream. Otherwise, tokens are replaced with the phonetic
equivalent. Setting this to false will enable phonetic matching, but the exact spelling of the target word may not match.

maxCodelLengt h: (integer) The maximum length of the code to be generated by the Metaphone or Double Metaphone encoders.
Example:

Default behavior for DoubleMetaphone encoding.

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.PhoneticFilterFactory" encoder="Doubl eMet aphone"/ >
</ anal yzer >

In: “four score and twenty"
Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)
Out: "four"(1), "FR"(1), "score"(2), "SKR"(2), "and"(3), "ANT"(3), "twenty"(4), "TNT"(4)

The phonetic tokens have a position increment of 0, which indicates that they are at the same position as the token they were derived from
(immediately preceding).

Example:

Discard original token.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.PhoneticFilterFactory" encoder="Doubl eMet aphone"
inject="fal se"/>
</ anal yzer >

In: "four score and twenty"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)
Out: "FR"(1), "SKR"(2), "ANT"(3), "TWNT"(4)

Example:

Default Soundex encoder.

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.PhoneticFilterFactory" encoder="Soundex"/>
</ anal yzer >

In: "four score and twenty"
Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)

Out: "four"(1), "F600"(1), "score"(2), "S600"(2), "and"(3), "A530"(3), "twenty"(4), "T530"(4)

Porter Stem Filter

Apache Solr Reference Guide 4.4 89

http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Metaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Soundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/RefinedSoundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Caverphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/ColognePhonetic.html

This filter applies the Porter Stemming Algorithm for English. The results are similar to using the Snowball Porter Stemmer with the

| anguage="Engl i sh" argument. But this stemmer is coded directly in Java and is not based on Snowball. Nor does it accept a list of protected
words. This stemmer is only appropriate for English language text.

Factory class: solr.PorterStemFilterFactory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.PorterStenFilterFactory"/>

</ anal yzer >

In: "jump jumping jumped"

Tokenizer to Filter: "jump", “jumping", "jumped"

Out: "jump”, "jump", "jump"

Position Filter Factory

This filter sets the position increment values of all tokens in a token stream except the first, which retains its original position increment value.
Factory class: solr.PositionIncrementFilterFactory

Arguments:

posi tionl ncrement : (integer, default = 0) The position increment value to apply to all tokens in a token stream except the first.

Example:

<anal yzer>

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.PositionFilterFactory" positionlncrenent="1"/>
</ anal yzer >

In: "hello world"

Tokenizer to Filter: "hello", "world"

Out: "hello" (token position 1), "world" (token position 3)

Remove Duplicates Token Filter

The filter removes duplicate tokens in the stream. Tokens are considered to be duplicates if they have the same text and position values.
Factory class: solr.RemoveDuplicatesTokenFilterFactory

Arguments: None

Example:

This is an artificial example that uses the Synonym Filter to generate duplicate symbols, which are then removed. The file t est syns. t xt
contains the following:

Apache Solr Reference Guide 4.4 90

<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.SynonynFilterFactory" synonyns="testsyns.txt"/>
<filter class="sol r. RenmoveDuplicatesTokenFilterFactory"/>

</ anal yzer >

In: "blurt blort"
Tokenizer to Filter: "blurt"(1), "blurt"(2)
Tokenizer to Filter: "foo"(1), "foo"(1), "bar"(2), "bar"(2)

Out: "foo"(1), "bar"(2)

Reversed Wildcard Filter

This filter reverses tokens to provide faster leading wildcard and prefix queries. Tokens without wildcards are not reversed.
Factory class: solr.ReveresedWildcardFilterFactory
Arguments:

wi t hOri gi nal (boolean) If true, the filter produces both original and reversed tokens at the same positions. If false, produces only reversed
tokens.

maxPosAst eri sk (integer, default = 2) The maximum position of the asterisk wildcard (*') that triggers the reversal of the query term. Terms with
asterisks at positions above this value are not reversed.

maxPosQuest i on (integer, default = 1) The maximum position of the question mark wildcard ('?') that triggers the reversal of query term. To
reverse only pure suffix queries (queries with a single leading asterisk), set this to 0 and maxPosAst eri sk to 1.

maxFracti onAst eri sk (float, default = 0.0) An additional parameter that triggers the reversal if asterisk (**') position is less than this fraction of
the query token length.

m nTrai | i ng (integer, default = 2) The minimum number of trailing characters in a query token after the last wildcard character. For good
performance this should be set to a value larger than 1.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.ReversedW | dcardFilterFactory" wthCriginal ="true"
maxPosAst eri sk="2" maxPosQuestion="1" mnTrailing="2" maxFracti onAsterisk="0"/>
</ anal yzer >

In: "*foo *bar"
Tokenizer to Filter: "*foo", "*bar"

Out: "oof*", "rab*"

Shingle Filter

This filter constructs shingles, which are token n-grams, from the token stream. It combines runs of tokens into a single token.
Factory class: solr.ShingleFilterFactory

Arguments:

max Shi ngl eSi ze: (integer, must be >= 2, default 2) The maximum number of tokens per shingle.

out put Uni gr ans: (trueffalse) If true (the default), then each individual token is also included at its original position.

Example:

Apache Solr Reference Guide 4.4 91

Default behavior.

<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.ShingleFilterFactory"/>

</ anal yzer >

In: "To be, or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "To"(1), "To be"(1), "be"(2), "be or"(2), "or"(3), "or what"(3), "what"(4)
Example:

A shingle size of four, do not include original token.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.ShingleFilterFactory" nmaxShingl eSi ze="4"
out put Uni grans="f al se"/ >
</ anal yzer >

In: "To be, or not to be."
Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "not"(4), "to"(5), "be"(6)

Out: "To be"(1), "To be or"(1), "To be or not"(1), "be or"(2), "be or not"(2), "be or not to"(2), "or not"(3), "or not to"(3), "or not to be"(3), "not to"(4),
"not to be"(4), "to be"(5)

Snowball Porter Stemmer Filter

This filter factory instantiates a language-specific stemmer generated by Snowball. Snowball is a software package that generates pattern-based
word stemmers. This type of stemmer is not as accurate as a table-based stemmer, but is faster and less complex. Table-driven stemmers are
labor intensive to create and maintain and so are typically commercial products.

Solr contains Snowball stemmers for Armenian, Basque, Catalan, Danish, Dutch, English, Finnish, French, German, Hungarian, Italian,
Norwegian, Portuguese, Romanian, Russian, Spanish, Swedish and Turkish. For more information on Snowball, visit http://snowball.tartarus.org/.

St opFi | t er Fact ory, CormonGr ansFi | t er Fact ory, and CommonG ansQuer yFi | t er Fact or y can optionally read stopwords in Snowball
format (specify f or mat =" snowbal | " in the configuration of those FilterFactories).

Factory class: solr.SnowballPorterFilterFactory
Arguments:

| anguage: (default "English") The name of a language, used to select the appropriate Porter stemmer to use. Case is significant. This string is
used to select a package name in the "org.tartarus.snowball.ext" class hierarchy.

pr ot ect ed: Path of a text file containing a list of protected words, one per line. Protected words will not be stemmed. Blank lines and lines that
begin with "#" are ignored. This may be an absolute path, or a simple file name in the Solr config directory.

Example:

Default behavior:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.Snowbal | PorterFilterFactory"/>
</ anal yzer >

Apache Solr Reference Guide 4.4 92

http://snowball.tartarus.org/

In: "flip flipped flipping"

Tokenizer to Filter: "flip", "flipped", "flipping"
Out: "flip", "flip", "flip"

Example:

French stemmer, English words:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.Snowbal | PorterFilterFactory" |anguage="French"/>
</ anal yzer >

In: "flip flipped flipping"

Tokenizer to Filter: "flip", "flipped", "flipping"
Out: "flip", "flipped”, "flipping"

Example:

Spanish stemmer, Spanish words:

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Spanish"/>
</ anal yzer >

In: "cante canta"
Tokenizer to Filter: "cante”, "canta”

Out: "cant", "cant"

Standard Filter

appropriate term-type to recognize acronyms and words with apostrophes.
Factory class: solr.StandardFilterFactory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr. StandardFilterFactory"/>

</ anal yzer >

In: "Bob's [.LO.U."

Tokenizer to Filter: "Bob's", "[.O.U."
Out: "Bob". "IOU"

Stop Filter

This filter discards, or stops analysis of, tokens that are on the given stop words list. A standard stop words list is included in the Solr config

Apache Solr Reference Guide 4.4

93

directory, named stopwords.txt, which is appropriate for typical English language text.
Factory class: solr.StopFilterFactory
Arguments:

wor ds: (optional) The path to a file that contains a list of stop words, one per line. Blank lines and lines that begin with "#" are ignored. This may
be an absolute path, or path relative to the Solr config directory.

f or mat : (optional) If the stopwords list has been formatted for Snowball, you can specify f or mat =" snowbal | * so Solr can read the stopwords
file.

i gnor eCase: (true/false, default false) Ignore case when testing for stop words. If true, the stop list should contain lowercase words.

enabl ePosi ti onl ncr enent s: (truef/false, default false) When true, if a token is stopped (discarded) then the position of the following token is
incremented.

Example:

Case-sensitive matching, capitalized words not stopped. Token positions skip stopped words.

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.StopFilterFactory" words="stopwords.txt"/>
</ anal yzer >

In: "To be or what?"
Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)
Out: "To"(1), "what"(2)

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"/>
</ anal yzer >

In: "To be or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)
Out: "what"(1)

Example:

Position increment enabled, original positions retained. No tokens at positions of stopped words.

<anal yzer>

<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"
enabl ePosi tionl ncrenents="true"/ >
</ anal yzer >

In: "You are a star"
Tokenizer to Filter: "You"(1), "are"(2), "a"(3), "star"(4)

Out: "You"(1), "star"(4)

Synonym Filter

Apache Solr Reference Guide 4.4 94

This filter does synonym mapping. Each token is looked up in the list of synonyms and if a match is found, then the synonym is emitted in place of
the token. The position value of the new tokens are set such they all occur at the same position as the original token.

Factory class: solr.SynonympFilterFactory
Arguments:

synonyns: (required) The path of a file that contains a list of synonyms, one per line. Blank lines and lines that begin with "#" are ignored. This
may be an absolute path, or path relative to the Solr config directory.There are two ways to specify synonym nappi ngs:

® A comma-separated list of words. If the token matches any of the words, then all the words in the list are substituted, which will include
the original token.

®* Two comma-separated lists of words with the symbol "=>" between them. If the token matches any word on the left, then the list on the
right is substituted. The original token will not be included unless it is also in the list on the right.

For the following examples, assume the following synonyns. t xt file:

couch, sof a, di van

teh => the
huge, gi nor nous, hunungous => | arge
smal | => tiny,teeny, weeny

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.SynonynFilterFactory" synonyns="nysynonyns.txt"/>
</ anal yzer >

In: "teh small couch"
Tokenizer to Filter: "teh"(1), "small"(2), "couch"(3)
Out: "the"(1), "tiny"(2), "teeny"(2), "weeny"(2), "couch"(3), "sofa"(3), "divan"(3)

Example:

<anal yzer >

<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/>

<filter class="solr.SynonynFilterFactory" synonyns="nysynonyns.txt"/>
</ anal yzer >

In: "teh ginormous, humungous sofa"
Tokenizer to Filter: "teh"(1), "ginormous"(2), "humungous"(3), "sofa"(4)

Out: "the"(1), "large"(2), "large"(3), "couch"(4), "sofa"(4), "divan"(4)

Token Offset Payload Filter

This filter adds the numeric character offsets of the token as a payload value for that token.
Factory class: solr.TokenOffsetPayloadTokenFilterFactory
Arguments: None

Example:

Apache Solr Reference Guide 4.4 95

<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.TokenO fset Payl oadTokenFi |t er Factory"/>
</ anal yzer >

In: "bing bang boom"
Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0,4], "bang"[5,9], "boom"[10,14]

Trim Filter

This filter trims leading and/or trailing whitespace from tokens. Most tokenizers break tokens at whitespace, so this filter is most often used for
special situations.

Factory class: solr.TrimFilterFactory

Arguments:

updat eX f set s: (true/false, default false) If true, the token's start/end offsets are adjusted to account for any whitespace that was removed.
Example:

The PatternTokenizerFactory configuration used here splits the input on simple commas, it does not remove whitespace.

<anal yzer >
<t okeni zer cl ass="solr. PatternTokeni zer Factory" pattern=","/>
<filter class="solr.TrinFilterFactory"/>

</ anal yzer >

In: "one, two , three ,four "
Tokenizer to Filter: "one", " two ", " three ", "four "

Out: "one", "twao", "three", "four"

Type As Payload Filter

This filter adds the token's type, as an encoded byte sequence, as its payload.
Factory class: solr.TypeAsPayloadTokenFilterFactory

Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="sol r. TypeAsPayl oadTokenFilterFactory"/>
</ anal yzer >

In: "Pay Bob's 1.O.U."
Tokenizer to Filter: "Pay", "Bob's", "[.O.U."

Out: "Pay"[<ALPHANUM>], “Bob's"[<APOSTROPHE>], "I.0.U."[<KACRONYM>]

Word Delimiter Filter

Apache Solr Reference Guide 4.4 96

This filter splits tokens at word delimiters. The rules for determining delimiters are determined as follows:
® A change in case within a word: "CamelCase" -> "Camel", "Case"This can be disabled by setting splitOnCaseChange="0" (see below).

® A transition from alpha to numeric characters or vice versa:"Gonzo5000" > "Gonzo", "5000"'4500XL" > "4500", "XL" This can be disabled
by setting splitOnNumerics ="0".

® Non-alphanumeric characters (discarded): "hot-spot" -> "hot", "spot"

® Atrailing "'s" is removed: "O'Reilly's" -> "O", "Reilly"

® Any leading or trailing delimiters are discarded: "-het-spet- > "hot", "spot”
Factory class: solr.WordDelimiterFilterFactory
Arguments:

gener at eWor dPar t s: (integer, default 1) If non-zero, splits words at delimiters. For example:"CamelCase", "hot-spot" -> "Camel”, "Case", "hot",
"spot”

gener at eNunber Par t s: (integer, default 1) If non-zero, splits numeric strings at delimiters:"1947-32" ->"1947", "32"

spl i t OnCaseChange: (integer, default 1) If 0, words are not split on camel-case changes:"BugBlaster-XL" -> "BugBlaster", "XL"Example 1
below illustrates the default (non-zero) splitting behavior.

splitOnNuneri cs: (integer, default 1) If 0, don't split words on transitions from alpha to numeric:"FemBot3000" -> "Fem", "Bot3000"
cat enat eWor ds: (integer, default 0) If non-zero, maximal runs of word parts will be joined: "hot-spot-sensor's" -> "hotspotsensor”
cat enat eNunber s: (integer, default 0) If non-zero, maximal runs of number parts will be joined: 1947-32" -> "194732"

cat enat eAl | : (0/1, default 0) If non-zero, runs of word and number parts will be joined: "Zap-Master-9000" -> "ZapMaster9000"

preserveOri gi nal : (integer, default 0) If non-zero, the original token is preserved: "Zap-Master-9000" -> "Zap-Master-9000", "Zap", "Master",
"9000"

pr ot ect ed: (optional) The pathname of a file that contains a list of protected words that should be passed though without splitting.
st enEngl i shPossessi ve: (integer, default 1) If 1, strips the possessive "'s" from each subword.
Example:

Default behavior. The whitespace tokenizer is used here to preserve non-alphanumeric characters.

<anal yzer>
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.WrdDelimterFilterFactory"/>

</ anal yzer >

In: "hot-spot RoboBlaster/9000 100XL"

Tokenizer to Filter: "hot-spot”, "RoboBlaster/9000", "100XL"
Out: "hot", "spot", "Robo", "Blaster", "9000", "100", "XL"
Example:

Do not split on case changes, and do not generate number parts. Note that by not generating number parts, tokens containing only numeric parts
are ultimately discarded.

<anal yzer>

<t okeni zer class="sol r. Wit espaceTokeni zer Factory"/ >

<filter class="solr.WrdDelimterFilterFactory" generateNunberParts="0"
spl i t OnCaseChange="0"/ >
</ anal yzer >

Apache Solr Reference Guide 4.4 97

In: "hot-spot RoboBlaster/9000 100-42"

Tokenizer to Filter: "hot-spot”, "RoboBlaster/9000", "100-42"
Out: "hot", "spot", "RoboBlaster", "9000"

Example:

Concatenate word parts and number parts, but not word and number parts that occur in the same token.

<anal yzer >

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelimterFilterFactory" catenateWrds="1"
cat enat eNunbers="1"/>
</ anal yzer >

In: "hot-spot 100+42 XL40"

Tokenizer to Filter: "hot-spot"(1), "100+42"(2), "XL40"(3)

Out: "hot"(1), "spot"(2), "hotspot"(2), "100"(3), "42"(4), "10042"(4), "XL"(5), "40"(6)
Example:

Concatenate all. Word and/or number parts are joined together.

<anal yzer >

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<filter class="solr.WrdDelimterFilterFactory" catenateAl|l="1"/>
</ anal yzer >

In: "XL-4000/ES"

Tokenizer to Filter: "XL-4000/ES"(1)

Out: "XL"(1), "4000"(2), "ES"(3), "XL4000ES"(3)
Example:

Using a protected words list that contains "AstroBlaster" and "XL-5000" (among others).

<anal yzer>

<t okeni zer class="sol r. Wit espaceTokeni zer Factory"/ >

<filter class="solr.WrdDelimterFilterFactory" protected="protwords.txt"/>
</ anal yzer >

In: "FooBar AstroBlaster XL-5000 ==ES-34-"
Tokenizer to Filter: "FooBar", "AstroBlaster", "XL-5000", "==ES-34-"

Out: "FooBar", "FooBar", "AstroBlaster"”, "XL-5000", "ES", "34"

Related Topics

® TokenFilterFactories

CharFilterFactories

Char Filter is a component that pre-processes input characters. Char Filters can be chained like Token Filters and placed in front of a Tokenizer.
Char Filters can add, change, or remove characters without worrying about fault of Token offsets.

Apache Solr Reference Guide 4.4 98

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenFilterFactories

solr.MappingCharFilterFactory

This filter creates or g. apache. | ucene. anal ysi s. Mappi ngChar Fi | t er, which can be used for changing one character to another (for
example, for normalizing é to e.).

This filter requires specifying a mappi ng argument, which is the path and name of a file containing the mappings to perform.

Examp

le:

<anal yzer>

<charFilter class="solr.Mppi ngCharFilterFactory"
mappi ng="mappi ng- 1 SCLat i n1Accent.txt"/>
</ anal yzer >

solr.HTMLStripCharFilterFactory

This filter creates or g. apache. sol r. anal ysi s. HTMLSt ri pChar Fi | t er. This Char Filter strips HTML from the input stream and passes the
result to another Char Filter or a Tokenizer.

1, The behavior of this Char Filter changed in v3.6 of Solr. The old behavior has been retained in
LegacyHTM.Char Fi | t er Fact or y, although it has been deprecated and may be removed in a future release. What follows is
a description of how the filter works in Solr 4; for an overview of the changes made, see Major Changes from Solr 3 to Solr 4.

This filter:

r

Removes HTML/XML tags while preserving other content.

Removes attributes within tags and supports optional attribute quoting.

Removes XML processing instructions, such as: <?foo bar?>

Removes XML comments.

Removes XML elements starting with <!>.

Removes contents of <script> and <style> elements.

Handles XML comments inside these elements (normal comment processing will not always work).
Replaces numeric character entities references like A or ;.

The terminating ;' is optional if the entity reference is followed by whitespace.

Replaces all named character entity references.

 is replaced with a space instead of 0xa0.

The terminating ;' is mandatory to avoid false matches on something like "Alpha&Omega Corp".
Newlines are substituted for block-level elements.

<CDATA> sections are recognized.

Inline tags, such as , <i >, or will be replaced by a space.

Uppercase character entities like quot , gt , | t and anp are recognized and handled as lowercase.

The input need not be an HTML document. The filter removes only constructs that look like HTML. If the input doesn't include
anything that looks like HTML, the filter won't remove any input.

The table below presents examples of HTML stripping.

Input Output

ny l i nk</ a> my link

hel | o<! - -comment - - > hello

hel | o<script><!-- f('<!--internal--></script>); --></script> hello

if a<b then print a; if a<b then print a;
hell o <td hei ght=22 nowap align="left"> hello

a<b A Al pha&Orega a<b A Alpha&Omega
solr.LegacyHTMLStripCharFilterFactory

Apache Solr Reference Guide 4.4 99

This filter strips HTML from the input stream and passes the result to another Char Filter or a Tokenizer. It has been deprecated in favor of
improvements introduced in Solr 3.6 to the HTMLChar Fi | t er . This filter creates
org. apache. sol r. anal ysi s. LegacyHTM.Stri pCharFi l ter.

In Solr versions 3.5 and earlier, this filter had known bugs in the character offsets it provided, triggering (for example) exceptions in highlighting.
With version 3.6, HTMLSt ri pChar Fi | t er was fixed to address this and other issues. If you depend on the behavior of HTMLSt ri pChar Fi | t er

in version 3.5 or earlier, the previous implementation, including bugs, is preserved as LegacyHTM_St ri pChar Fi | t er . For more information on
the changes, see the section Major Changes from Solr 3 to Solr 4.

solr.PatternReplaceCharFilterFactory

This filter uses regular expressions to replace or change character patterns.
Arguments:

pat t er n: the regular expression pattern to apply to the incoming text.

repl aceW t h: the text to use to replace matching patterns.

You can configure this filter in scherma. xm like this:

<anal yzer>
<charFilter class="solr.PatternRepl aceCharFilterFactory"
pattern="([nNJ[oO\.)\s*(\d+)" replaceWth="$1$2"/>
</ anal yzer >

The table below presents examples of regex-based pattern replacement:

Input pattern replaceWith = Output Description

see-ing looking = (\w+) (i ng) 1 see-ing look Removes "ing" from the end of word.

see-ing looking (\w+)ing 1 see-ing look Same as above. 2nd parentheses can be omitted.
No.1 NO. no. [nN] [0O {#}1 #1 NO. #543 Example of literal. Do not forget to set a non-period
543 \o\s*(\d+) bl ockDel i m t er when using periods in patterns.

abc=1234=5678 (\Ww+)=(\d+)=(\d+) @ 3,{=},1,{=},2 @ 5678=abc=1234 | Change the order of the groups.

Related Topics

® CharFilterFactories

Language Analysis

This section contains information about tokenizers and filters related to character set conversion or for use with specific languages. For the
European languages, tokenization is fairly straightforward. Tokens are delimited by white space and/or a relatively small set of punctuation
characters. In other languages the tokenization rules are often not so simple. Some European languages may require special tokenization rules
as well, such as rules for decompounding German words.

For information about language detection at index time, see Detecting Languages During Indexing.

Topics discussed in this section:

KeyWordMarkerFilterFactory
StemmerOverrideFilterFactory
Dictionary Compound Word Token Filter
Unicode Collation

ISO Latin Accent Filter
Language-Specific Factories

Related Topics

KeyWordMarkerFilterFactory

Apache Solr Reference Guide 4.4 100

http://www.regular-expressions.info/reference.html
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#CharFilterFactories

Protects words from being modified by stemmers. A customized protected word list may be specified with the "protected" attribute in the schema.
Any words in the protected word list will not be modified by any stemmer in Solr.

A sample Solr pr ot wor ds. t xt with comments can be found in the / sol r/ conf/ directory:

<fieldtype nane="nyfiel dtype" class="solr. TextField">
<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt" />
<filter class="solr.PorterStenFilterFactory" />
</ anal yzer >
</fieldtype>

StemmerOverrideFilterFactory

Overrides stemming algorithms by applying a custom mapping, then protecting these terms from being modified by stemmers.

A customized mapping of words to stems, in a tab-separated file, can be specified to the "dictionary" attribute in the schema. Words in this
mapping will be stemmed to the stems from the file, and will not be further changed by any stemmer.

A sample stemdict.txt with comments can be found in the Source Repository.

<fi el dtype nane="nyfiel dtype" class="solr. TextFi el d">
<anal yzer >
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.StemerOverrideFilterFactory" dictionary="stendict.txt" />
<filter class="solr.PorterStenFilterFactory" />
</ anal yzer >
</fieldtype>

Dictionary Compound Word Token Filter

This filter splits, or decompounds, compound words into individual words using a dictionary of the component words. Each input token is passed
through unchanged. If it can also be decompounded into subwords, each subword is also added to the stream at the same logical position.

Compound words are most commonly found in Germanic languages.
Factory class: solr.DictionaryCompoundWordTokenFilterFactory
Arguments:

di cti onary: (required) The path of a file that contains a list of simple words, one per line. Blank lines and lines that begin with "#" are ignored.
This path may be an absolute path, or path relative to the Solr config directory.

m nWor dSi ze: (integer, default 5) Any token shorter than this is not decompounded.

m nSubwor dSi ze: (integer, default 2) Subwords shorter than this are not emitted as tokens.

maxSubwor dSi ze: (integer, default 15) Subwords longer than this are not emitted as tokens.

onl yLongest Mat ch: (true/false) If true (the default), only the longest matching subwords will generate new tokens.
Example:

Assume that ger manwor ds. t xt contains at least the following words:

dumrkopf donaudanpf schi f f

Apache Solr Reference Guide 4.4 101

http://svn.apache.org/repos/asf/lucene/dev/branches/branch_4x/solr/core/src/test-files/solr/collection1/conf/stemdict.txt

<anal yzer>

<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>

<filter class="solr.DictionaryConpoundWr dTokenFilterFactory"
di cti onary="ger manwords. txt"/>
</ anal yzer >

In: "Donaudampfschiff dummkopf"
Tokenizer to Filter: "Donaudampfschiff'(1), "dummkopf"(2),

Out: "Donaudampfschiff'(1), "Donau"(1), "dampf"(1), "schiff'(1), "dummkopf"(2), "dumm"(2), "kopf"(2)

Unicode Collation

Unicode Collation is a language-sensitive method of sorting text that also be used for advanced search purposes.

Unicode Collation in Solr is fast, because all the work is done at index time. It uses a Keywor dTokeni zer Fact or y to create a sort field,
followed by Col | at i onKeyFi |l t er Fact ory. The Col | ati onKeyFi | t er Fact ory adds "sort keys" to the sor t field at index time, so that at
query time you can sort on the sort field and your results comes back in collated order.

You can also name Col | at edFi el d and | CUCol | at edFi el d to hold the results of your collation.

Sorting Text for a Specific Language

In this example, text is sorted according to the default German rules provided by Java. The rules for sorting German in Java are defined in a
package called a Java Locale.

Locales are typically defined as a combination of language and country, but you can specify just the language if you want. For example, if you
specify "de" as the language, you will get sorting that works well for German language. If you specify "de" as the language and "CH" as the
country, you will get German sorting specifically tailored for Switzerland.

You can see a list of supported Locales here.

<l-- define a field type for German collation -->
<fi el dType nane="col | at edGERVAN"' cl ass="sol r. Text Fi el d">
<anal yzer>
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/ >
<filter class="solr.CollationKeyFilterFactory"
| anguage="de"
strength="pri mary"
/>
</ anal yzer >
</fieldType>

<l-- define a field to store the German coll ated nanufacturer nanes -->
<field name="nmanuCGERMAN' type="col | at edGERMAN' i ndexed="true" stored="fal se" />

<l-- copy the text to this field. we could create French, English, Spanish versions
t oo,

and sort differently for different users! --
<copyFi el d source="manu" dest ="nanuGERVAN"/ >

In the example above, we defined the strength as "primary". The strength of the collation determines how strict the sort order will be, but it also
depends upon the language. For example, in English, "primary" strength ignores differences in case and accents.

For more information, see the Collator javadocs.

Sorting Text for Multiple Languages

There are two approaches to supporting multiple languages: if there is a small list of languages you wish to support, consider defining collated

Apache Solr Reference Guide 4.4 102

http://java.sun.com/j2se/1.5.0/docs/guide/intl/locale.doc.html#util-text
http://java.sun.com/j2se/1.5.0/docs/api/java/text/Collator.html

fields for each language and using copyFi el d. However, adding a large number of sort fields can increase disk and indexing costs. An
alternative approach is to use the Unicode def aul t collator.

The Unicode def aul t or ROOT locale has rules that are designed to work well for most languages. To use the def aul t locale, simply define the

language as the empty string. This Unicode default sort is still significantly more advanced than the standard Solr sort.

<fiel dType nane="col | at edROOT" cl ass="sol r. Text Fi el d">
<anal yzer >
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/ >
<filter class="solr.CollationKeyFilterFactory"
| anguage=""
strengt h="pri mary"
/>
</ anal yzer >
</fieldType>

Sorting Text with Custom Rules

You can define your own set of sorting rules. Its easiest to take existing rules that are close to what you want and customize them.

In the example below, we create a custom rule set for German called DIN 5007-2. This rule set treats umlauts in German differently: it treats 6 as

equivalent to oe. For more information, see the RuleBasedCollator javadocs.

This example shows how to create a custom rule set and dump it to a file:

/'l get the default rules for Germany

/1 these are called DIN 5007-1 sorting

Rul eBasedCol | at or baseCol | ator = (Rul eBasedCol | ator) Col |l ator. getlnstance(new
Local e("de", "DE"));

/1 define some tailorings, to make it DIN 5007-2 sorting.
/'l For exanple, this makes 0 equivalent to oe

String DIN5007_2 tailorings =

"& ae , a\u0308 & AE , A\ u0308"+

"& oe , o\u0308 & CE, O u0308"+

"& ue , u\u0308 & UE , u\u0308";

/'l concatenate the default rules to the tailorings, and dunp it to a String

Rul eBasedCol | ator tail oredColl ator = new Rul eBasedCol | at or (baseCol | ator. getRul es() +
DI N5007_2_tail orings);

String tailoredRul es = tail oredCol |l ator. getRul es();

/!l wite these to a file, be sure to use UTF-8 encoding!!!
IOUtils.wite(tailoredRules, new Fil eQutputStream("/solr_home/ conf/custonRul es. dat"),
"UTF-8");

This rule set can now be used for custom collation in Solr:

Apache Solr Reference Guide 4.4

103

http://java.sun.com/j2se/1.5.0/docs/api/java/text/RuleBasedCollator.html

<fi el dType nane="col | at edCUSTOM' cl ass="sol r. TextFi el d">
<anal yzer>
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/ >
<filter class="solr.CollationKeyFilterFactory"
cust on¥"cust onRul es. dat "
strength="pri mary"
/>
</ anal yzer >
</fieldType>

Searching

Collation can also be used to search on a tokenized field.

In this example, we use the same custom German rules defined above on a tokenized field. As with stemmers, although the output tokens are
nonsense they are the same values and will match for search purposes.

<fi el dType nane="col | at edCUSTOM' cl ass="sol r. TextFi el d">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.CollationKeyFilterFactory"
cust on¥"cust onRul es. dat "
strengt h="pri mary"
/>
</ anal yzer >
</fieldType>

Collation Key Filter

The filter sol r. Col | at i onKeyFi | t er is used at index time, indexing special "sort keys" into the sort field. It lets you choose the collator related
to the target country and language. You can also choose the strength of the collation which determines the minimum level of difference
considered significant during comparison. For example:

<filter class="solr.CollationKeyFilterFactory" |anguage="es" country="ES"
strength="pri mary" />

The example above shows the configuration of the Col | ati onKeyFi | t er Fact or y, where we want to handle the Spanish language with
primary strength.

You can add the filter into field type definitions, as in the example below:

<fiel dType nane="pol i shLower case" positionl ncrenment Gap="100>
<anal yzer >
<t okeni zer cl ass="sol r. Keywor dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.TrinFilterFactory"/>
<filter class="solr.Coll ationKeyFilterFactory" |anguage="pl" country="PL"
strength="primry"/>
</ anal yzer >
</fieldType>

Handling the Polish language has been added to the definition of the currently existing | ower case type. The type will be used for the fields,
where the data contains Polish signs. For example, you could also change the type for the ci t y_sort field to pol i shLower case:

Apache Solr Reference Guide 4.4 104

<field nane="city_sort" type="polishLowercase" indexed="true" stored="false" />

You can check the test query result:

g=*:*&f |l =ci ty&sort=city_sort+asc

And the result may look like this:

<result name="response" nunfFound="6" start="0">
<doc>
<str nanme="city">Bi ayst ok</str>
</ doc>
<doc>
<str nanme="city">Koszalin</str>
</ doc>
<doc>
<str name="city">ow cz</str>
</ doc>
<doc>
<str name="city">Szczecin</str>
</ doc>
<doc>
<str name="city">w dni k</str>
</ doc>
<doc>
<str nanme="city">Warszawa</str>
</ doc>
</result>

ICU Collation

For better performance, less memory usage, and support for more locales, you can add the anal ysi s- ext r as contrib and use
| CUCol | at i onKeyFi | t er Fact ory instead. See the javadocs for more information.

The principles of ICU Collation are the same as those of Unicode Collation; you just specify an RFC3066 language identifier with the locale
parameter instead of specifying | anguage+count ry+vari ant .

For example, to get German phonebook sort order:

<fi el dType nane="col | atedl CU' cl ass="sol r. TextFi el d">
<anal yzer >
<t okeni zer cl ass="sol r. Keywor dTokeni zer Fact ory"/ >
<filter class="solr.|CUCol | ati onKeyFilterFactory"
| ocal e="de@ol | ati on=phonebook"
strengt h="pri mary"
/>
</ anal yzer >
</fieldType>

To use the | CUCol | at i onKeyFi | t er Fact ory filter, see sol r/ contri b/ anal ysi s- ext ras/ READVME. t xt for instructions on which jars
you need to add to your SOLR_HOVE/ | i b.

Apache Solr Reference Guide 4.4 105

http://lucene.apache.org/solr/4_0_0/solr-analysis-extras/org/apache/solr/schema/ICUCollationField.html

ISO Latin Accent Filter

This filter replaces any accented characters in a token with the unaccented equivalent. This can increase recall by causing more matches. On the
other hand, it can reduce precision because language-specific character differences may be lost.

Characters in the ISO Latin 1 (ISO-8859-1) character set are recognized and letter case will be preserved, so that "A" becomes "A" and "&"
becomes "a".

', This filter only looks for accented characters, it does not filter out other non-ASCII characters.

=

Factory class: solr.ISOLatin1AccentFilterFactory
Arguments: None

Example:

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.|SCLati nlAccentFilterFactory"/>
</ anal yzer >

In: "Bjérn Angstrém"

non

Tokenizer to Filter: "Bjérn", "Angstrém”

Out: "Bjorn", "Angstrom"

Language-Specific Factories
These factories are each designed to work with specific languages. The languages covered here are:

Arabic

Brazilian Portuguese
Bulgarian

Chinese

Simplified Chinese
CJK

Czech

Dutch
Finnish
French
Galician
German
Greek
Hindi

Indonesian

Italian

Kuromoji (Japanese)
Lao, Myanmar, Khmer
Latvian

Norwegian

Persian

Polish
Portuguese
Russian
Spanish
Swedish
Thai
Turkish

Arabic

Solr provides support for the Light-10 (PDF) stemming algorithm, and Lucene includes an example stopword list.

Apache Solr Reference Guide 4.4 106

http://www.mtholyoke.edu/~lballest/Pubs/arab_stem05.pdf

This algorithm defines both character normalization and stemming, so these are split into two filters to provide more flexibility.
Factory classes: solr.ArabicStemFilterFactory, solr.ArabicNormalizationFilterFactory
Arguments: None

Example:

<anal yzer >
<filter class="solr.ArabicNornalizationFilterFactory"/>
<filter class="solr.ArabicStenFilterFactory"/>

</ anal yzer >

Brazilian Portuguese

This is a Java filter written specifically for stemming the Brazilian dialect of the Portuguese language. It uses the Lucene class

org. apache. | ucene. anal ysi s. br. Brazi | i anSt ermer . Although that stemmer can be configured to use a list of protected words (which
should not be stemmed), this factory does not accept any arguments to specify such a list.

Factory class: solr.BrazilianStemFilterFactory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.BrazilianStenFilterFactory"/>
</ anal yzer >

In: "praia praias”

Tokenizer to Filter: "praia", "praias

Out: "pra", "pra"

Bulgarian

Solr includes a light stemmer for Bulgarian, following this algorithm (PDF), and Lucene includes an example stopword list.
Factory class: solr.BulgarianStemFilterFactory

Arguments: None

Example:

<anal yzer>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.BulgarianStenFilterFactory"/>
</ anal yzer>

Chinese

Chinese Tokenizer
The Chinese Tokenizer is deprecated as of Solr 3.4. Use the sol r. St andar dTokeni zer Fact or y instead.
Factory class: solr.ChineseTokenizerFactory

Arguments: None

Apache Solr Reference Guide 4.4 107

http://members.unine.ch/jacques.savoy/Papers/BUIR.pdf

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. Chi neseTokeni zer Factory"/>
</ anal yzer >

Chinese Filter Factory

The Chinese Filter Factory is deprecated as of Solr 3.4. Use the sol r. St opFi | t er Fact ory instead.
Factory class: solr.ChineseFilterFactory

Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.ChineseFilterFactory"/>

</ anal yzer >

Simplified Chinese

For Simplified Chinese, Solr provides support for Chinese sentence and word segmentation with the

sol r. Smar t Chi neseSent enceTokenFi | t er Fact ory and sol r. Smar t Chi neseWor dTokenFi | t er Fact ory in the anal ysi s- extras
contrib module. This component includes a large dictionary and segments Chinese text into words with the Hidden Markov Model. To use this
filter, see sol r/ cont ri b/ anal ysi s- ext ras/ READVE. t xt for instructions on which jars you need to add to your sol r _horne/ | i b.
Factory class: solr.SmartChineseWordTokenFilterFactory

Arguments: None

Examples:

To use the default setup with fallback to English Porter stemmer for English words, use:

<anal yzer cl ass="org. apache. | ucene. anal ysi s. cn. snart. Snart Chi neseAnal yzer"/>

Or to configure your own analysis setup, use the Smar t Chi neseSent enceTokeni zer Fact or y along with your custom filter setup. The
sentence tokenizer tokenizes on sentence boundaries and the Snar t Chi neseWr dTokenFi | t er breaks this further up into words.

<anal yzer >

<t okeni zer cl ass="sol r. Smart Chi neseSent enceTokeni zer Fact ory"/ >
<filter class="solr.Smart Chi neseWrdTokenFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.PositionFilterFactory" />

</ anal yzer >

CJK

This tokenizer breaks Chinese, Japanese and Korean language text into tokens. These are not whitespace delimited languages. The tokens
generated by this tokenizer are "doubles", overlapping pairs of CJK characters found in the field text.

Factory class: solr.CIJKTokenizerFactory
Arguments: None

Example:

Apache Solr Reference Guide 4.4 108

<anal yzer type="index">
<t okeni zer cl ass="sol r. CJKTokeni zer Factory"/>
</ anal yzer >

Czech

Solr includes a light stemmer for Czech, following this algorithm, and Lucene includes an example stopword list.
Factory class: solr.CzechStemFilterFactory

Arguments: None

Example:

<anal yzer>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.CzechStenFilterFactory"/>
<anal yzer >

In: "prezidensti, prezidenta, prezidentského"

Tokenizer to Filter: "prezidensti”, "prezidenta”, "prezidentského"

Out: "preziden”, "preziden", "preziden"

Dutch
This is a Java filter written specifically for stemming the Dutch language. It uses the Lucene class

org. apache. | ucene. anal ysi s. nl . Dut chSt enmer . Although that stemmer can be configured to use a list of protected words (which should
not be stemmed), this factory does not accept any arguments to specify such a list.

Another option for stemming Dutch words is to use the Snowball Porter Stemmer with an argument of | anguage="Dut ch".
Factory class: solr.DutchStemFilterFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.DutchStenFilterFactory"/>

</ anal yzer >

In: "kanaal kanalen"

Tokenizer to Filter: "kanaal", "kanalen"

Out: "kanal", "kanal"

Finnish

Solr includes support for stemming Finnish, and Lucene includes an example stopword list.
Factory class: solr.FinnishLightStemFilterFactory

Arguments: None

Example:

Apache Solr Reference Guide 4.4 109

https://dl.acm.org/citation.cfm?id=1598600

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/>
<filter class="solr.FinnishLightStenFilterFactory"/>
</ anal yzer >

In: "kala kalat"
Tokenizer to Filter: "kala", "kalat"

Out: "kala", "kala"

French

Elision Filter

Removes article elisions from a token stream. This filter primarily applies to the French language and makes use of the ElisionFilter class in
org. apache. | ucene. anal ysis.fr.

Factory class: solr.ElisionFilterFactory

Arguments:

arti cl es: (required) The pathname of a file that contains a list of articles, one per line, to be stripped. Articles are words such as "le", which are
commonly abbreviated, such as I'avion (the plane). This file should include the abbreviated form, which precedes the apostrophe. In this case,
simply "I".

Example:

<anal yzer>
<t okeni zer class="sol r. StandardTokeni zer Factory"/>
<filter class="solr.ElisionFilterFactory"/>

</ anal yzer >

In: "L'histoire d'art"
Tokenizer to Filter: "L'histoire", "d'art"

Out: "histoire", "art"

French Light Stem Filter

Solr includes three stemmers for French: one in the sol r. Snowbal | Port erFil t er Fact ory, a lighter stemmer called

sol r. FrenchLi ght St enfi | t er Fact or y, and an even less aggressive stemmer called sol r. FrenchM ni mal St enfi | t er Fact ory.
Lucene includes an example stopword list.

Factory classes: solr.FrenchLightStemFilterFactory, solr.FrenchMinimalStemFilterFactory

Arguments: None

Examples:

<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"/>
<filter class="solr.FrenchLightStenFilterFactory"/>
</ anal yzer >

Apache Solr Reference Guide 4.4 110

<anal yzer >
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ElisionFilterFactory"/>
<filter class="solr.FrenchM ni mal StenFilterFactory"/>
</ anal yzer>

In: "le chat, les chats"

Tokenizer to Filter: "le", “chat", "les", "chats"

Out: "le", "chat", "le", "chat"

Galician

Solr includes a stemmer for Galician following this algorithm, and Lucene includes an example stopword list.
Factory class: solr.GalicianStemFilterFactory

Arguments: None

Example:

<anal yzer >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.GalicianStenFilterFactory"/>
</ anal yzer >

In: “felizmente Luzes"
Tokenizer to Filter: "felizmente", "luzes"

Qut: "feliz", "luz"

German

Solr includes four stemmers for German: one in the sol r. Snowbal | Porter Fi | ter Fact ory | anguage="Ger man", a stemmer called
sol r. GermanSt enfi | t er Fact ory, a lighter stemmer called sol r. Ger manLi ght St enFi | t er Fact ory, and an even less aggressive
stemmer called sol r. Ger manM ni nal St enFi | t er Fact ory. Lucene includes an example stopword list.

Factory classes: solr.GermanStemFilterFactory, solr.LightGermanStemFilterFactory, solr.MinimalGermanStemFilterFactory

Arguments: None

Examples:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/>
<filter class="solr.GermanStentilterFactory"/>

</ anal yzer >

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/ >
<filter class="solr.GermanLightStenfilterFactory"/>
</ anal yzer >

Apache Solr Reference Guide 4.4 111

http://bvg.udc.es/recursos_lingua/stemming.jsp

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andardTokeni zer Factory "/>
<filter class="solr.GermanM ni nal StenfilterFactory"/>
</ anal yzer >

In: "hund hunden"
Tokenizer to Filter: "hund", "hunden"

Out: "hund", "hund"

Greek
This filter converts uppercase letters in the Greek character set to the equivalent lowercase character.
Factory class: solr.GreekLowerCaseFilterFactory

Arguments:

char set : (optional, default "UnicodeGreek") Specifies the name of the character set to use. Must be "UnicodeGreek", "ISO" or "CP1253".

1. Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you need to index text in these encodings,
please use Java's character set conversion facilities (InputStreamReader, and so on.) during I/O, so that Lucene can analyze
this text as Unicode instead.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.G eekLower CaseFilterFactory"/>
</ anal yzer >

Hindi

Solr includes support for stemming Hindi following this algorithm (PDF), support for common spelling differences through the

sol r. Hi ndi Normal i zati onFi | t er Fact ory, support for encoding differences through the sol r. I ndi cNor mal i zati onFi | t er Fact ory
following this algorithm, and Lucene includes an example stopword list.

Factory classes: solr.IndicNormalizationFilterFactory, solr.HindiNormalizationFilterFactory, solr.HindiStemFilterFactory

Arguments: None

Example:

<filter class="solr.IndicNormalizationFilterFactory"/>
<filter class="solr.H ndi NormalizationFilterFactory"/>
<filter class="solr.H ndi StenFilterFactory"/>

Indonesian

Solr includes support for stemming Indonesian (Bahasa Indonesia) following this algorithm (PDF), and Lucene includes an example stopword list.
Factory class: solr.IndonesianStemFilterFactory

Arguments: None

Example:

Apache Solr Reference Guide 4.4 112

http://computing.open.ac.uk/Sites/EACLSouthAsia/Papers/p6-Ramanathan.pdf
http://ldc.upenn.edu/myl/IndianScriptsUnicode.html
http://www.illc.uva.nl/Publications/ResearchReports/MoL-2003-02.text.pdf

<anal yzer >

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.I|ndonesianStenFilterFactory" stenDerivational ="true" />
</ anal yzer >

In: "sebagai sebagainya"
Tokenizer to Filter: "sebagai", "sebagainya"

Out: "bagai”, "bagai"
Italian

Solr includes two stemmers for Italian: one in the sol r. Snowbal | PorterFil ter Factory | anguage="Italian", and a lighter stemmer
called sol r. 1talianLi ght StenfilterFactory. Lucene includes an example stopword list.

Factory class: solr.ltalianStemFilterFactory
Arguments: None

Example:

<anal yzer >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.ItalianLightStenFilterFactory"/>
</ anal yzer >

In: "propaga propagare propagamento”

Tokenizer to Filter: "propaga", "propagare”, "propagamento”

Out: "propag", "propag", "propag"

Kuromoji (Japanese)

Solr includes support for stemming Kuromoji (Japanese), and Lucene includes an example stopword list. Kuromoji has a search mode (default)
that does segmentation useful for search. A heuristic is used to segment compounds into its parts and the compound itself is kept as a synonym.

With Solr 4, the Japanesel t er ati onMar kChar Fi | t er Fact ory now is included to normalize Japanese iteration marks.

You can also make discarding punctuation configurable in the JapaneseTokeni zer Fact ory, by setting di scar dPunct uati on to f al se (to
show punctuation) or t r ue (to discard punctuation), as in the following example:

Factory class: sol r. Kuronoj i Stenfi |l ter Factory
Arguments:

node: Use search-mode to get a noun-decompounding effect useful for search. Search mode improves segmentation for search at the expense
of part-of-speech accuracy. Valid values for mode are:

® nor nal : default segmentation
® sear ch: segmentation useful for search (extra compound splitting)
® ext ended: search mode with unigramming of unknown words (experimental)

For some applications it might be good to use search mode for indexing and normal mode for queries to reduce recall and prevent parts of
compounds from being matched and highlighted.

Kuromoji also has a convenient user dictionary feature that allows overriding the statistical model with your own entries for segmentation,
part-of-speech tags and readings without a need to specify weights. Note that user dictionaries have not been subject to extensive testing. User
dictionary attributes are:

user Di cti onary: user dictionary filename
user Di cti onar yEncodi ng: user dictionary encoding (default is UTF-8)

Apache Solr Reference Guide 4.4 113

See | ang/ userdi ct _j a. t xt for a sample user dictionary file.
Punctuation characters are discarded by default. Use di scar dPunct uati on="f al se" to keep them.

Example:

<fi el dType nane="text _ja" positionlncrenent Gap="100"
aut oGener at ePhr aseQueri es="fal se" >
<anal yzer >
<t okeni zer cl ass="sol r.JapaneseTokeni zer Fact ory" node="search"
userDictionary="lang/userdict _ja.txt"/>
<filter class="sol r.JapaneseBaseForntilterFactory"/>
<filter class="sol r.JapanesePart Of SpeechSt opFi |t er Fact ory"
tags="1ang/ stoptags_ja.txt" enabl ePositionl ncrenents="true"/>
<filter class="solr. CIKWdthFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="I| ang/ st opwords_j a. txt" enabl ePosi ti onl ncrenments="true" />
<filter class="sol r.JapaneseKat akanaStentilterFactory" m ni nunLengt h="4"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer>
</fieldType>

Lao, Myanmar, Khmer

Lucene provides support for segmenting these languages into syllables with the sol r. | CUTokeni zer Fact ory in the anal ysi s- extras

contrib module. To use this tokenizer, see sol r/ contri b/ anal ysi s- ext ras/ README. t xt f or instructions on which jars you need to add
to your sol r _hone/ | i b.

Latvian

Solr includes support for stemming Latvian, and Lucene includes an example stopword list.
Factory class: solr.LatvianStemFilterFactory
Arguments: None

Example:

<fi el dType nane="text _|vsten' class="solr. TextFi el d" positionlncrementGp="100">
<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.LatvianStenFilterFactory"/>
</ anal yzer >
</fieldType>

In: "tirgiem tirgus”

Tokenizer to Filter: "tirgiem", "tirgus”
Out: "tirg", "tirg"

Norwegian

Solr includes two classes for stemming Norwegian, Nor wegi anLi ght St enFi | t er Fact ory and Nor wegi anM ni mal St enFi | t er Fact ory.
Lucene includes an example stopword list.

Norwegian Light Stemmer

The Nor wegi anLi ght St enFi | t er Fact ory requires a "two-pass"” sort for the -dom and -het endings. This means that in the first pass the word

Apache Solr Reference Guide 4.4 114

"kristendom" is stemmed to "kristen", and then all the general rules apply so it will be further stemmed to "krist". The effect of this is that "kristen,"
"kristendom," "kristendommen," and "kristendommens" will all be stemmed to "krist."

The second pass is to pick up -dom and -het endings. Consider this example:

One pass Two passes

Before After Before After
forlegen forleg forlegen forleg
forlegenhet forlegen | forlegenhet forleg

forlegenheten forlegen forlegenheten forleg
forlegenhetens ' forlegen forlegenhetens = forleg
firkantet firkant firkantet firkant
firkantethet firkantet = firkantethet firkant

firkantetheten firkantet = firkantetheten firkant

Factory class: sol r. Nor wegi anLi ght St enFi | t er Factory
Arguments: None

Example:

<fiel dType nane="text _no" class="solr. TextFi el d' positionlncrenentGp="100">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="1 ang/ st opwords_no. txt" format="snowbal | " enabl ePositi onl ncrements="true"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Norwegi an"/>
<filter class="solr.Norwegi anLi ght StenFilterFactory"/>
</ anal yzer >
</fieldType>

In: "Forelskelsen"
Tokenizer to Filter: "forelskelsen”

Out: "forelske"

Norwegian Minimal Stemmer

The Nor wegi anM ni mal St enFi | t er Fact or y stems plural forms of Norwegian nouns only.
Factory class: sol r. Nor wegi anM ni mal St enfi | t er Fact ory
Arguments: None

Example:

Apache Solr Reference Guide 4.4 115

<fiel dType nane="text_no" class="solr. TextFi el d" positionlncrementGap="100">
<anal yzer>
<t okeni zer cl ass="sol r. St andardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="1 ang/ st opwords_no. txt" format="snowbal | " enabl ePosi ti onl ncrements="true"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Norwegi an"/>
<filter class="solr.Norwegi anM ni mal Stenfi | terFactory"/>
</ anal yzer>
</fieldType>

In: "Bilens"
Tokenizer to Filter: "bilens"

Out: "bil"
Persian

Persian Filter Factories

Solr includes support for normalizing Persian, and Lucene includes an example stopword list.
Factory class: solr.PersianNormalizationFilterFactory

Arguments: None

Example:

<anal yzer >
<filter class="solr.ArabicNormalizationFilterFactory"/>

<filter class="solr.PersianNornalizationFilterFactory">
</ anal yzer >

Polish

Solr provides support for Polish stemming with the sol r. St enpel Pol i shSt enFi | t er Fact ory inthe cont ri b/ anal ysi s- ext ras module.
This component includes an algorithmic stemmer with tables for Polish. To use this filter, see

sol r/contrib/anal ysi s- extras/ READVE. t xt for instructions on which jars you need to add to your sol r _homne/ | i b.

Factory class: sol r. St enpel Pol i shStenFi | t er Factory

Arguments: None

Example:

<anal yzer >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.solr.Stenpel PolishStentilterFactory"/>

</ anal yzer >

In: "studenta studenci”
Tokenizer to Filter: "studenta”, "studenci"
Out: "student", "student"

More information about the Stempel stemmer is available in the Lucene javadocs,

Apache Solr Reference Guide 4.4 116

https://lucene.apache.org/core/4_0_O/analyzers-stempel/index.html.

Portuguese

Solr includes four stemmers for Portuguese: one in the sol r. Snowbal | Port er Fi | t er Fact or y, an alternative stemmer called

sol r. PortugueseSt enfi | t er Fact ory, a lighter stemmer called sol r. Por t ugueseLi ght St enfi | t er Fact ory, and an even less
aggressive stemmer called sol r . Por t ugueseM ni nal St enFi | t er Fact ory. Lucene includes an example stopword list.

Factory class: solr.PortugueseStemFilterFactory, solr.PortugueseLightStemFilterFactory, solr.PortugueseMinimalStemFilterFactory

Arguments: None

Example:

<anal yzer>
<t okeni zer class="solr. StandardTokeni zer Factory"/ >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.PortugueseStenfilterFactory"/>
</ anal yzer >

<anal yzer>
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.PortugueselightStenFilterFactory"/>
</ anal yzer >

<anal yzer>
<t okeni zer class="sol r. StandardTokeni zer Factory"/ >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="sol r.PortugueseM ni nal StenFilterFactory"/>
</ anal yzer >

In: "praia praias”

Tokenizer to Filter: "praia", "praias"

Out: "pra", "pra"

Russian

Russian Letter Tokenizer

This tokenizer breaks Russian language text into tokens. It is similar to LetterTokenizer, but additionally looks up letters in the appropriate
Russian character set.

Factory class: solr.RussianLetterTokenizerFactory
Arguments:

char set : (optional, default "UnicodeRussian") The name of the character set to use. Must be "UnicodeRussian”, "KOI8" or "CP1251".

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you need to index text in these encodings,
please use Java's character set conversion facilities (InputStreamReader, and so on.) during I/O, so that Lucene can analyze
this text as Unicode instead.

=

Example:

Apache Solr Reference Guide 4.4 117

https://lucene.apache.org/core/4_0_0/analyzers-stempel/index.html

<anal yzer type="index">
<t okeni zer cl ass="sol r. Russi anLetter Tokeni zer Fact ory"/ >

</ anal yzer >

Russian Lower Case Filter

This filter converts uppercase letters in the Russian character set to the equivalent lowercase character.
Factory class: solr.RussianLowerCaseFilterFactory

Arguments:

char set : (optional, default "UnicodeRussian") Specifies the name of the character set to use. Must be "UnicodeRussian", "KOI8" or "CP1251".

1, Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.1. If you need to index text in these encodings,
please use Java's character set conversion facilities (InputStreamReader, and so on.) during I/O, so that Lucene can analyze

this text as Unicode instead.

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="sol r.Russi anLower CaseFilterFactory"/>

</ anal yzer >

Russian Stem Filter

Solr includes two stemmers for Russian: one in the sol r. Snowbal | PorterFil ter Factory | anguage="Russi an", and a lighter stemmer
called sol r. Russi anLi ght St enfi | t er Fact or y. Lucene includes an example stopword list.

Factory class: solr.RussianLightStemFilterFactory

Arguments:

charset: (optional, default "UnicodeRussian") Specifies the name of the character set to use. Must be "UnicodeRussian", "KOI8" or "CP1251".

Use of custom charsets was deprecated in Solr 1.4 and is unsupported in Solr 3.4. If you need to index text in these encodings,
please use Java's character set conversion facilities (InputStreamReader, and so on.) during I/O, so that Lucene can analyze

this text as Unicode instead.

Example:

<anal yzer type="i ndex">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>

<filter class="sol r.Russi anLower CaseFilterFactory"/>
<filter class="sol r.RussianLi ghtStenFilterFactory"/>

</ anal yzer >

Spanish

Solr includes two stemmers for Spanish: one in the sol r. Snowbal | PorterFil ter Factory | anguage="Spani sh", and a lighter stemmer
called sol r. Spani shLi ght St enfi | t er Fact or y. Lucene includes an example stopword list.

Factory class: solr.SpanishStemFilterFactory

Apache Solr Reference Guide 4.4 118

Arguments: None

Example:

<anal yzer>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="sol r. Spani shLi ght StenFilterFactory"/>
</ anal yzer >

In: "torear toreara torearlo"
Tokenizer to Filter: "torear", "toreara", "torearlo"

Out: "tor", "tor", "tor’

Swedish

Swedish Stem Filter

Solr includes two stemmers for Swedish: one in the sol r. Snowbal | Porter Fi | t er Fact ory | anguage="Swedi sh", and a lighter stemmer
called sol r. Swedi shLi ght St eni | t er Fact or y. Lucene includes an example stopword list.

Factory class: solr.SwedishStemFilterFactory
Arguments: None

Example:

<anal yzer >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="sol r.SwedishLi ght StenFilterFactory"/>
</ anal yzer >

In: "kloke klokhet klokheten"
Tokenizer to Filter: "kloke", "klokhet", "klokheten"

Out: "klok", "klok", "klok"

Thai

This filter converts sequences of Thai characters into individual Thai words. Unlike European languages, Thai does not use whitespace to delimit
words.

Factory class: solr.ThaiWordFilterFactory
Arguments: None

Example:

<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.Thai WrdFilterFactory"/>

</ anal yzer >

Turkish

Solr includes support for stemming Turkish through the sol r. Snowbal | Port er Fi | t er Fact ory, as well as support for case-insensitive search
through the sol r. Tur ki shLower CaseFi | t er Fact ory, and Lucene includes an example stopword list.

Apache Solr Reference Guide 4.4 119

Factory class: solr.TurkishLowerCaseFilterFactory
Arguments: None

Example:

<filter class="solr. Turki shLower CaseFilterFactory"/>
<filter class="solr.Snowbal | PorterFilterFactory" |anguage="Turkish" />

Related Topics

® LanguageAnalysis

Phonetic Matching

Introduced with Solr v3.6, Beider-Morse Phonetic Matching (BMPM) is a "soundalike" tool that lets you search using a new phonetic matching
system. BMPM helps you search for personal names (or just surnames) in a Solr/Lucene index, and is far superior to the existing phonetic
codecs, such as regular soundex, metaphone, caverphone, etc.

In general, phonetic matching lets you search a name list for names that are phonetically equivalent to the desired name. BMPM is similar to a
soundex search in that an exact spelling is not required. Unlike soundex, it does not generate a large quantity of false hits.

From the spelling of the name, BMPM attempts to determine the language. It then applies phonetic rules for that particular language to
transliterate the name into a phonetic alphabet. If it is not possible to determine the language with a fair degree of certainty, it uses generic
phonetic instead. Finally, it applies language-independent rules regarding such things as voiced and unvoiced consonants and vowels to further
insure the reliability of the matches.

For example, assume that the matches found when searching for Stephen in a database are "Stefan", "Steph", "Stephen”, "Steve", "Steven",
"Stove", and "Stuffin". "Stefan", "Stephen”, and "Steven" are probably relevant, and are hames that you want to see. "Stuffin", however, is
probably not relevant. Also rejected were "Steph”, "Steve", and "Stove". Of those, "Stove" is probably not one that we would have wanted. But
"Steph" and "Steve" are possibly ones that you might be interested in.

For Solr, BMPM searching is available for the following languages:

English

French

German

Greek

Hebrew written in Hebrew letters
Hungarian

Italian

Lithuanian and Latvian

Polish

Romanian

Russian written in Cyrillic letters

Russian transliterated into English letters
Spanish

Turkish

The name matching is also applicable to non-Jewish surnames from the countries in which those languages are spoken.

For more information, see here: http://stevemorse.org/phoneticinfo.htm and http://stevemorse.org/phonetics/bmpm.htm..

Running Your Analyzer

Once you've defined a field type in schema. xm and specified the analysis steps that you want applied to it, you should test it out to make sure
that it behaves the way you expect it to. Luckily, there is a very handy page in the Solr admin interface that lets you do just that. You can invoke
the analyzer for any text field, provide sample input, and display the resulting token stream.

For example, assume that the following field type definition has been added to schema. xni :

Apache Solr Reference Guide 4.4 120

http://wiki.apache.org/solr/LanguageAnalysis
http://stevemorse.org/phoneticinfo.htm
http://stevemorse.org/phonetics/bmpm.htm

<fiel dType nane="nytextfield" class="solr. TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="sol r.Hyphenat edWrdsFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
<anal yzer type="query">
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

The objective here (during indexing) is to reconstruct hyphenated words, which may have been split across lines in the text, then to set all words
to lowercase. For queries, you want to skip the de-hyphenation step.

To test this out, point your browser at the Analysis Screen of the Solr Admin Web interface. By default, this will be at the following URL (adjust the
hostname and/or port to match your configuration): http://localhost:8983/solr/#/collection1/analysis. You should see a page like this.

rr,

L\

Apache

Solr

& Dashboard Field Value (Index) Field Value (Query)

(= Logging

Zf Core Admin 4 4

Java Properties Analyse Fieldname / FieldType: | _version_ | @ = Analyse Values

= Thread Dump

(¥ collection1
=

E
o

nalysis

T A
E
&

Empty Analysis screen

We want to test the field type definition for "mytextfield", defined above. The drop-down labeled "Analyse Fieldname/FieldType" allows choosing
the field or field type to use for the analysis.

There are two "Field Value" boxes, one for how text will be analyzed during indexing and a second for how text will be analyzed for query
processing. In the "Field Value (Index)" box enter some sample text "Super-computer" in this example) to be processed by the analyzer. We will

leave the query field value empty for now.

The result we expect is that Hyphenat edWor dsFi | t er will join the hyphenated pair "Super-" and "computer" into the single word
"Supercomputer", and then Lower CaseFi | t er will set it to "supercomputer”. Let's see what happens:

Apache Solr Reference Guide 4.4 121

http://localhost:8983/solr/#/collection1/analysis

(] /
L
-

Apache

Solr

& Dashboard

Thread Dump

Field Value (Index)
Super-
Computer

0
5

Field Value (Query)

7
15

(3 Logging Analyse Fieldname / FieldType; |_MYtextfield NG .
£ Core Admin
Java Properties Super Computer
(5375706572 [436f6d 7075 7465 72)

(%] collection1 <ALPHANUM> <ALPHANUM>

a 1 2
Super Computer
[5375706572] | [436f6d7075 746572]
0 7
5 15
1 2

F Analysis <ALPHANUM> | <ALPHANUM>

= super computer
[7375706572] | [636f6d7075746572]

& 1 2
0 7
5 15

<ALPHANUM:> <ALPHANUM >

Running index-time analyzer, verbose output.

The result is two distinct tokens rather than the one we expected. What went wrong? Looking at the first token that came out of

St andar dTokeni zer, we can see the trailing hyphen has been stripped off of "Super-". Checking the documentation for St andar dTokeni zer,
we see that it treats all punctuation characters as delimiters and discards them. What we really want in this case is a whitespace tokenizer that will
preserve the hyphen character when it breaks the text into tokens.

Let's make this change and try again:

<fiel dType nane="nytextfield" class="solr.TextField">
<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr.Hyphenat edWordsFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
<anal yzer type="query">
<t okeni zer class="solr. StandardTokeni zer Factory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

Re-submitting the form by clicking "Analyse Values" again, we see the result in the screen shot below.

@ Dashboard

(= Logging

& Core Admin
Java Properties

Thread Dump

%] collectionl

Analyse Fieldname / FieldType: | TYtextfield

Super-
[53757065 72 2d]
0

6

1

1
0
15

word

Apache "o‘ Field Value (Index) Field Value (Query)
o Super-
-

Solr

Computer
(43 6f6d 70 75 74 65 72]

- word word
SuperComputer
[5375 7065 72 43 66d 7075 74 65 72]
0
15
1
T Analysis word
1] supercomputer
& [7375 7065 72 63 66d 7075 74 65 72]

Analyse Values

Apache Solr Reference Guide 4.4

122

Using WhitespaceTokenizer, expected results.

That's more like it. Because the whitespace tokenizer preserved the trailing hyphen on the first token, Hyphenat edWor dsFi | t er was able to
reconstruct the hyphenated word, which then passed it on to Lower CaseFi | t er, where capital letters are set to lowercase.

Now let's see what happens when invoking the analyzer for query processing. For query terms, we don't want to do de-hyphenation and we do
want to discard punctuation, so let's try the same input on it. We'll copy the same text to the "Field Value (Query)" box and clear the one for index
analysis. We'll also include the full, unhyphenated word as another term to make sure it is processed to lower case as we expect. Submitting
again yields these results:

1/
»
Apache O-

Solr

& Dashboard

£ Logging Analyse Fieldname / FieldType: |_¥textfield M 0 - Analyse Values

Field Value (Index) Field Value (Query)

Super-Computer Supercomputer

=1 Core Admin
Java Propertles Super Computer Supercomputer
[5375706572] [436f6d 70757465 72] | [53 757065 72636f6d 70757465 72]
Thread Dump o B 15
5 14 28
(7] collection1 <ALPHANUM> | <ALPHANUM> <ALPHANUM>
1 2 3
super computer supercomputer
[7375706572] [636f6d 7075746572 | [73 757065 72 63 6f6d 70 75 7465 72]
1 2 3
o 6 15
5 14 28
<ALPHANUM> | <ALPHANUM> <ALPHANUM>

T Analysis

15

Query-time analyzer, good results.

We can see that for queries the analyzer behaves the way we want it to. Punctuation is stripped out, Hyphenat edWor dsFi | t er doesn't run, and
we wind up with the three tokens we expected.

Refer to the section Running Field Analysis to Test Analyzers, Tokenizers, and TokenFilters for more information about conducting field analysis
through the Admin Web interface.

Apache Solr Reference Guide 4.4 123

Indexing and Basic Data Operations

This section describes how Solr adds data to its index. It covers the following topics:

What Is Indexing?: An overview of Solr's indexing process.

Uploading Data with Solr Cell using Apache Tika: Information about using the Solr Cell framework to upload data for indexing.

Uploading Data with Index Handlers: Information about using Solr's Index Handlers to upload XML and CSV data.

Uploading Structured Data Store Data with the Data Import Handler: Information about uploading and indexing data from a structured data store.
Detecting Languages During Indexing: Information about using language identification during the indexing process.

UIMA Integration: Information about integrating Solr with Apache's Unstructured Information Management Architecture (UIMA). UIMA lets you
define custom pipelines of Analysis Engines that incrementally add metadata to your documents as annotations.

Content Streams: Information about streaming content to Solr Request Handlers.

What Is Indexing?

This section describes the process of indexing: adding content to a Solr index and, if necessary, modifying that content or deleting it. By adding
content to an index, we make it searchable by Solr.

A Solr index can accept data from many different sources, including XML files, comma-separated value (CSV) files, data extracted from tables in
a database, and files in common file formats such as Microsoft Word or PDF.

Here are the three most common ways of loading data into a Solr index:

® Using the Solr Cell framework built on Apache Tika for ingesting binary files or structured files such as Office, Word, PDF, and other
proprietary formats.

¢ Uploading XML files by sending HTTP requests to the Solr server from any environment where such requests can be generated.
® Writing a custom Java application to ingest data through Solr's Java Client API (which is described in more detail in Client APIs. Using
the Java API may be the best choice if you're working with an application, such as a Content Management System (CMS), that offers a
Java API.
Regardless of the method used to ingest data, there is a common basic data structure for data being fed into a Solr index: a document containing
multiple fields, each with a name and containing content, which may be empty. One of the fields is usually designated as a unique 1D field
(analogous to a primary key in a database), although the use of a unique ID field is not strictly required by Solr.
If the field name is defined in the schenma. xm file that is associated with the index, then the analysis steps associated with that field will be
applied to its content when the content is tokenized. Fields that are not explicitly defined in the schema will either be ignored or mapped to a
dynamic field definition (see Documents, Fields, and Schema Design), if one matching the field name exists.

For more information on indexing in Solr, see the Solr Wiki.

The Solr Example Directory

The exanpl e/ directory includes a sample Solr implementation, along with sample documents for uploading into an index. You will find the
example docs in $SOLR_HOVE/ exanpl e/ exanpl edocs.

The cur | Utility for Transferring Files

Many of the instructions and examples in this section make use of the cur | utility for transferring content through a URL. cur | posts and
retrieves data over HTTP, FTP, and many other protocols. Most Linux distributions include a copy of cur | . You'll find curl downloads for Linux,
Windows, and many other operating systems at http://curl.haxx.se/download.html. Documentation for cur | is available here:
http://curl.haxx.se/docs/manpage.html.

Apache Solr Reference Guide 4.4 124

https://wiki.apache.org/solr/FrontPage
http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html

1. Using cur |l or other command line tools for posting data is just fine for examples or tests, but it's not the recommended method
for achieving the best performance for updates in production environments. You will achieve better performance with Solr Cell
or the other methods described in this section.

Instead of cur | , you can use utilities such as GNU wget (http://www.gnu.org/software/wget/) or manage GETs and POSTS
with Perl, although the command line options will differ.

Uploading Data with Solr Cell using Apache Tika

Solr uses code from the Apache Tika project to provide a framework for incorporating many different file-format parsers such as Apache PDFBox
and Apache POI into Solr itself. Working with this framework, Solr's Ext r act i ngRequest Handl er can use Tika to support uploading binary
files, including files in popular formats such as Word and PDF, for data extraction and indexing.

) As of version 4.4, Solr uses Apache Tika v1.4.

When this framework was under development, it was called the Solr Content Extraction Library or CEL; from that abbreviation came this
framework's name: Solr Cell.

If you want to supply your own ContentHandler for Solr to use, you can extend the ExtractingRequestHandler and override the

creat eFact ory() method. This factory is responsible for constructing the SolrContentHandler that interacts with Tika, and allows literals to
override Tika-parsed values. Set the parameter | i t er al sOver ri de, which normally defaults to *true, to *false to append Tika-parsed values to
literal values.

For more information on Solr's Extracting Request Handler, see https://wiki.apache.org/solr/ExtractingRequestHandler.

Topics covered in this section:

Key Concepts

Trying out Tika with the Solr Example Directory

Input Parameters

Order of Operations

Configuring the Solr Ext r act i ngRequest Handl er

Indexing Encrypted Documents with the ExtractingUpdateRequestHandler
Examples

Sending Documents to Solr with a POST

Sending Documents to Solr with Solr Cell and SolrJ

Related Topics

Key Concepts

When using the Solr Cell framework, it is helpful to keep the following in mind:

® Tika will automatically attempt to determine the input document type (Word, PDF, HTML) and extract the content appropriately. If you like,
you can explicitly specify a MIME type for Tika with the st r eam t ype parameter.

® Tika works by producing an XHTML stream that it feeds to a SAX ContentHandler. SAX is a common interface implemented for many
different XML parsers. For more information, see http://www.saxproject.org/quickstart.html.

® Solr then responds to Tika's SAX events and creates the fields to index.

® Tika produces metadata such as Title, Subject, and Author according to specifications such as the DublinCore. See
http://tika.apache.org/1.0/formats.html for the file types supported.

® Tika adds all the extracted text to the cont ent field. This field is defined as "stored" in schema. xni . It is also copied to the t ext field
with a copyFi el d rule.

® You can map Tika's metadata fields to Solr fields. You can also boost these fields.

® You can pass in literals for field values. Literals will override Tika-parsed values, including fields in the Tika metadata object, the Tika
content field, and any "captured content” fields.

® You can apply an XPath expression to the Tika XHTML to restrict the content that is produced.

Apache Solr Reference Guide 4.4 125

http://www.gnu.org/software/wget/
http://lucene.apache.org/tika/
http://incubator.apache.org/pdfbox/
http://poi.apache.org/index.html
http://wiki.apache.org/solr/ContentHandler
http://wiki.apache.org/solr/SolrContentHandler
https://wiki.apache.org/solr/ExtractingRequestHandler
http://www.saxproject.org/quickstart.html
http://tika.apache.org/1.0/formats.html

" While Apache Tika is quite powerful, it is not perfect and fails on some files. PDF files are particularly problematic, mostly due to
the PDF format itself. In case of a failure processing any file, the Ext r act i ngRequest Handl er does not have a secondary
mechanism to try to extract some text from the file; it will throw an exception and fail.

Trying out Tika with the Solr Example Directory

You can try out the Tika framework using the example application included in Solr.

Start the Solr example server:

cd exanple -jar start.jar

In a separate window go to the docs/ directory (which contains some nice example docs), or the site directory if you built Solr from source, and
send Solr a file via HTTP POST:

curl "http://local host:8983/sol r/update/extract?literal.id=docl&onmit=true' -F
"nmyfile=@Qutorial.htm"

The URL above calls the Extraction Request Handler, uploads the file t ut ori al . ht M and assigns it the unique ID doc1. Here's a closer look at
the components of this command:

® Theliteral.id=docl parameter provides the necessary unique ID for the document being indexed.

® The conmit=true paraneter causes Solr to perform a commit after indexing the document, making it immediately searchable. For
optimum performance when loading many documents, don't call the commit command until you are done.

® The - F flag instructs curl to POST data using the Content-Type nul ti part/f or m dat a and supports the uploading of binary files. The
@ symbol instructs curl to upload the attached file.

® The argument nyfil e=@ut ori al . ht M needs a valid path, which can be absolute or relative (for example,
nyfile=@./../site/tutorial.htnm ifyou are still in exampledocs directory).

Now you should be able to execute a query and find that document (open the following link in your browser):
http://localhost:8983/solr/select?qg=tutorial.

You may notice that although you can search on any of the text in the sample document, you may not be able to see that text when the document
is retrieved. This is simply because the "content” field generated by Tika is mapped to the Solr field called t ext , which is indexed but not stored.

This operation is controlled by default map rule in the / updat e/ ext ract handler in sol r confi g. xml , and its behavior can be easily changed
or overridden. For example, to store and see all metadata and content, execute the following:

curl
"http://1ocal host: 8983/ sol r/update/extract?literal.id=docl&uprefix=attr_&f nmap. content=at
-F "nyfile=@utorial.htm"

In this command, the upr ef i x=at t r _ parameter causes all generated fields that aren't defined in the schema to be prefixed with at t r _, which
is a dynamic field that is stored.

The f map. cont ent =at t r _cont ent parameter overrides the default f map. cont ent =t ext causing the content to be added to the
attr_content field instead.

Then run this command to query the document: http://localhost:8983/solr/select?q=attr_content:tutorial

Input Parameters

The table below describes the parameters accepted by the Extraction Request Handler.

Parameter Description

Apache Solr Reference Guide 4.4 126

http://localhost:8983/solr/select?q=tutorial
http://localhost:8983/solr/select?q=attr_content:tutorial

boost.<fieldname>

capture

captureAttr

commitWithin
date.formats
defaultField

extractOnly

extractFormat

fmap.<source_field>

literal.<fieldname>

literalsOverride

lowernames

multipartUploadLimitinKB

passwordsFile
resource.name
resource.password

tika.config

uprefix

xpath

Order of Operations

Boosts the specified field by the defined float amount. (Boosting a field alters its importance in a query response. To
learn about boosting fields, see Searching.)

Captures XHTML elements with the specified name for a supplementary addition to the Solr document. This
parameter can be useful for copying chunks of the XHTML into a separate field. For instance, it could be used to
grab paragraphs (<p>) and index them into a separate field. Note that content is still also captured into the overall
"content" field.

Indexes attributes of the Tika XHTML elements into separate fields, named after the element. If set to true, for
example, when extracting from HTML, Tika can return the href attributes in <a> tags as fields named "a". See the
examples below.

Add the document within the specified number of milliseconds.
Defines the date format patterns to identify in the documents.
If the uprefix parameter (see below) is not specified and a field cannot be determined, the default field will be used.

Default is false. If true, returns the extracted content from Tika without indexing the document. This literally includes
the extracted XHTML as a string in the response. When viewing manually, it may be useful to use a response
format other than XML to aid in viewing the embedded XHTML tags.For an example, see
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput.

Default is "xml", but the other option is "text". Controls the serialization format of the extract content. The xml format
is actually XHTML, the same format that results from passing the - x command to the Tika command line
application, while the text format is like that produced by Tika's -t command. This parameter is valid only if
extract Only is set to true.

Maps (moves) one field name to another. The sour ce_f i el d must be a field in incoming documents, and the
value is the Solr field to map to. Example: f map. cont ent =t ext causes the data in the cont ent field generated
by Tika to be moved to the Solr's t ext field.

Populates a field with the name supplied with the specified value for each document. The data can be multivalued if
the field is multivalued.

If true (the default), literal field values will override other values with the same field name. If false, literal values
defined with | i t er al . <fi el dname> will be appended to data already in the fields extracted from Tika. If setting
l'iteral sOverri de to "false", the field must be multivalued.

Values are "true" or "false". If true, all field names will be mapped to lowercase with underscores, if needed. For
example, "Content-Type" would be mapped to "content_type."

Useful if uploading very large documents, this defines the KB size of documents to allow.
Defines a file path and name for a file of file name to password mappings.

Specifies the optional name of the file. Tika can use it as a hint for detecting a file's MIME type.
Defines a password to use for a password-protected PDF or OOXML file

Defines a file path and name to a customized Tika configuration file. This is only required if you have customized
your Tika implementation.

Prefixes all fields that are not defined in the schema with the given prefix. This is very useful when combined with
dynamic field definitions. Example: upr ef i x=i gnor ed_ would effectively ignore all unknown fields generated by
Tika given the example schema contains <dynanmni cFi el d nane="i gnored_*" type="ignored"/>

When extracting, only return Tika XHTML content that satisfies the given XPath expression. See
http://tika.apache.org/1.0/index.html for details on the format of Tika XHTML. See also
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput.

Here is the order in which the Solr Cell framework, using the Extraction Request Handler and Tika, processes its input.

1. Tika generates fields or passes them in as literals specified by | i t er al . <f i el dname>=<val ue>. Ifl i teral sOverri de=f al se,
literals will be appended as multi-value to the Tika-generated field.

2. If I ower nanmes=t r ue, Tika maps fields to lowercase.

3. Tika applies the mapping rules specified by f map. sour ce=t ar get parameters.

4. If uprefi x is specified, any unknown field names are prefixed with that value, else if def aul t Fi el d is specified, any unknown fields
are copied to the default field.

Configuring the Solr Ext r act i ngRequest Handl er

Apache Solr Reference Guide 4.4 127

http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://tika.apache.org/1.0/index.html
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

If you are not working in the supplied exanpl e/ sol r directory, you must copy all libraries from exanpl e/ sol r/ i bs intoal i bs directory
within your own solr directory or to a directory you've specified in sol r confi g. xm using the new | i bs directive. The
Ext ract i ngRequest Handl er is not incorporated into the Solr WAR file, so you have to install it separately.

Here is an example of configuring the Ext r act i ngRequest Handl er in sol rconfi g. xm .

<r equest Handl er nane="/updat e/ extract"
cl ass="org. apache. sol r. handl er. extracti on. Extracti ngRequest Handl er ">
<l st name="defaul ts">
<str name="f map. Last- Modi fi ed" >l ast _nodi fi ed</str>
<str nanme="uprefix">i gnored_</str>
</lst>
<I--Optional. Specify a path to a tika configuration file. See the Ti ka docs for
details.-->
<str name="tika.config">/nmy/path/to/tika.config</str>
<l-- Optional. Specify one or nore date formats to parse. See
Dat eUt i | . DEFAULT_DATE_FORMATS
for default date formats -->
<l st name="date.formats">
<str>yyyy- Mt dd</str>
</lst>
</ request Handl er >

In the defaults section, we are mapping Tika's Last-Modified Metadata attribute to a field named | ast _nodi fi ed. We are also telling it to ignore
undeclared fields. These are all overridden parameters.

The ti ka. confi g entry points to a file containing a Tika configuration. The dat e. f or mat s allows you to specify various
java. text. Si npl eDat eFor mat s date formats for working with transforming extracted input to a Date. Solr comes configured with the
following date formats (see the Dat eUt i | in Solr):

yyyy- Mt dd' T' HH: nm ss*' Z'

yyyy- Mt dd' T' HH: nm ss

yyyy- M dd

yyyy- Mt dd hh: nmss

yyyy- Mt dd HH: nm ss

EEE MW d hh:mmss z yyyy
EEE, dd MW yyyy HH mmss zzz
EEEE, dd- MW yy HH. mmss zzz
EEE MW d HH: nm ss yyyy

You may also need to adjust the mul t i part Upl oadLi mi t | nKB attribute as follows if you are submitting very large documents.

<request Di spat cher handl eSel ect="true" >
<request Par sers enabl eRenot eStream ng="fal se" mul ti part Upl oadLi m t| nKB="20480" />

Multi-Core Configuration

For a multi-core configuration, specify shar edLi b="11ib"' in the <sol r/ > section of sol r. xm in order for Solr to find the JAR files in
exanpl e/solr/lib.

For more information about Solr cores, see The Well-Configured Solr Instance.

Indexing Encrypted Documents with the ExtractingUpdateRequestHandler

The ExtractingRequestHandler will decrypt encrypted files and index their content if you supply a password in either r esour ce. passwor d on
the request, or in a passwor dsFi | e file.

In the case of passwor dsFi | e, the file supplied must be formatted so there is one line per rule. Each rule contains a file name regular

expression, followed by "=", then the password in clear-text. Because the passwords are in clear-text, the file should have strict access
restrictions.

Apache Solr Reference Guide 4.4 128

This is a coment

nyFi | eName = nyPassword
.*\.docx$ = nmyWsrdPassword
.*\ . pdf $ = nyPdf Password

Examples

Metadata

As mentioned before, Tika produces metadata about the document. Metadata describes different aspects of a document, such as the author's
name, the number of pages, the file size, and so on. The metadata produced depends on the type of document submitted. For instance, PDFs

have different metadata than Word documents do.

In addition to Tika's metadata, Solr adds the following metadata (defined in Ext r act i ngMet adat aConst ant s):

Solr Metadata Description

The name of the Content Stream as uploaded to Solr. Depending on how the file is uploaded, this may or may not be
set

stream_name

stream_source_info = Any source info about the stream. (See the section on Content Streams later in this section.)

stream_size The size of the stream in bytes.

stream_content_type = The content type of the stream, if available.

. Werecommend that you try using the ext r act Onl y option to discover which values Solr is setting for these metadata
elements.

Examples of Uploads Using the Extraction Request Handler

Capture and Mapping

The command below captures <di v> tags separately, and then maps all the instances of that field to a dynamic field named f oo_t .

curl
"http://1ocal host: 8983/ sol r/update/extract?literal.id=doc2&captureAttr=true&defaul tField

-F "tutorial=@utorial.pdf"

Capture, Mapping, and Boosting

The command below captures <di v> tags separately, maps the field to a dynamic field named f oo_t , then boosts f oo_t by 3.

curl
"http://1ocal host:8983/sol r/update/extract?literal.id=doc3&captureAttr=true&defaultField

-F "tutorial=@utorial.pdf"

Using Literals to Define Your Own Metadata

To add in your own metadata, pass in the literal parameter along with the file:

Apache Solr Reference Guide 4.4 129

curl
"http://1ocal host: 8983/ sol r/update/extract?literal.id=doc4&captureAttr=true&defaultField

-F "tutorial=@utorial.pdf"

XPath

The example below passes in an XPath expression to restrict the XHTML returned by Tika:

curl
"http://1ocal host: 8983/ sol r/update/extract?literal.id=doc5&captureAttr=true&defaul tField

-F "tutorial=@utorial.pdf"

Extracting Data without Indexing It

Solr allows you to extract data without indexing. You might want to do this if you're using Solr solely as an extraction server or if you're interested
in testing Solr extraction.

The example below sets the ext ract Onl y=t rue par anet er to extract data without indexing it.

curl "http://local host: 8983/ sol r/ updat e/ extract ?&xtract Onl y=true" --data-binary
@utorial.htm -H 'Content-type:text/htm'

The output includes XML generated by Tika (and further escaped by Solr's XML) using a different output format to make it more readable:

curl "http://local host: 8983/ sol r/ updat e/ ext ract ?&extract Onl y=t r ue&wt =r uby& ndent =t r ue"
--data-binary @utorial.htm -H'Content-type:text/htm"

Sending Documents to Solr with a POST

The example below streams the file as the body of the POST, which does not, then, provide information to Solr about the name of the file.

curl "http://1ocal host: 8983/ sol r/update/extract?literal.id=doc5&defaul tFi el d=text"
--data-binary @utorial.htm -H'Content-type:text/htm"

Sending Documents to Solr with Solr Cell and SolrJ

SolrJ is a Java client that you can use to add documents to the index, update the index, or query the index. You'll find more information on SolrJ
in Client APls.

Here's an example of using Solr Cell and SolrJ to add documents to a Solr index.

First, let's use SolrJ to create a new SolrServer, then we'll construct a request containing a ContentStream (essentially a wrapper around a file)
and sent it to Solr:

Apache Solr Reference Guide 4.4 130

public class Sol rCell Request Denp {
public static void main (String[] args){color} throws |CException,
Sol r Server Excepti on {
Sol r Server server = new H tpSol rServer("http://1ocal host:8983/solr");
Cont ent St r eanlpdat eRequest req = new
Cont ent St r eamJpdat eRequest ("/ updat e/ extract");
req. addFi l e(new Fil e("apache-solr/site/features. pdf"));
req. set Paran(Extracti ngPar anms. EXTRACT_ONLY, "true");
NamedLi st & t; Cbj ect > ; result = server.request(req);
Systemout.println("Result: " + result);

This operation streams the file f eat ur es. pdf into the Solr index.

The sample code above calls the extract command, but you can easily substitute other commands that are supported by Solr Cell. The key class
to use is the Cont ent St r eanlpdat eRequest , which makes sure the ContentStreams are set properly. SolrJ takes care of the rest.

Note that the Cont ent St r eanpdat eRequest is not just specific to Solr Cell. You can send CSV to the CSV Update handler and to any other
Request Handler that works with Content Streams for updates.

Related Topics

® ExtractingRequestHandler

Uploading Data with Index Handlers

Index Handlers are Update Handlers designed to add, delete and update documents to the index. Solr includes several of these to allow indexing
documents in XML, CSV and JSON.

The example URLs given here reflect the handler configuration in the supplied sol r confi g. xnl . If the name associated with the handler is
changed then the URLs will need to be modified. It is quite possible to access the same handler using more than one name, which can be useful if
you wish to specify different sets of default options.

New Updat ePr ocessor s now default to the uni queKey field if it is the appropriate type for configured fields. The processors automatically add
fields with new UUIDs and Timestamps to Sol r | nput Docunent s. These work similarly to the <field default="..."/> option in schenma. xm , but
are applied in the Updat ePr ocessor Chai n. They may be used prior to other Updat ePr ocessor s, or to generate a uni queKey field value
when using the Di st ri but edUpdat ePr ocessor (i.e., SolrCloud), Ti mest anpUpdat ePr ocessor Fact ory,

UUI DUpdat ePr ocessor Fact ory, and Def aul t Val ueUpdat ePr ocessor Fact ory.

Index Handlers covered in this section:

Combined UpdateRequestHandlers
XMLUpdateRequestHandler for XML-formatted Data
XSLTRequestHandler to Transform XML Content
CSVRequestHandler for CSV Content

Using the JSONRequestHandler for JISON Content
Updating Only Part of a Document

Using SimplePostTool

Indexing Using SolrJ

Combined UpdateRequestHandlers

For the separate XML, CSV, JSON, and javabin update request handlers explained below, Solr provides a single Request Handl er, and
chooses the appropriate Cont ent St r eanLoader based on the Cont ent - Type header, entered as the qt (query type) parameter matching the
name of registered handlers. The "standard" request handler is the default and will be used if gt is not specified in the request.

<r equest Handl er nanme="standard" />
<request Handl er name="custont />

Apache Solr Reference Guide 4.4 131

http://wiki.apache.org/solr/ExtractingRequestHandler

Configuring Shard Handlers for Distributed Searches

Inside the RequestHandler, you can configure and specify the shard handler used for distributed search. You can also plug in custom shard

handlers as well.

Configuring the standard handler, set up the configuration as in this example:

<shar dHandl er Fact ory>

</ shar dHandl er >
</ request Handl er >

<request Handl er name="standard" defaul t="true">
<l-- other paranms go here -->

<i nt nanme="socket Ti meCut ">1000</i nt >
<i nt nanme="connTi meCut " >5000</i nt >

The parameters that can be specified are as follows:

Parameter Default

socketTimeout default: 0 (use OS
default)

connTimeout default: 0 (use OS
default)

maxConnectionsPerHost = default: 20

corePoolSize default: 0

maximumPoolSize default:
Integer.MAX_VALUE

maxThreadldleTime default: 5 seconds
sizeOfQueue default: -1
fairnessPolicy default: false

Explanation

The amount of time in ms that a socket is allowed to wait

The amount of time in ms that is accepted for binding / connection a socket

The maximum number of connections that is made to each individual shard in a distributed
search

The retained lowest limit on the number of threads used in coordinating distributed search

The maximum number of threads used for coordinating distributed search

The amount of time to wait for before threads are scaled back in response to a reduction in
load

If specified, the thread pool will use a backing queue instead of a direct handoff buffer. High
throughput systems will want to configure this to be a direct hand off (with -1). Systems that
desire better latency will want to configure a reasonable size of queue to handle variations in
requests.

Chooses the JVM specifics dealing with fair policy queuing. If enabled, distributed searches
will be handled in a First in - First out method at a cost to throughput. If disabled, throughput
will be favored over latency.

XMLUpdateRequestHandler for XML-formatted Data

Configuration

The default configuration file has the update request handler configured by default.

<r equest Handl er nanme="/update" cl ass="sol r. Xm Updat eRequest Handl er" />

Adding Documents

Documents are added to the index by sending an XML message to the update handler.

The XML schema recognized by the update handler is very straightforward:

® The <add> element introduces one more documents to be added.
® The <doc> element introduces the fields making up a document.
®* The <fi el d> element presents the content for a specific field.

For example:

Apache Solr Reference Guide 4.4

132

<add>
<doc>
<field name="aut hors">Patrick Eagar</field>
<field nane="subj ect">Sports</field>
<field nane="dd">796. 35</fi el d>
<field name="nunpages">128</fiel d>
<field name="desc"></fiel d>
<field name="price">12. 40</fi el d>
<field nane="title" boost="2.0">Summer of the all-rounder: Test and chanpi onship
cket in England 1982</fiel d>
<field name="isbn">0002166313</fi el d>
<field name="year pub">1982</fi el d>
<field nane="publisher">Col | i ns</field>
</ doc>
<doc boost="2.5">

cr

</ doc>
</ add>

If the document schema defines a unique key, then an / updat e operation silently replaces a document in the index with the same unique key,
unless the <add> element sets the al | owDups attribute to t r ue. If no unique key has been defined, indexing performance is somewhat faster,
as no search has to be made for an existing document.

Each element has certain optional attributes which may be specified.

Command Command Description Optional Parameter Description
Parameter
<add> Introduces one or more documents to be = commitWithin= = Add the document within the specified number of milliseconds
added to the index. number
<doc> Introduces the definition of a specific boost=float Default is 1.0. Sets a boost value for the document.To learn more
document. about boosting, see Searching.
<field> Defines a field within a document. boost=float Default is 1.0. Sets a boost value for the field.

., Other optional parameters for <add>, including al | owDups, over wr i t ePendi ng, and over wri t eCommi tt ed, are now
deprecated. However, you can specify over wr i t e=f al se for XML updates to avoid overwriting.

Commit and Optimize Operations

The <commi t > operation writes all documents loaded since the last commit to one or more segment files on the disk. Before a commit has been
issued, newly indexed content is not visible to searches. The commit operation opens a new searcher, and triggers any event listeners that have
been configured.

Commits may be issued explicitly with a <conmi t / > message, and can also be triggered from <aut oconmi t > parameters in sol r confi g. xm
The <opt i m ze> operation requests Solr to merge internal data structures in order to improve search performance. For a large index,
optimization will take some time to complete, but by merging many small segment files into a larger one, search performance will improve. If you
are using Solr's replication mechanism to distribute searches across many systems, be aware that after an optimize, a complete index will need to

be transferred. In contrast, post-commit transfers are usually much smaller.

The <conmi t > and <opt i nm ze> elements accept these optional attributes:

Optional Description

Attribute

maxSegments Default is 1. Optimizes the index to include no more than this number of segments.
waitFlush Default is true. Blocks until index changes are flushed to disk.

Apache Solr Reference Guide 4.4 133

waitSearcher Default is true. Blocks until a new searcher is opened and registered as the main query searcher, making the changes
visible.

expungeDeletes Default is false. Merges segments and removes deleted documents.

Here are examples of <commit> and <optimize> using optional attributes:

<commit waitFlush="fal se" waitSearcher="fal se"/>
<commit waitFlush="fal se" waitSearcher="fal se" expungeDel etes="true"/>
<optim ze waitFlush="fal se" waitSearcher="fal se"/>

Delete Operations

Documents can be deleted from the index in two ways. "Delete by ID" deletes the document with the specified ID, and can be used only if a
UniquelD field has been defined in the schema. "Delete by Query" deletes all documents matching a specified query, although conmi t W t hi n is
ignored for a Delete by Query. A single delete message can contain multiple delete operations.

<del et e>
<i d>0002166313</i d>
<i d>0031745983</i d>
<quer y>subj ect : sport </ query>
<quer y>publ i sher: pengui n</ query>
</ del et e>

Rollback Operations

The rollback command rolls back all add and deletes made to the index since the last commit. It neither calls any event listeners nor creates a
new searcher. Its syntax is simple: <r ol | back/ >.

Using cur | to Perform Updates with the Update Request Handler.

You can use the cur | utility to perform any of the above commands, using its - - dat a- bi nar y option to append the XML message to the cur |
command, and generating a HTTP POST request. For example:

curl http://1ocal host: 8983/ update -H "Content-Type: text/xm" --data-binary '
<add>
<doc>
<field name="aut hors">Patrick Eagar</field>
<field nane="subj ect">Sports</field>
<field name="dd">796. 35</fiel d>
<field name="isbn">0002166313</fiel d>
<field nane="year pub">1982</fi el d>
<field nanme="publisher">Col | i ns</field>
</ doc>
</ add>

For posting XML messages contained in a file, you can use the alternative form:

curl http://1ocal host: 8983/ update -H "Content-Type: text/xm"
--data-binary @vfile.xmn

Short requests can also be sent using a HTTP GET command, URL-encoding the request, as in the following. Note the escaping of "<" and ">":

Apache Solr Reference Guide 4.4 134

curl http://1ocal host: 8983/ updat e?st r eam body=%8Ccommi t/ ¥3E

Responses from Solr take the form shown here:

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<l st name="r esponseHeader" >
<int name="status">0</int>
<int name="Qri me">127</int>
</lst>
</ response>

The status field will be non-zero in case of failure. The servlet container will generate an appropriate HTML-formatted message in the case of an
error at the HTTP layer.

A Simple Cross-Platform Posting Tool

For demo purposes, the file $SOLR/ exanpl e/ exanpl edocs/ post . j ar includes a cross-platform Java tool for POST-ing XML documents.
Open a window and run:

java -jar post.jar <list of files with messages>

By default, this will contact the server at | ocal host : 8983. The "-help" option outputs the following information on its usage:

Si npl ePost Tool : version 1.2

This is a simple command line tool for POSTing raw XML to a Solr port. XML data can be read from files specified as command line args; as raw
commandline arg strings; or via STDIN.

Examples:

java -Ddata=files -jar post.jar *.xm
java -Ddata=args ~-jar post.jar '<del ete><i d>42</i d></del et e>'
java -Ddata=stdin -jar post.jar < hd.xnl

Other options controlled by System Properties include the Solr URL to POST to, and whether a commit should be executed. These are the
defaults for all System Properties.

-Ddat a=files

-Durl =[http://1ocal host:8983/sol r/update| http://|ocal host: 8983/ sol r/ updat e]
-Dcommi t =yes

For more information about the XML Update Request Handler, see https://wiki.apache.org/solr/lUpdateXmIMessages.
XSLTRequestHandler to Transform XML Content

Configuration

The default configuration file has the update request handler configured by default, although the "lazy load" flag is set.

Apache Solr Reference Guide 4.4 135

https://wiki.apache.org/solr/UpdateXmlMessages

The XSLTRequestHandler allows you to index any XML data with the XML <t r > command. You must have an XSLT stylesheet in the
solr/conf/xslt directory that can transform the incoming data to the expected <add><doc/ ></ add> format.

<request Handl er name="/update/xslt" startup="1azy"
cl ass="sol r. Xsl t Updat eRequest Handl er "/ >

Here is an example XSLT stylesheet:

<xsl :styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Transform' versi on="1.0">
<xsl:tenplate match="/">
<add>
<xsl : appl y-tenpl ates sel ect="/randonf docunent"/ >
</ add>
</ xsl:tenpl at e>

<xsl :tenpl ate mat ch="docunent" >

<doc boost="5.5">
<xsl :appl y-tenpl ates select="*"/>
</ doc>
</ xsl:tenpl ate>

<xsl:tenpl ate mat ch="node">
<field name="{@ane}">

<xsl:if test="@nhance!=""">
<xsl :attri bute name="boost" ><xsl| : val ue- of sel ect =" @nhance"/></xsl:attri bute>
</xsl:if>
<xsl : val ue- of sel ect="@al ue"/>
</field>

</ xsl:tenpl at e>

</ xsl : styl esheet >

Attaching the stylesheet "updateXml.xsl" transforms a search result to Solr's Updat eXml syntax. One example is to copy a Solr1.3 index (which
does not have CSV response writer) into a format which can be indexed into another Solr file (provided that all fields are stored):

curl "http://local host: 8983/ sol r/update/xslt?commt=trueé&tr=updat eX

CSVRequestHandler for CSV Content

Configuration

The default configuration file has the update request handler configured by default, although the "lazy load" flag is set.

<r equest Handl er nane="/updat e/ csv" class="sol r. CSVRequest Handl er" startup="Ilazy" />

Apache Solr Reference Guide 4.4 136

http://xmlstar.sourceforge.net/doc/UG/ch04s02.html

Parameters

The CSV handler allows the specification of many parameters in the URL in the form: f . par anet er. opti onal _fi el dname=val ue.

The table below describes the parameters for the update handler.

Parameter

separator

trim

header

field_name
literal.<field_name>
skip

skipLines

encapsulator

escape

keepEmpty

map

split

overwrite

commit
commitWithin

rowid

rowidOffset

For more information on the CSV Update Request Handler, see https://wiki.apache.org/solr/UpdateCSV.

Usage

Character used as field separator; default is ","

If true, remove leading and trailing whitespace from values. Default=false.
Set to true if first line of input contains field names. These will be used if the
field_name parameter is absent.

Comma separated list of field names to use when adding documents.
Comma separated list of field names to use when processing literal values.

Comma separated list of field names to skip.

Number of lines to discard in the input stream before the CSV data starts,
including the header, if present. Default=0.

The character optionally used to surround values to preserve characters such as
the CSV separator or whitespace. This standard CSV format handles the
encapsulator itself appearing in an encapsulated value by doubling the
encapsulator.

The character used for escaping CSV separators or other reserved characters. If
an escape is specified, the encapsulator is not used unless also explicitly
specified since most formats use either encapsulation or escaping, not both
Keep and index zero length (empty) fields. Default=false.

Map one value to another. Format is value:replacement (which can be empty.)

If true, split a field into multiple values by a separate parser.

If true (the default), check for and overwrite duplicate documents, based on the
uniqueKey field declared in the Solr schema. If you know the documents you are
indexing do not contain any duplicates then you may see a considerable speed
up setting this to false.

Issues a commit after the data has been ingested.

Add the document within the specified number of milliseconds.

Map the rowid (line number) to a field specified by the value of the parameter,
for instance if your CSV doesn't have a unique key and you want to use the row

id as such.

Add the given offset (as an int) to the rowid before adding it to the document.
Default is 0

Using the JSONRequestHandler for JSON Content

Global

(9) or
Per
Field (f)

g,(f: see
split)

a.f

0,(f: see

split)

g,f
g.f

Example

separator=%
f.isbn.trim=true

trim=false

field_name=isbn,pricetitle
literal.color=red,blue,black
skip=uninteresting,shoesize

skipLines=5

encapsulator="

escape=\

f.price.keepEmpty=true

map=left:right
f.subject.map=history:bunk

commitWithin=10000

rowid=id

rowidOffset=10

JSON formatted update requests may be sent to Solr using the / sol r/ updat e/ j son URL. All of the normal methods for uploading content are

supported.

Configuration

The default configuration file has the update request handler configured by default, although the "lazy load" flag is set.

Apache Solr Reference Guide 4.4

137

https://wiki.apache.org/solr/UpdateCSV

<r equest Handl er nanme="/update/json" cl ass="sol r. JsonUpdat eRequest Handl er"
startup="lazy" />

Examples

There is a sample JSON file at exanpl e/ exanpl edocs/ books. j son that you can use to add documents to the Solr example server.

cd exanpl e/ exanpl edocs
curl "http://local host: 8983/ sol r/ update/json?conmit=true'
--data-bi nary @ooks.json -H ' Content-type: application/json'

Adding conmi t =t r ue to the URL makes the documents immediately searchable.
You should now be able to query for the newly added documents:

http://1ocal host: 8983/ solr/sel ect ?2g=titl e: nonst er s&ut =j son& ndent =t r ue returns:

"responseHeader": {
"status":0,
"Qrine": 2,
"parans": {
"indent":"true",
"w":"json",
"q":"title:nmonsters"}},
"response": {"nunfFound": 1, "start": 0, "docs": [
{
"id":"978-1423103349",
"author":"Ri ck Ri ordan",
"series_t":"Percy Jackson and the d ynpi ans",
"sequence_i": 2,
"genre_s":"fantasy",
"inStock":true,
"price":6.49,
"pages_i ": 304,
"title":
"The Sea of Monsters"],
"cat":["book", "paperback"]}]

Update Commands

The JSON update handler accepts all of the update commands that the XML update handler supports, through a straightforward mapping.

Multiple commands may be contained in one message:

Apache Solr Reference Guide 4.4

138

http://localhost:8983/solr/select?q=title:monsters&wt=json&indent=true

{
"add": {
"doc": {
"id": "DOoCc1"
"my_boosted_field": { /* use a map with boost/value for a boosted field */
"boost": 2.3
"val ue": "test"
b
"my_rultivalued_field": ["aaa", "bbb"] /* use an array for a nulti-val ued
field */
}
b
"add": {
"comm tWthin": 5000, /* commt this docunment within 5 seconds */
"overwite": false, /* don't check for existing docunments with the sane
uni quekey */
"boost": 3.45, /* a docunent boost */
"doc": {
"far: "vi1",
"far: "v2"
}
H
"commit": {},
"optimze": { "waitFlush":fal se, "waitSearcher":false },
"delete": { "id":"ID" }, /* delete by ID */
"delete": { "query":"QUERY" } /* del ete by query */
}

!, Comments are not allowed JSON, but duplicate names are.

As with other update handlers, parameters such as conmi t, conmi t Wt hi n, opti m ze, and over wri t e may be specified in the URL instead
of in the body of the message.

The JSON update format allows for a simple delete-by-id. The value of a del et e can be an array which contains a list of zero or more specific
document id's (not a range) to be deleted. For example:

"del ete":"nyid"

"del ete": ["idl", "id2"]

The value of a "delete" can be an array which contains a list of zero or more id's to be deleted. It is not a range (start and end).

You can also specify _ver si on_ with each "delete":

String str = "{"delete':"id :50, '_version_':12345}"

You can specify the version of deletes in the body of the update request as well.

For more information about the JSON Update Request Handler, see https://wiki.apache.org/solr/UpdateJSON.

Apache Solr Reference Guide 4.4 139

https://wiki.apache.org/solr/UpdateJSON

Updating Only Part of a Document

Solr supports several modifiers that atomically update values of a document.

Modifier Usage

set Set or replace a particular value, or remove the value if null is specified as the new value.
add Adds an additional value to a list.
inc Increments a numeric value by a specific amount.

g All original source fields must be stored for field modifiers to work correctly, which is the Solr default.

For example:

{"id":"nmydoc", "f1"{"set":10}, "f2"{"add":20}}

This example results in field f 1 being set to "10", and field f 2 having an additional value of "20" added. All other existing fields from the original
document remain unchanged.

Using SimplePostTool

This is a simple command line tool for POSTing raw data to a Solr port. Data can be read from files specified as command line arguments, as raw
command line argument strings, or via STDI N. Options controlled by System Properties include the Solr URL to post to, the Cont ent - Type of
the data, whether a commit or optimize should be executed, and whether the response should be written to STDOUT. If aut o=yes the tool will try
to guess the type and set Cont ent - Type and the URL automatically. When posting rich documents the file name will be propagated as
resource. nane and alsoused as | i t eral . i d. You may override these or any other request parameter through the - Dpar ans property

Supported System Properties and their defaults:

Parameter = Values Default

-Ddata yes, no default=files

-Dtype <content-type> default=application/xml

-Durl <solr-update-url> default=http://localhost:8983/solr/update

-Dauto yes, no default=no

-Drecursive ' yes, no default=no

-Dfiletypes = <type>[,<type>,..] default=xml, json, csv, pdf, doc, docx, ppt, pptx, xls, xIsx, odt, odp, ods, rtf, htm, html

-Dparams | "<key>=<value>[&<key>=<value>...]" values must be URL-encoded

-Dcommit yes, no default=yes

-Doptimize | yes, no default=no

-Dout yes,no default=no
Examples:

Apache Solr Reference Guide 4.4 140

http://localhost:8983/solr/update

java -jar post.jar *.xm

java -Ddata=args ~-jar post.jar '<del ete><id>42</id></del et e>'

java -Ddata=stdin -jar post.jar < hd.xm

java -Dtype=text/csv -jar post.jar *.csv

java -Dtype=application/json -jar post.jar *.json

java -Durl=[http://]ocal host:8983/sol r/updat e/ extract] -Dparams=literal.id=a
-Dtype=application/pdf -jar post.jar a.pdf

java -Dauto=yes -jar post.jar a.pdf

java - Dauto=yes -Drecursive=yes -jar post.jar afolder

java -Dauto=yes -Dfil etypes=ppt,htm -jar post.jar afolder

In the above example:

-Dauto=yes Will guess file type from file name suffix, and set type and url accordingly. It also sets the ID and file name automatically.
-Drecursive=yes Wil recurse into sub-folders and index all files.
-Dfiletypes Specifies the file types to consider when indexing folders.

-Dparams HTTP GET params to add to the request, so you don't need to write the whole URL again.

Indexing Using SolrJ

Use of the SolrJ client library is covered in the section on Using SolrJ.

Uploading Structured Data Store Data with the Data Import Handler

Many search applications store the content to be indexed in a structured data store, such as a relational database. The Data Import Handler (DIH)
provides a mechanism for importing content from a data store and indexing it. In addition to relational databases, DIH can index content from
HTTP based data sources such as RSS and ATOM feeds, e-mail repositories, and structured XML where an XPath processor is used to generate

fields.

1, The DatalmportHandler jars are no longer included in the Solr WAR. You should add them to Solr's lib directory, or reference
them via the <l i b> directive in sol rconfi g. xm .

For more information about the Data Import Handler, see https://wiki.apache.org/solr/DatalmportHandler.

Topics covered in this section:

Concepts and Terminology

Configuration

Data Import Handler Commands

Property Writer

Data Sources

Entity Processors

Transformers

Special Commands for the Data Import Handler

Concepts and Terminology
Descriptions of the Data Import Handler use several familiar terms, such as entity and processor, in specific ways, as explained in the table below.

Term Definition

Datasource | As its name suggests, a datasource defines the location of the data of interest. For a database, it's a DSN. For an HTTP
datasource, it's the base URL.

Apache Solr Reference Guide 4.4 141

https://wiki.apache.org/solr/DataImportHandler

Entity Conceptually, an entity is processed to generate a set of documents, containing multiple fields, which (after optionally being
transformed in various ways) are sent to Solr for indexing. For a RDBMS data source, an entity is a view or table, which would be
processed by one or more SQL statements to generate a set of rows (documents) with one or more columns (fields).

Processor An entity processor does the work of extracting content from a data source, transforming it, and adding it to the index. Custom
entity processors can be written to extend or replace the ones supplied.

Transformer Each set of fields fetched by the entity may optionally be transformed. This process can modify the fields, create new fields, or
generate multiple rows/documents form a single row. There are several built-in transformers in the DIH, which perform functions
such as modifying dates and stripping HTML. It is possible to write custom transformers using the publicly available interface.

Configuration

Configuring sol rconfi g. xm

The Data Import Handler has to be registered in sol r conf i g. xm . For example:

<r equest Handl er nanme="/dat ai nport"
cl ass="org. apache. sol r. handl er. dat ai npor t . Dat al npor t Handl er " >
<l st name="defaul ts">
<str name="confi g">/path/to/ny/ Dl Hconfigfile.xm </str>
</lst>
</ request Handl er >

The only required parameter is the conf i g parameter, which specifies the location of the DIH configuration file that contains specifications for the
data source, how to fetch data, what data to fetch, and how to process it to generate the Solr documents to be posted to the index.

You can have multiple DIH configuration files. Each file would require a separate definition in the sol r confi g. xm file, specifying a path to the
file.

Configuring the DIH Configuration File

There is a sample DIH application distributed with Solr in the directory exanpl e/ exanpl e- DI H. This accesses a small hsgldb database. Details
of how to run this example can be found in the README.txt file. The sample DIH configuration can be found in
exanpl e/ exanpl e- DI H sol r/ db/ conf/ db- dat a- confi g. xnl .

An annotated configuration file, based on the sample, is shown below. It extracts fields from the four tables defining a simple product database,
with this schema. More information about the parameters and options shown here are described in the sections following.

<dat aConfi g>
<l-- The first elenent is the dataSource, in this case an HSQ.DB dat abase.
The path to the JDBC driver and the JDBC URL and login credentials are all
speci fi ed here.
Q her permissible attributes include whether or not to autocommit to Solr,the
bat chsi ze
used in the JDBC connection, a 'readOnly' flag -->
<dat aSour ce driver="org. hsql db.jdbcDriver" url="jdbc: hsql db:./exanpl e-D H hsql db/ ex"
user="sa" />

<!-- a 'docunent' elenent follows, containing nultiple "entity' elenents.
Note that 'entity' elenents can be nested, and this allows the entity
relationships in the sanpl e database to be nmirrored here, so that we can
generate a denornalized Solr record which may include multiple features
for one item for instance -->
<docunent >

<I-- The possible attributes for the entity element are described bel ow
Entity el ements nmay contain one or nore 'field elenents, which map
the data source field nanes to Solr fields, and optionally specify

Apache Solr Reference Guide 4.4 142

per-field transformations -->
<l-- this entity is the '"root' entity. -->
<entity nanme="itenl' query="select * fromitent
del taQuery="select id fromitemwhere |ast_nodified >
"${datai nporter.last_index_time}"'">
<field col um="NAME" nanme="name" />

<I-- This entity is nested and reflects the one-to-many rel ati onship between an item
and its multiple features.
Note the use of variables; ${itemID} is the value of the colum 'ID for the
current item
('"item referring to the entity nane) -->
<entity nane="feature"
query="sel ect DESCRI PTI ON from FEATURE where | TEM ID='"${item ID}""
del taQuery="sel ect | TEM ID from FEATURE where | ast_nodified >
"${datai nporter.last_index_tinme}""
parent Del taQuery="select ID fromitemwhere |ID=${feature. | TEM | D}">
<field name="features" col um="DESCRI PTI ON' />
</entity>
<entity nanme="item category"
query="sel ect CATEGORY_ID fromitem category where I TEMID="${item|ID}"'"
del taQuery="sel ect I TEM ID, CATEGORY_ID fromitem category where
last_nodified > '${datai nporter.last_index_time}""
parent Del t aQuery="select ID fromitem where
I D=${itemcategory.| TEM I D}" >
<entity nane="category"
query="sel ect DESCRI PTI ON from category where ID =
"${item cat egory. CATEGORY_I D}"' "
del taQuery="sel ect ID fromcategory where last_nodified >
"${dat ai nporter.last_index_time}""
parent Del taQuery="sel ect | TEM |ID, CATEGORY_ID fromitem category where
CATEGORY_| D=${ cat egory. | D} ">
<field colum="description" nane="cat" />
</entity>
</entity>
</entity>

Apache Solr Reference Guide 4.4 143

</ docunent >
</ dat aConfi g>

Datasources can still be specified in sol r conf i g. xm . These must be specified in the defaults section of the handler in sol r confi g. xm .
However, these are not parsed until the main configuration is loaded.

The entire configuration itself can be passed as a request parameter using the dat aConf i g parameter rather than using a file. When
configuration errors are encountered, the error message is returned in XML format.

In Solr 4.1, a new property was added, the propertyW it er element, which allows defining the date format and locale for use with delta
queries. It also allows customizing the name and location of the properties file.

The r el oad- confi g command is still supported, which is useful for validating a new configuration file, or if you want to specify a file, load it, and
not have it reloaded again on import. If there is an xm mistake in the configuration a user-friendly message is returned in xm format. You can
then fix the problem and do ar el oad- confi g.

@ You can also view the DIH configuration in the Solr Admin UI. There is also an interface to import content.

Data Import Handler Commands

DIH commands are sent to Solr via an HTTP request. The following operations are supported.

Command Description
abort Aborts an ongoing operation. The URL is ht t p: / / <host >: <port >/ sol r/ dat ai npor t 2command=abort.
delta-import For incremental imports and change detection. The command is of the form

http://<host>: <port>/sol r/ dat ai mport ?command=del t a- i mpor t . It supports the same clean, commit, optimize
and debug parameters as full-import command.

full-inmport A Full Import operation can be started with a URL of the form
htt p: // <host >: <por t >/ sol r/ dat ai npor t 2comrand=f ul | -i mpor t . The command returns immediately. The
operation will be started in a new thread and the status attribute in the response should be shown as busy. The operation
may take some time depending on the size of dataset. Queries to Solr are not blocked during full-imports.
When a full-import command is executed, it stores the start time of the operation in a file located at
conf/dat ai nport. properti es. This stored timestamp is used when a delta-import operation is executed.
For a list of parameters that can be passed to this command, see below.

rel oad- confi g If the configuration file has been changed and you wish to reload it without restarting Solr, run the command
http://<host>: <port>/sol r/ dat ai nport ?conmand=r el oad- confi g.

status The URL is ht t p: / / <host >: <port >/ sol r/ dat ai nport ?command=st at us. It returns statistics on the number of
documents created, deleted, queries run, rows fetched, status, and so on.

Parameters for the ful | -i nport Command

The ful | -i nport command accepts the following parameters:

Parameter Description

clean Default is true. Tells whether to clean up the index before the indexing is started.
commit Default is true. Tells whether to commit after the operation.
debug Default is false Runs the command in debug mode. It is used by the interactive development mode. Note that in debug mode,

documents are never committed automatically. If you want to run debug mode and commit the results too, add conmmi t =t r ue as
a request parameter.

entity The name of an entity directly under the <docunent > tag in the configuration file. Use this to execute one or more entities
selectively. Multiple "entity" parameters can be passed on to run multiple entities at once. If nothing is passed, all entities are
executed.

optimize Default is true. Tells Solr whether to optimize after the operation.

Property Writer

The propert yWi t er element defines the date format and locale for use with delta queries. It is an optional configuration. Add the element to

Apache Solr Reference Guide 4.4 144

the DIH configuration file, directly under the dat aConf i g element.

<propertyWiter dateFormt="yyyy-MWdd HH nm ss" type="Sinpl eProperti esWiter"
directory="data" fil enane="ny_di h. properties” |ocale="en_US" />

The parameters available are:

Parameter = Description
dateFormat = A java.text.SimpleDateFormat to use when converting the date to text. The default is "yyyy-MM-dd HH:mm:ss".

type The implementation class. Use Si npl eProperti esWi t er for non-SolrCloud installations. If using SolrCloud, use
ZKProperti esWi ter. If this is not specified, it will default to the appropriate class depending on if SolrCloud mode is enabled.

directory Used with the Si npl eProperti esWiter only). The directory for the properties file. If not specified, the default is "conf".

filename Used with the Si mpl eProperti esWiter only). The name of the properties file. If not specified, the default is the
requestHandler name (as defined in sol r confi g. xnl , appended by ".properties” (i.e., "dataimport.properties").

locale The locale. If not defined, the ROOT locale is used. It must be specified as language-country. For example, en- US.

Data Sources

A data source specifies the origin of data and its type. Somewhat confusingly, some data sources are configured within the associated entity
processor. Data sources can also be specified in sol r conf i g. xm , which is useful when you have multiple environments (for example,
development, QA, and production) differing only in their data sources.

You can create a custom data source by writing a class that extends or g. apache. sol r. handl er. dat ai npor t . Dat aSour ce.

The mandatory attributes for a data source definition are its name and type. The name identifies the data source to an Entity element.

The types of data sources available are described below.
ContentStreamDataSource
This takes the POST data as the data source. This can be used with any EntityProcessor that uses a Dat aSour ce<Reader >.

FieldReaderDataSource

This can be used where a database field contains XML which you wish to process using the XpathEntityProcessor. You would set up a
configuration with both JDBC and FieldReader data sources, and two entities, as follows:

Apache Solr Reference Guide 4.4 145

<dat aSour ce name="al" driver="org. hsql db.jdbcDriver" ... />
<dat aSour ce name="a2" type=Fi el dReader Dat aSour ce" />

<l-- processor for database -->

<entity name ="el" dataSource="al" processor="SQLEntityProcessor"” pk="docid"
query="select * fromtl ...">

<I-- nested XpathEntity; the field in the parent which is to be used for
Xpath is set in the "datafield" attribute in place of the "url" attribute -->

<entity nane="e2"
dat aSour ce="a2"
pr ocessor =" XPat hEnti t yProcessor"
dat aFi el d="el. fi el dToUseFor XPat h"

<l-- Xpath configuration follows -->

</entity>
</entity>

The FieldReaderDataSource can take an encodi ng parameter, which will default to "UTF-8" if not specified.It must be specified as
language-country. For example, en- US.

FileDataSource

This can be used like an URLDataSource, but is used to fetch content from files on disk. The only difference from URLDataSource, when
accessing disk files, is how a pathname is specified.

This data source accepts these optional attributes.

Optional Attribute = Description

basePath The base path relative to which the value is evaluated if it is not absolute.
encoding Defines the character encoding to use. If not defined, UTF-8 is used.
JdbcDataSource

This is the default datasource. It's used with the SQLEntityProcessor. See the example in the FieldReaderDataSource section for details on
configuration.

URLDataSource

This data source is often used with XPathEntityProcessor to fetch content from an underlying fil e: // or http:// location. Here's an example:

<dat aSour ce nane="a"
t ype="URLDat aSour ce"
baseUr| ="http://host:port/"
encodi ng="UTF- 8"
connecti onTi neout =" 5000"
r eadTi neout =" 10000"/ >

The URLDataSource type accepts these optional parameters:

Optional Description
Parameter

Apache Solr Reference Guide 4.4 146

file://

baseURL Specifies a new baseURL for pathnames. You can use this to specify host/port changes between Dev/QA/Prod
environments. Using this attribute isolates the changes to be made to the sol r confi g. xni

connectionTimeout | Specifies the length of time in milliseconds after which the connection should time out. The default value is 5000ms.
encoding By default the encoding in the response header is used. You can use this property to override the default encoding.

readTimeout Specifies the length of time in milliseconds after which a read operation should time out. The default value is 10000ms.

Entity Processors
Entity processors extract data, transform it, and add it to a Solr index. Examples of entities include views or tables in a data store.

Each processor has its own set of attributes, described in its own section below. In addition, there are non-specific attributes common to all
entities which may be specified.

Attribute Use

datasource The name of a data source. Used if there are multiple data sources, specified, in which case each one must have a
name.

name Required. The unique name used to identify an entity.

pk The primary key for the entity. It is optional, and required only when using delta-imports. It has no relation to the

uniqueKey defined in schema. xm but they can both be the same. It is mandatory if you do delta-imports and then
refers to the column name in ${ dat ai nport er. del t a. <col umm- nanme>} which is used as the primary key.

processor Default is SQLEntityProcessor. Required only if the datasource is not RDBMS.

onError Permissible values are (abort|skip|continue) . The default value is "abort'. 'Skip' skips the current document. ‘Continue’
ignores the error and processing continues.

prelmportDeleteQuery = Before a full-import command, use this query this to cleanup the index instead of using ":'. This is honored only on an
entity that is an immediate sub-child of <documnent >.

postimportDeleteQuery = Similar to the above, but executed after the import has completed.

rootEntity By default the entities immediately under the <document > are root entities. If this attribute is set to false, the entity
directly falling under that entity will be treated as the root entity (and so on). For every row returned by the root entity,
a document is created in Solr.

transformer Optional. One or more transformers to be applied on this entity.

The SQL Entity Processor
The SqlEntityProcessor is the default processor. The associated data source should be a JDBC URL.

The entity attributes specific to this processor are shown in the table below.

Attribute Use
query Required. The SQL query used to select rows.
deltaQuery SQL query used if the operation is delta-import. This query selects the primary keys of the rows which will be parts of the

delta-update. The pks will be available to the deltalmportQuery through the variable
${ dat ai nporter. del t a. <col um- nanme>}.

parentDeltaQuery = SQL query used if the operation is delta-import.

deletedPkQuery = SQL query used if the operation is delta-import.

deltalmportQuery = SQL query used if the operation is delta-import. If this is not present, DIH tries to construct the import query by(after
identifying the delta) modifying the 'query’' (this is error prone). There is a hamespace

${ dat ai nporter. del t a. <col um- name>} which can be used in this query. For example, sel ect * fromtbl
where i d=${datai nporter.delta.id}

The XPathEntityProcessor

This processor is used when indexing XML formatted data. The data source is typically URLDataSource or FileDataSource. Xpath can also be
used with the FileListEntityProcessor described below, to generate a document from each file.

The entity attributes unique to this processor are shown below.

Apache Solr Reference Guide 4.4 147

Attribute Use

Processor Required. Must be set to "XpathEntityProcessor".

url Required. HTTP URL or file location.

stream Optional: Set to true for a large file or download.

forEach Required unless you define useSol r AddSchena. The Xpath expression which demarcates each record. This will be

used to set up the processing loop.

xsl Optional: Its value (a URL or filesystem path) is the name of a resource used as a preprocessor for applying the XSL
transformation.

useSolrAddSchema = Set this to true if the content is in the form of the standard Solr update XML schema.

flatten Optional: If set true, then text from under all the tags is extracted into one field.

Each field element in the entity can have the following attributes as well as the default ones.

Attribute Use
xpath Required. The XPath expression which will extract the content from the record for this field. Only a subset of Xpath syntax is
supported.

commonField = Optional. If true, then when this field is encountered in a record it will be copied to future records when creating a Solr
document.

Example:

Apache Solr Reference Guide 4.4 148

<l-- slashdot RSS Feed --->
<dat aConfi g>
<dat aSour ce type="Htt pDat aSource" />
<docunent >
<entity name="sl ashdot"
pk="11ink"
url ="http://rss. sl ashdot. org/ Sl ashdot/ sl ashdot "
processor =" XPat hEnti t yProcessor"

<l-- forEach sets up a processing loop ; here there are two expressions-->

f or Each="/ RDF/ channel | /RDF/itent
t ransf or mer =" Dat eFor mat Tr ansf or ner " >
<field col um="source"
xpat h="/ RDF/ channel /title"
conmonFi el d="true" />
<field col um="source-1|ink"
xpat h="/ RDF/ channel / | i nk"
comonFi el d="true"/>
<field col um="subject"
xpat h="/ RDF/ channel / subj ect"
comonFi el d="true" />
<field colum="title"
xpath="/RDF/itemtitle" />
<field col um="1ink"
xpat h="/RDF/itenl|link" />
<field colum="description"
xpat h="/ RDF/i t enl descri ption" />
<field colum="creator"
xpat h="/RDF/itenif creator" />
<field colum="item subject”
xpat h="/ RDF/ i t em subj ect" />
<field col um="date"
xpat h="/ RDF/ i t enl dat e"
dat eTi meFor mat ="yyyy- Mt dd' T' hh: nm ss" />
<field col um="sl ash-departnent"
xpat h="/RDF/ i t em departnent"” />
<field col um="sl ash-section"
xpat h="/ RDF/ i tem section" />
<field col um="sl ash-coment s"
xpat h="/RDF/ i t em conments" />
</entity>
</ docunent >
</ dat aConfi g>

http://wiki.apache.org/solr/MailEntityProcessor

The TikaEntityProcessor

The TikaEntityProcessor uses Apache Tika to process incoming documents. This is similar to Uploading Data with Solr Cell using Apache Tika,
but using the DatalmportHandler options instead.

The exanpl e- DI Hdirectory in Solr's exanpl e directory shows one option for using the TikaEntityProcessor. Here is the sample
dat a- confi g. xm file:

Apache Solr Reference Guide 4.4 149

http://wiki.apache.org/solr/MailEntityProcessor

<dat aConfi g>
<dat aSour ce type="Bi nFi | eDat aSource" />
<docunent >
<entity name="tika-test" processor="Ti kaEntityProcessor"
url="../contrib/extraction/src/test-files/extraction/solr-word. pdf"
format="text">
<field colum="Aut hor" nanme="author" nmeta="true"/>
<field colum="title" name="title" neta="true"/>
<field colum="text" nane="text"/>
</entity>
</ docunent >
</ dat aConfi g>

The parameters for this processor are described in the table below:

Attribute Use

dataSource = This parameter defines the data source and an optional name which can be referred to in later parts of the configuration if
needed. This is the same dataSource explained in the description of general entity processor attributes above.

The available data source types for this processor are:
* BinURLDataSource: used for HTTP resources, but can also be used for files.
® BinContentStreamDataSource: used for uploading content as a stream.
® BinFileDataSource: used for content on the local filesystem.
url The path to the source file(s), as a file path or a traditional internet URL. This parameter is required.

htmIMapper = Allows control of how Tika parses HTML. The "default" mapper strips much of the HTML from documents while the “identity"
mapper passes all HTML as-is with no modifications. If this parameter is defined, it must be either default or identity; if it is
absent, "default" is assumed.

format The output format. The options are text, xml, html or none. The default is "text" if not defined. The format "none" can be used if
metadata only should be indexed and not the body of the documents.

parser The default parser is or g. apache. ti ka. par ser. Aut oDet ect Par ser . If a custom or other parser should be used, it should
be entered as a fully-qualified name of the class and path.

fields The list of fields from the input documents and how they should be mapped to Solr fields. If the attribute net a is defined as
"true”, the field will be obtained from the metadata of the document and not parsed from the body of the main text.

The FileListEntityProcessor

This processor is basically a wrapper, and is designed to generate a set of files satisfying conditions specified in the attributes which can then be
passed to another processor, such as the XPathEntityProcessor. The entity information for this processor would be nested within the
FileListEnitity entry. It generates four implicit fields: fi | eAbsol ut ePat h, fil eSi ze, fi | eLast Modi fi ed, fi | eNane which can be used in the
nested processor. This processor does not use a data source.

The attributes specific to this processor are described in the table below:

Attribute Use

fileName Required. A regular expression pattern to identify files to be included.

basedir Required. The base directory (absolute path).

recursive Whether to search directories recursively. Default is ‘false’.

excludes A regular expression pattern to identify files which will be excluded.

newerThan A date in the format yyyy- M ddHH: mm ss or a date math expression (NOW - 2YEARS).
olderThan | A date, using the same formats as newerThan.

rootEntity This should be set to false. This ensures that each row (filepath) emitted by this processor is considered to be a document.

Apache Solr Reference Guide 4.4 150

dataSource = Must be set to null.

The example below shows the combination of the FileListEntityProcessor with another processor which will generate a set of fields from each file
found.

<dat aConfi g>
<dat aSour ce type="Fi | eDat aSour ce"/><docunent >
<l-- this outer processor generates a list of files satisfying the conditions
specified in the attributes -->
<entity name="f" processor="FilelListEntityProcessor"
fileName=".*xm"
newer Than="" NOW 30DAYS' "
recursive="true"
rootEntity="fal se"
dat aSour ce="nul | "
baseDi r ="/ nmy/ docunent/di rectory">

<l-- this processor extracts content using Xpath fromeach file found -->

<entity name="nested" processor="XPathEntityProcessor"
forEach="/rootel ement” url="${f.fil eAbsolutePath}" >
<field col um="name" xpath="/rootel erent/nane"/>
<field col um="nunber" xpath="/rootel enment/nunber"/>
</entity>
</entity>
</ docunent >
</ dat aConfi g>

LineEntityProcessor

This EntityProcessor reads all content from the data source on a line by line basis and returns a field called r awLi ne for each line read. The
content is not parsed in any way; however, you may add transformers to manipulate the data within the r awLi ne field, or to create other
additional fields.

The lines read can be filtered by two regular expressions specified with the accept Li neRegex and oni t Li neRegex attributes. The table below
describes the LineEntityProcessor's attributes:

Attribute Description

url A required attribute that specifies the location of the input file in a way that is compatible with the configured data source. If
this value is relative and you are using FileDataSource or URLDataSource, it assumed to be relative to baseLoc.

acceptLineRegex = An optional attribute that if present discards any line which does not match the regExp.

omitLineRegex An optional attribute that is applied after any acceptLineRegex and that discards any line which matches this regExp.

For example:

<entity name="jc"
processor ="Li neEntityProcessor"”
accept Li neRegex="". *\ . xm $"
om t Li neRegex="/ obsol et e"
url="file:///Volunes/ts/files.lis"
root Entity="fal se"
dat aSour ce="nyURI r eader 1"
transf or ner =" RegexTr ansf or ner, Dat eFor nat Tr ansf or ner "
>

Apache Solr Reference Guide 4.4 151

While there are use cases where you might need to create a Solr document for each line read from a file, it is expected that in most cases that the
lines read by this processor will consist of a pathname, which in turn will be consumed by another EntityProcessor, such as XPathEntityProcessor

PlainTextEntityProcessor

This EntityProcessor reads all content from the data source into an single implicit field called pl ai nText . The content is not parsed in any way,
however you may add transformers to manipulate the data within the pl ai nText as needed, or to create other additional fields.

For example:

<entity processor="Pl ai nText EntityProcessor" name="x" url="http://abc.com a.txt"
dat aSour ce="dat a- sour ce- nane" >

<l-- copies the text to a field called "text' in Solr-->
<field colum="plai nText" name="text"/>
</entity>

Ensure that the dataSource is of type Dat aSour ce<Reader > (Fi | eDat aSour ce, URLDat aSour ce).

Transformers

Transformers manipulate the fields in a document returned by an entity. A transformer can create new fields or modify existing ones. You must tell
the entity which transformers your import operation will be using, by adding an attribute containing a comma separated list to the <enti t y>
element.

<entity name="abcde"
transforner="org. apache.solr....,my.own.transformer,..." />

Specific transformation rules are then added to the attributes of a <f i el d> element, as shown in the examples below. The transformers are
applied in the order in which they are specified in the transformer attribute.

The Data Import Handler contains several built-in transformers. You can also write your own custom transformers, as described in the Solr Wiki
(see http://wiki.apache.org/solr/DIHCustomTransformer). The ScriptTransformer (described below) offers an alternative method for writing your
own transformers.

Solr includes the following built-in transformers:

Transformer Name Use

ClobTransformer Used to create a String out of a Clob type in database.
DateFormatTransformer Parse date/time instances.

HTMLStripTransformer Strip HTML from a field.

LogTransformer Used to log data to log files or a console.

NumberFormatTransformer Uses the NumberFormat class in java to parse a string into a number.

RegexTransformer Use regular expressions to manipulate fields.
ScriptTransformer Write transformers in Javascript or any other scripting language supported by Java. Requires Java 6.
TemplateTransformer Transform a field using a template.

These transformers are described below.

ClobTransformer

You can use the ClobTransformer to create a string out of a CLOB in a database. A CLOB is a character large object: a collection of character
data typically stored in a separate location that is referenced in the database. See http://en.wikipedia.org/wiki/Character_large_object. Here's an
example of invoking the ClobTransformer.

Apache Solr Reference Guide 4.4 152

http://wiki.apache.org/solr/PathEntityProcessor
http://wiki.apache.org/solr/DIHCustomTransformer
http://en.wikipedia.org/wiki/Character_large_object

<entity name="e" transformer="Cl obTransformer" ..>
<field col um="hugeText Fi el d* clob="true" />

</entity>

The ClobTransformer accepts these attributes:

Attribute Description

clob Boolean value to signal if ClobTransformer should process this field or not. If this attribute is omitted, then the corresponding
field is not transformed.

sourceColName = The source column to be used as input. If this is absent source and target are same

The DateFormatTransformer

This transformer converts dates from one format to another. This would be useful, for example, in a situation where you wanted to convert a field
with a fully specified date/time into a less precise date format, for use in faceting.

DateFormatTransformer applies only on the fields with an attribute dat eTi neFor mat . Other fields are not modified.

This transformer recognizes the following attributes:

Attribute Description
dateTimeFormat = The format used for parsing this field. This must comply with the syntax of the JavaSimpleDateFormat class.
sourceColName | The column on which the dateFormat is to be applied. If this is absent source and target are same.

locale The locale to use for date transformations. If not specified, the ROOT locale will be used. It must be specified as
language-country. For example, en- US.

Here is example code that returns the date rounded up to the month "2007-JUL":

<entity name="en" pk="id" transforner="DateTi meTransformer" ... >

<field col um="date"
sour ceCol Narme="f ul | dat e"
dat eTi neFor nat ="yyyy- MW’/ >
</entity>

The HTMLStripTransformer

You can use this transformer to strip HTML out of a field. For example:

<entity name="e" transformer="HTM.StripTransformer" ..>
<field colum="htm Text" stripHTM.="true" />

</entity>

There is one attribute for this transformer, st r i pHTM., which is a boolean value (true/false) to signal if the HTMLStripTransformer should process
the field or not.

The LogTransformer

You can use this transformer to log data to the console or log files. For example:

Apache Solr Reference Guide 4.4 153

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

<entity
transf or ner ="LogTr ansf or mer "
| ogTenpl ate="The nanme is $\{e.nanme\}" |ogLevel ="debug" >

</entity>

Unlike other transformers, the LogTransformer does not apply to any field, so the attributes are applied on the entity itself.

The NumberFormatTransformer

Use this transformer to parse a number from a string, converting it into the specified format, and optionally using a different locale.
NumberFormatTransformer will be applied only to fields with an attribute f or mat St yl e.

This transformer recognizes the following attributes:

Attribute Description

formatStyle The format used for parsing this field. The value of the attribute must be one of (nunber | per cent | i nt eger | currency).
This uses the semantics of the Java NumberFormat class.

sourceColName = The column on which the NumberFormat is to be applied. This is attribute is absent. The source column and the target
column are the same.

locale The locale to be used for parsing the strings. If this is absent, the ROOT locale is used. It must be specified as
language-country. For example, en- US.

For example:
<entity nanme="en" pk="id" transforner="NunberFormat Transforner" ...>
<l-- treat this field as UK pounds -->

<field name="price_uk"
col um="pri ce"
format Styl e="currency”
| ocal e="en- K" />
</entity>

The RegexTransformer

The regex transformer helps in extracting or manipulating values from fields (from the source) using Regular Expressions. The actual class name
isorg. apache. sol r. handl er. dat ai nport. RegexTr ansf or mer . But as it belongs to the default package the package-name can be
omitted.

The table below describes the attributes recognized by the regex transformer.

Attribute Description

regex The regular expression that is used to match against the column or sourceColName's value(s). If replaceWith is absent, each
regex group is taken as a value and a list of values is returned.

sourceColName = The column on which the regex is to be applied. If not present, then the source and target are identical.
splitBy Used to split a string. It returns a list of values.

groupNames A comma separated list of field column names, used where the regex contains groups and each group is to be saved to a
different field. If some groups are not to be named leave a space between commas.

replaceWith Used along with regex . It is equivalent to the method new St ri ng(<sourceCol Val >) . repl aceAl | (<regex>,
<repl aceWth>).

Apache Solr Reference Guide 4.4 154

Here is an example of configuring the regex transformer:

<entity nanme="foo" transforner="RegexTransforner"
query="select full_name , emailids fromfoo"/>
/>
<field colum="full _nane"/>
<field colum="firstName" regex="M (\w*)\b.*" sourceCol Nanme="ful | _nanme"/ >
<field col um="1 ast Name" regex="M.*?\b(\w)" sourceCol Nanme="ful | _nanme"/ >

<! -- another way of doing the sane -->
<field col um="ful |l Name" regex="M(\w)\b(.*)" groupNanmes="first Nane, | ast Nane"/ >

<field colum="mailld" splitBy="," sourceCol Name="enailids"/>
</entity>

In this example, regex and sourceColName are custom attributes used by the transformer. The transformer reads the field f ul | _nane from the
resultset and transforms it to two new target fields, f i r st Narme and | ast Nane. Even though the query returned only one column, f ul | _nan®, in
the result set, the Solr document gets two extra fields f i r st Name and | ast Narre which are "derived" fields. These new fields are only created if
the regexp matches.

The emailids field in the table can be a comma-separated value. It ends up producing one or more email IDs, and we expect the mai | | d to be a
multivalued field in Solr.

Note that this transformer can either be used to split a string into tokens based on a splitBy pattern, or to perform a string substitution as per

replaceWith, or it can assign groups within a pattern to a list of groupNames. It decides what it is to do based upon the above attributes spl i t By,
repl aceW t h and gr oupNanes which are looked for in order. This first one found is acted upon and other unrelated attributes are ignored.

The ScriptTransformer

The script transformer allows arbitrary transformer functions to be written in any scripting language supported by Java, such as Javascript, JRuby,
Jython, Groovy, or BeanShell. Javascript is integrated into Java 6; you'll need to integrate other languages yourself.

Each function you write must accept a row variable (which corresponds to a Java Map<Stri ng, Qbj ect >, thus permitting get , put, r enove
operations). Thus you can modify the value of an existing field or add new fields. The return value of the function is the returned object.

The script is inserted into the DIH configuration file at the top level and is called once for each row.

Here is a simple example.

Apache Solr Reference Guide 4.4 155

<dat aconfi g>

<l-- sinple script to generate a new row, converting a tenperature from Fahrenheit
to Centigrade -->

<script>
<CDATA
function f2c(row) { var tenpf, tenmpc; tenpf = row.get('tenp_f'); if (tenpf !=
nul I') { tempc = (tenpf - 32.0)*5.0/9.0
row. put ('tenp_c', tenp_c);
}

return row,

}

>
</script>
<docunent >

<I-- the function is specified as an entity attribute -->
<entity nanme="el" pk="id" transforner="script:f2c" query="select * fromX"'>
</entity>

</ docunent >
</ dat aConfi g>

The TemplateTransformer

You can use the template transformer to construct or modify a field value, perhaps using the value of other fields. You can insert extra text into the
template.

<entity name="en" pk="id" transforner="Tenpl ateTransfornmer" ...>

<l-- generate a full address fromfields containing the component parts -->
<field colum="full_address"

tenpl ate="$en.\{street\}, $en\{city\}, $en\{zip\}" />

</entity>

Special Commands for the Data Import Handler

You can pass special commands to the DIH by adding any of the variables listed below to any row returned by any component:

Variable Description
$skipDoc Skip the current document; that is, do not add it to Solr. The value can be the string t r ue| f al se.
$skipRow Skip the current row. The document will be added with rows from other entities. The value can be the string

true| fal se
$docBoost Boost the current document. The boost value can be a number or the t oSt r i ng conversion of a number.
$deleteDocByld Delete a document from Solr with this ID. The value has to be the uni queKey value of the document.

$deleteDocByQuery = Delete documents from Solr using this query. The value must be a Solr Query.

De-Duplication

Apache Solr Reference Guide 4.4 156

Preventing duplicate or near duplicate documents from entering an index or tagging documents with a signature/fingerprint for duplicate field
collapsing can be efficiently achieved with a low collision or fuzzy hash algorithm. Solr natively supports de-duplication techniques of this type via
the <Si gnat ur e> class and allows for the easy addition of new hash/signature implementations. A Signature can be implemented several ways:
Method Description
MD5Signature 128 bit hash used for exact duplicate detection.

Lookup3Signature 64 bit hash used for exact duplicate detection, much faster than MD5 and smaller to index

TextProfileSignature = Fuzzy hashing implementation from nutch for near duplicate detection. Its tunable but works best on longer text.

Other, more sophisticated algorithms for fuzzy/near hashing can be added later.

1 Adding in the deduplication process will change the al | owDups setting so that it applies to an update Term (with

si gnat ur eFi el d in this case) rather than the unique field Term. Of course the si gnat ur eFi el d could be the unique field,
but generally you want the unique field to be unique. When a document is added, a signature will automatically be generated
and attached to the document in the specified si gnat ur eFi el d.

Configuration Options

In sol rconfig. xm

The Si gnat ur eUpdat ePr ocessor Fact or y has to be registered in the solrconfig.xml as part of the UpdateRequestProcessorChain:

<updat eRequest Pr ocessor Chai n nane="dedupe" >
<processor class="solr.processor. Si gnat ureUpdat eProcessor Factory" >
<bool nanme="enabl ed" >t rue</ bool >
<str name="signat ureFi el d">i d</str>
<bool nane="overw it eDupes">fal se</bool >
<str name="fiel ds">nan®, f eatures, cat</str>
<str name="signatured ass">sol r. processor. Lookup3Si gnat ure</str>
</ processor >
</ updat eRequest Pr ocessor Chai n>

Setting Default Description
signatureClass = org.apache.solr.update.processor.Lookup3Signature = A Signature implementation for generating a signature hash.

fields all fields The fields to use to generate the signature hash in a comma separated
list. By default, all fields on the document will be used.

signatureField = signatureField The name of the field used to hold the fingerprint/signature. Be sure the
field is defined in schema.xml.

enabled true Enable/disable deduplication factory processing

In schema. xm

If you are using a separate field for storing the signature you must have it indexed:

<field nane="signature" type="string" stored="true" indexed="true"
mul ti Val ued="f al se" />

Be sure to change your update handlers to use the defined chain, i.e.

Apache Solr Reference Guide 4.4 157

http://wiki.apache.org/solr/TextProfileSignature
http://wiki.apache.org/solr/UpdateRequestProcessor

<request Handl er name="/update" >
<l st name="defaul ts">
<str name="updat e. chai n" >dedupe</str>
</lst>
</ request Handl er >

@ The update processor can also be specified per request with a parameter of updat e. chai n=dedupe.

Detecting Languages During Indexing

Solr can identify languages and map text to language-specific fields during indexing using the | angi d UpdateRequestProcessor. Solr supports
two implementations of this feature:

® Tika's language detection feature: http://tika.apache.org/0.10/detection.html
® LangDetect language detection: http:/code.google.com/p/language-detection/

You can see a comparison between the two implementations here:
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html. In general, the LangDetect implementation supports more
languages with higher performance.

For specific information on each of these language identification implementations, including a list of supported languages for each, see the

relevant project websites. For more information about the | angi d UpdateRequestProcessor, see the Solr wiki:
http://wiki.apache.org/solr/LanguageDetection. For more information about language analysis in Solr, see Language Analysis.

Configuring Language Detection

You can configure the | angi d UpdateRequestProcessor in sol r conf i g. xm . Both implementations take the same parameters, which are
described in the following section. At a minimum, you must specify the fields for language identification and a field for the resulting language code.

Configuring Tika Language Detection

Here is an example of a minimal Tika | angi d configuration in sol r confi g. xm :

<processor
cl ass="org. apache. sol r. updat e. processor. Ti kaLanguagel denti fi er Updat ePr ocessor Fact ory" >
<l st name="defaul ts">
<str name="langid.fl">title, subject,text, keywords</str>
<str nanme="|angi d. | angFi el d">| anguage_s</str>
</lst>
</ processor >

Configuring LangDetect Language Detection

Here is an example of a minimal LangDetect | angi d configuration in sol r confi g. xm :

<processor
cl ass="org. apache. sol r. updat e. processor . LangDet ect Languagel denti fi er Updat ePr ocessor Fact o
<l st name="defaul ts">
<str nanme="langid.fl">title, subject,text, keywords</str>
<str nanme="|angi d. | angFi el d" >l anguage_s</str>
</lst>
</ processor >

Apache Solr Reference Guide 4.4 158

http://tika.apache.org/0.10/detection.html
http://code.google.com/p/language-detection/
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html
http://wiki.apache.org/solr/LanguageDetection

| angi d Parameters

As previously mentioned, both implementations of the | angi d UpdateRequestProcessor take the same parameters.

Parameter
langid

langid.fl
langid.langField
langid.langsField

langid.overwrite

langid.lcmap

langid.threshold

langid.whitelist

langid.map

langid.map.fl

langid.map.keepOrig

langid.map.individual

langid.map.individual.fl

langid.fallbackFields

langid.fallback

langid.map.lcmap

langid.map.pattern

Type
Boolean
string
string

mu Itivalued
string

Boolean

string

float

string

Boolean

string

Boolean

Boolean

string

string

string

string

Java
regular
expression

Apache Solr Reference Guide 4.4

Default
true
none
none
none

false

none

0.5

none

false

none

false

false

none

none

none

determined by
| angi d. | cmap

none

Required = Description

no

yes

yes

no

no

false

no

no

no

no

no

no

no

no

no

no

Enables and disables language detection.
A comma- or space-delimited list of fields to be processed by | angi d.
Specifies the field for the returned language code.

Specifies the field for a list of returned language codes. If you use
| angi d. map. i ndi vi dual , each detected language will be added to
this field.

Specifies whether the content of the | angFi el d and | angsFi el d fields
will be overwritten if they already contain values.

A space-separated list specifying colon delimited language code
mappings to apply to the detected languages. For example, you might
use this to map Chinese, Japanese, and Korean to a common cj k code,
and map both American and British English to a single en code by using
langi d. | cmap=ja:cjk zh:cjk ko:cjk en_GB:en en_US: en.
This affects both the values put into the | angFi el d and | angsFi el d
fields, as well as the field suffixes when using | angi d. map, unless
overridden by | angi d. map. | crmap

Specifies a threshold value between 0 and 1 that the language
identification score must reach before | angi d accepts it. With longer text
fields, a high threshold such at 0.8 will give good results. For shorter text
fields, you may need to lower the threshold for language identification,
though you will be risking somewhat lower quality results. We recommend
experimenting with your data to tune your results.

Specifies a list of allowed language identification codes. Use this in
combination with | angi d. map to ensure that you only index documents
into fields that are in your schema.

Enables field name mapping. If true, Solr will map field names for all fields
listedinl angi d. fl.

A comma-separated list of fields for | angi d. map that is different than the
fields specified in | angi d. f I .

If true, Solr will copy the field during the field name mapping process,
leaving the original field in place.

If true, Solr will detect and map languages for each field individually.

A comma-separated list of fields for use with | angi d. map. i ndi vi dual
that is different than the fields specified in | angi d. f I .

If no language is detected that meets the | angi d. t hr eshol d score, or
if the detected language is not on the | angi d. whi t el i st , this field
specifies language codes to be used as fallback values. If no appropriate
fallback languages are found, Solr will use the language code specified in
I angi d. f al | back.

Specifies a language code to use if no language is detected or specified
inl angi d. f al | backFi el ds.

A space-separated list specifying colon delimited language code
mappings to use when mapping field names. For example, you might use
this to make Chinese, Japanese, and Korean language fields use a
common * _cj k suffix, and map both American and British English fields
to a single * _en by using | angi d. nap. | cnap=j a: cj k zh: cj k

ko: cjk en_GB:en en_US: en.

By default, fields are mapped as <field>_<language>. To change this
pattern, you can specify a Java regular expression in this parameter.

159

langid.map.replace Java none no By default, fields are mapped as <field>_<language>. To change this
replace pattern, you can specify a Java replace in this parameter.

langid.enforceSchema = Boolean true no If false, the | angi d processor does not validate field names against your
schema. This may be useful if you plan to rename or delete fields later in
the UpdateChain.

Content Streams

When Solr RequestHandlers are accessed using path based URLs, the Sol r Quer yRequest object containing the parameters of the request
may also contain a list of ContentStreams containing bulk data for the request. (The hame SolrQueryRequest is a bit misleading: it is involved in
all requests, regardless of whether it is a query request or an update request.)

Stream Sources

Currently RequestHandlers can get content streams in a variety of ways:

® For multipart file uploads, each file is passed as a stream.
® For POST requests where the content-type is not appl i cati on/ x- www f or m ur | encoded, the raw POST body is passed as a

stream. The full POST body is parsed as parameters and included in the Solr parameters.
® The contents of parameter st r eam body is passed as a stream.
® |f remote streaming is enabled and URL content is called for during request handling, the contents of each st ream ur| and

stream fi | e parameters are fetched and passed as a stream.
By default, curl sends a cont ent Type="appl i cati on/ x- ww+ f or m ur | encoded" header. If you need to test a SolrContentHeader content
stream, you will need to set the content type with the "-H" flag.
RemoteStreaming

Remote streaming lets you send the contents of a URL as a stream to a given SolrRequestHandler. You could use remote streaming to send a
remote or local file to an update plugin. For security reasons, remote streaming is disabled in the sol rconfi g. xm included in the example

directory.

1, Ifyou enable streaming, be aware that this allows anyone to send a request to any URL or local file. If dump is enabled, it will
allow anyone to view any file on your system.

<!--Mke sure your system has authentication before enabling renote streaning!-->
<request Par sers enabl eRenot eStream ng="true" nul tipart Upl oadLi m t|nKB="2048" />

Debugging Requests

The example sol r confi g. xm includes a "dump" RequestHandler:

<r equest Handl er nanme="/debug/ dunp" cl ass="sol r. DunpRequest Handl er" />

This handler simply outputs the contents of the SolrQueryRequest using the specified writer type wt . This is a useful tool to help understand what
streams are available to the RequestHandlers.

UIMA Integration

You can integrate the Apache Unstructured Information Management Architecture (UIMA) with Solr. UIMA lets you define custom pipelines of
Analysis Engines that incrementally add metadata to your documents as annotations.

For more information about Solr UIMA integration, see https://wiki.apache.org/solr/SolrUIMA.

Configuring UIMA

The SolrUIMA UpdateRequestProcessor is a custom update request processor that takes documents being indexed, sends them to a UIMA

Apache Solr Reference Guide 4.4 160

https://uima.apache.org/
https://wiki.apache.org/solr/SolrUIMA

pipeline, and then returns the documents enriched with the specified metadata. To configure UIMA for Solr, follow these steps:

1. Copy apache-sol r-ui ma- 3. x. 0.j ar (under/apache-sol r-3. x. 0/ di st/) and its libraries (under cont ri b/ ui ma/1i b) to a Solr
libraries directory, or set <l i b/ > tags in sol rconfi g. xm appropriately to point to those jar files:

<lib dir="../../contrib/uina/lib" />
<lib dir="../../dist/" regex="apache-solr-uima-\d.*\.jar" />

2. Modify schema. xml , adding your desired metadata fields specifying proper values for type, indexed, stored, and multiValued options.
For example:

<field name="I| anguage" type="string" indexed="true" stored="true"
requi red="fal se"/>

<field nane="concept" type="string" indexed="true" stored="true"
mul ti Val ued="true" required="fal se"/>

<field name="sentence" type="text" indexed="true" stored="true"
mul ti Val ued="true" required="fal se" />

3. Add the following snippet to sol r confi g. xni :

<updat eRequest Pr ocessor Chai n nane="ui ma" >
<processor
cl ass="org. apache. sol r. ui ma. processor . U MAUpdat eRequest Processor Fact ory" >
<l st name="ui maConfi g">
<l st name="runti nmePar aneters">
<str name="keywor d_api key" >VALI D_ALCHEMYAPI _KEY</str >
<str name="concept _api key" >VALI D_ALCHEMYAPI _KEY</ str >
<str name="lang_api key" >VALI D_ALCHEMYAPI _KEY</str>
<str name="cat _api key">VALI D_ALCHEMYAP| _KEY</ st r>
<str name="entities_api key">VALI D_ALCHEMYAPI _KEY</str>
<str name="oc_licensel D'>VALI D OPENCALAI S KEY</str>
</lst>
<str
name="anal ysi séngi ne" >/ or g/ apache/ ui ma/ desc/ Over ri di ngPar ansExt Ser vi cesAE. xm </ str>
<l-- Set to true if you want to continue indexing even if text processing fails.
Default is false. That is, Solr throws RuntinmeException and
never indexed docunments entirely in your session. -->
<bool nane="ignoreErrors">true</bool >
<I-- This is optional. It is used for |ogging when text processing
fails.
If logField is not specified, uniqueKey will be used as | ogField.
<str name="| ogFi el d">i d</str>
-->
<l st nanme="anal yzeFi el ds" >
<bool name="nerge" >fal se</bool >
<arr name="fiel ds">
<str>text</str>
<larr>
</lst>
<l st name="fi el dvappi ngs" >
<l st name="type">
<str nanme="nane">or g. apache. ui ma. al cheny. ts. concept. Concept FS</str>

Apache Solr Reference Guide 4.4 161

<l st nanme="nmappi ng" >
<str name="feature">text</str>
<str name="fiel d">concept</str>
</lst>
</[lst>
<l st name="type">
<str
name="namne" >or g. apache. ui ma. al chemny. ts. | anguage. LanguageFS</ st r >
<l st name="mappi ng" >
<str nanme="feature">l anguage</str>
<str name="fiel d">l anguage</str>
</lst>
</[lst>
<l st name="type">
<str nanme="nane">or g. apache. ui ma. Sent enceAnnot ati on</str>
<l st name="mappi ng" >
<str name="feat ure">coveredText </str>
<str name="fiel d">sentence</str>
</lst>
</lst>
</[lst>
</lst>
</ processor >
<processor class="solr.LogUpdat eProcessor Factory" />

Apache Solr Reference Guide 4.4 162

<processor class="sol r. RunUpdat eProcessor Factory" />
</ updat eRequest Pr ocessor Chai n>

VALI D_ALCHEMYAPI _KEY is your AlchemyAPI Access Key. You need to register an AlchemyAPI Access key to use
AlchemyAPI services: http://www.alchemyapi.com/api/register.html.

=

VAL| D_OPENCALAI S_KEY is your Calais Service Key. You need to register a Calais Service key to use the Calais
services: http://www.opencalais.com/apikey.

anal ysi sengi ne must contain an AE descriptor inside the specified path in the classpath.

anal yzeFi el ds must contain the input fields that need to be analyzed by UIMA. If mer ge=t r ue then their content will
be merged and analyzed only once.

Field mapping describes which features of which types should go in a field.

4. Inyour sol rconfi g. xm replace the existing default UpdateRequestHandler or create a new UpdateRequestHandler:

<r equest Handl er nane="/update" class="sol r. Xm Updat eRequest Handl er" >
<l st name="defaul ts">
<str name="updat e. processor">ui ma</str>
</lst>
</ request Handl er >

Once you are done with the configuration your documents will be automatically enriched with the specified fields when you index them.

Apache Solr Reference Guide 4.4 163

http://www.alchemyapi.com/api/register.html
http://www.opencalais.com/apikey

Searching

This section describes how Solr works with search requests. It covers the following topics:
® Qverview of Searching in Solr: An introduction to searching with Solr.
® Velocity Search Ul: A sample search Ul in the example configuration using the VelocityResponseWriter.
® Relevance: Conceptual information about understanding relevance in search results.

® Query Syntax and Parsing: A brief conceptual overview of query syntax and parsing. It also contains the following sub-sections:
Common Query Parameters: No matter the query parser, there are several parameters that are common to all of them.
The Standard Query Parser: Detailed information about the standard Lucene query parser.

The DisMax Query Parser: Detailed information about Solr's DisMax query parser.

The Extended DisMax Query Parser: Detailed information about Solr's Extended DisMax (eDisMax) Query Parser.
Local Parameters in Queries: How to add local arguments to queries.

Other Parsers: More parsers designed for use in specific situations.

® Highlighting: Detailed information about Solr's highlighting utilities.

® MoreLikeThis: Detailed information about Solr's similar results query component.

® Faceting: Detailed information about categorizing search results based on indexed terms.

® Result Grouping: Detailed information about grouping results based on common field values.

® Spell Checking: Detailed information about Solr's spelling checker.

® Suggester: Detailed information about Solr's powerful autosuggest component.

® Function Queries: Detailed information about parameters for generating relevancy scores using values from one or more numeric fields.
® Spatial Search: How to use Solr's spatial search capabilities.

® The Terms Component: Detailed information about accessing indexed terms and the documents that include them.
® The Term Vector Component: How to get term information about specific documents.

® The Stats Component: How to return information from numeric fields within a document set.

® The Query Elevation Component: How to force documents to the top of the results for certain queries.

® Response Writers: Detailed information about configuring and using Solr's response writers.

® Near Real Time Searching: How to include documents in search results nearly immediately after they are indexed.

® RealTime Get: How to get the latest version of a document without opening a searcher.

Overview of Searching in Solr

Solr offers a rich, flexible set of features for search. To understand the extent of this flexibility, it's helpful to begin with an overview of the steps
and components involved in a Solr search.

When a user runs a search in Solr, the search query is processed by a request handler. A request handler is a Solr plug-in that defines the logic
to be used when Solr processes a request. Solr supports a variety of request handlers. Some are designed for processing search queries, while
others manage tasks such as index replication.

Search applications select a particular request handler by default. In addition, applications can be configured to allow users to override the default
selection in preference of a different request handler.

To process a search query, a request handler calls a query parser, which interprets the terms and parameters of a query. Different query parsers
support different syntax. The default query parser is the DisMax query parser. Solr also includes an earlier "standard" (Lucene) query parser, and
an Extended DisMax (eDisMax) query parser. The standard query parser's syntax allows for greater precision in searches, but the DisMax query
parser is much more tolerant of errors. The DisMax query parser is designed to provide an experience similar to that of popular search engines
such as Google, which rarely display syntax errors to users. The Extended DisMax query parser is an improved version of DisMax that handles
the full Lucene query syntax while still tolerating syntax errors. It also includes several additional features.

In addition, there are common query parameters that are accepted by all query parsers.

Input to a query parser can include:

Apache Solr Reference Guide 4.4 164

® search strings---that is, terms to search for in the index

® parameters for fine-tuning the query by increasing the importance of particular strings or fields, by applying Boolean logic among the
search terms, or by excluding content from the search results

® parameters for controlling the presentation of the query response, such as specifying the order in which results are to be presented or
limiting the response to particular fields of the search application's schema.

Search parameters may also specify a query filter. As part of a search response, a query filter runs a query against the entire index and caches
the results. Because Solr allocates a separate cache for filter queries, the strategic use of filter queries can improve search performance. (Despite
their similar names, query filters are not related to analysis filters. Query filters perform queries at search time against data already in the index,
while analysis filters, such as Tokenizers, parse content for indexing, following specified rules).

A search query can request that certain terms be highlighted in the search response; that is, the selected terms will be displayed in colored boxes
so that they "jump out" on the screen of search results. Highlighting can make it easier to find relevant passages in long documents returned in a
search. Solr supports multi-term highlighting. Solr includes a rich set of search parameters for controlling how terms are highlighted.

Search responses can also be configured to include snippets (document excerpts) featuring highlighted text. Popular search engines such as
Google and Yahoo! return snippets in their search results: 3-4 lines of text offering a description of a search result.

To help users zero in on the content they're looking for, Solr supports two special ways of grouping search results to aid further exploration:
faceting and clustering.

Faceting is the arrangement of search results into categories (which are based on indexed terms). Within each category, Solr reports on the
number of hits for relevant term, which is called a facet constraint. Faceting makes it easy for users to explore search results on sites such as
movie sites and product review sites, where there are many categories and many items within a category.

The image below shows an example of faceting from the CNET Web site, which was the first site to use Solr.

: Digital cameras The facet count or
Manufacturer is a constraint count shows
facet, a way of how many results
categorizing the Refine your results match each value
results
Mnnulaclurar Flemlullun Zoom range More
& 3K o 4% (1) & LCD size
Canon, Sony, and —* s ® B 12X (1) » Inans hablzer
Nikon are * Mo 2} * Fiash me
constraints, or & Okious . sge formal
facet values P . Ma
a6 &l ¥
youselected: | $400-3500 (@ | SR |@ | removest @ _—| Regular search results list l
The breadcrumb |~ i
frail shows what 17 results ﬁf n e
constrainis have
already been Show 10 % resulls perpage Soriby Review dale |« COMPARE SELECTED
apphied and allows -
E,E thair remaval " Canon EOS Rebel X5 (silver, with 18-55mm $453 to 5693
e e |E-I'|5' at 156 stores D

Faceting makes use of fields defined when the search applications were indexed. In the example above, these fields include categories of
information that are useful for describing digital cameras: manufacturer, resolution, and zoom range.

Clustering groups search results by similarities discovered when a search is executed, rather than when content is indexed. The results of
clustering often lack the neat hierarchical organization found in faceted search results, but clustering can be useful nonetheless. It can reveal
unexpected commonalities among search results, and it can help users rule out content that isn't pertinent to what they're really searching for.

Solr also supports a feature called MoreLikeThis, which enables users to submit new queries that focus on particular terms returned in an earlier
query. MoreLikeThis queries can make use of faceting or clustering to provide additional aid to users.

A Solr component called a response writer manages the final presentation of the query response. Solr includes a variety of response writers,
including an XML Response Writer and a JSON Response Writer.

The diagram below summarizes some key elements of the search process.

Apache Solr Reference Guide 4.4 165

qt: selects a RequestHandler for a query using /select (by default, the DisMax RequestHandler is used)

Request

defType: selacts a query parser for the query
Handler {by default, uses whatever has been configured
for the RequestHandler)

RESDOHSE
Writer

Query

Parser gf: selects which fields to query
in the index (by default, all

fields are queriad)

whi: selects aresponss writer for formatting
tha query responss

fy: filters the query by applying an additional query
to the initial query's results: caches the results

Index

rows: spacifiesthe

number of Fows start: specifies an offset
to be displayed {by default &) into
at one Hme the query results where

the returned response
should begin

Velocity Search Ul

Solr includes a sample search Ul based on the VelocityResponseWriter (also known as Solritas) that demonstrates several useful features, such
as searching, faceting, highlighting, autocomplete, and geospatial searching.

You can access the Velocity sample Search Ul here: htt p: / /1 ocal host: 8983/ sol r/ br owse

Apache Solr Reference Guide 4.4 166

http://localhost:8983/solr/browse

Solritas
/@ Solritas L+ L h4
4 B localhost:8983/solr/browse v || (8~ startingpa) | A | |3~ |-

3
N\

Apache
Solr

Examples: Simple Spatial

Fi n d . (“submit Query) (Reset)

Conmmimiaey =

oBoost by Price

Field Faceis 17 results found in 98 ms Page 1 of 2
Test with some GB18030 encoded ch More Liks This
Price: $0.00
Features: No accents here iXE—TIHEE This is a feature (translated) X3 3C#4Z{RH 3 This document is very shiny (translated)
In Stock: true

Samsung SpinPoint P120 SP2514N - hard drive - 250 GB - ATA-133 More Like This
Price: $92.00

Features: 7200RPM, 8MB cache, IDE Ultra ATA-133 NoiseGuard, SilentSeek technology, Fluid Dynamic Bearing (FDB)
motor

In Stock: true

Maxtor DiamondMax 11 - hard drive - 500 GB - SATA-300 More Like This
Price: $350.00
Features: SATA 3.0Gb/s, NCQ 8.5ms seek 16MB cache

In Stock: true

NZL Py o
o
o

o

Belkin Mobile Power Cord for iPod w/ Dock More Like This
Price: $19.95

g
2
2
B
z

Features: car power adapter, white

In Stock: false

iPod & iPod Mini USB 2.0 Cable More Like This

Price: $11.60 ove E..m$:
“ San y

Mrnins Emmndn Features: car power adaoter for iPod. white

The Velocity Search Ul

For more information about the Velocity Response Writer, see the Response Writer page.

Relevance

Relevance is the degree to which a query response satisfies a user who is searching for information.

The relevance of a query response depends on the context in which the query was performed. A single search application may be used in
different contexts by users with different needs and expectations. For example, a search engine of climate data might be used by a university
researcher studying long-term climate trends, a farmer interested in calculating the likely date of the last frost of spring, a civil engineer interested
in rainfall patterns and the frequency of floods, and a college student planning a vacation to a region and wondering what to pack. Because the
motivations of these users vary, the relevance of any particular response to a query will vary as well.

How comprehensive should query responses be? Like relevance in general, the answer to this question depends on the context of a search. The
cost of not finding a particular document in response to a query is high in some contexts, such as a legal e-discovery search in response to a
subpoena, and quite low in others, such as a search for a cake recipe on a Web site with dozens or hundreds of cake recipes. When configuring
Solr, you should weigh comprehensiveness against other factors such as timeliness and ease-of-use.

The e-discovery and recipe examples demonstrate the importance of two concepts related to relevance:

® Precision is the percentage of documents in the returned results that are relevant.

® Recall is the percentage of relevant results returned out of all relevant results in the system. Obtaining perfect recall is trivial: simply

return every document in the collection for every query.

Returning to the examples above, it's important for an e-discovery search application to have 100% recall returning all the documents that are
relevant to a subpoena. It's far less important that a recipe application offer this degree of precision, however. In some cases, returning too many
results in casual contexts could overwhelm users. In some contexts, returning fewer results that have a higher likelihood of relevance may be the
best approach.

Using the concepts of precision and recall, it's possible to quantify relevance across users and queries for a collection of documents. A perfect

Apache Solr Reference Guide 4.4 167

system would have 100% precision and 100% recall for every user and every query. In other words, it would retrieve all the relevant documents
and nothing else. In practical terms, when talking about precision and recall in real systems, it is common to focus on precision and recall at a
certain number of results, the most common (and useful) being ten results.

Through faceting, query filters, and other search components, a Solr application can be configured with the flexibility to help users fine-tune their
searches in order to return the most relevant results for users. That is, Solr can be configured to balance precision and recall to meet the needs of
a particular user community.

The configuration of a Solr application should take into account:

® the needs of the application's various users (which can include ease of use and speed of response, in addition to strictly informational
needs)

® the categories that are meaningful to these users in their various contexts (e.g., dates, product categories, or regions)

® any inherent relevance of documents (e.g., it might make sense to ensure that an official product description or FAQ is always returned
near the top of the search results)

® whether or not the age of documents matters significantly (in some contexts, the most recent documents might always be the most
important)

Keeping all these factors in mind, it's often helpful in the planning stages of a Solr deployment to sketch out the types of responses you think the
search application should return for sample queries. Once the application is up and running, you can employ a series of testing methodologies,
such as focus groups, in-house testing, TREC tests and A/B testing to fine tune the configuration of the application to best meet the needs of its
users.

For more information about relevance, see Grant Ingersoll's tech article Debugging Search Application Relevance Issues which is available on
SearchHub.org.

Query Syntax and Parsing

Solr supports several query parsers, offering search application designers great flexibility in controlling how queries are parsed.
This section explains how to specify the query parser to be used. It also describes the syntax and features supported by the main query parsers
included with Solr and describes some other parsers that may be useful for particular situations. There are some query parameters common to all
Solr parsers; these are discussed in the section Common Query Parameters.
The parsers discussed in this Guide are:

® The Standard Query Parser

® The DisMax Query Parser

®* The Extended DisMax Query Parser

® Other Parsers

The query parser plugins are all subclasses of http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/search/QParserPlugin.html. If you
have custom parsing needs, you may want to extend that class to create your own query parser.

For more detailed information about the many query parsers available in Solr, see https://wiki.apache.org/solr/SolrQuerySyntax.

Common Query Parameters

The table below summarizes Solr's common query parameters, which are supported by the Standard, DisMax, and eDisMax Request Handlers.

Parameter Description

defType Selects the query parser to be used to process the query.

sort Sorts the response to a query in either ascending or descending order based on the response's score or another specified
characteristic.

start Specifies an offset (by default, 0) into the responses at which Solr should begin displaying content.

rows Controls how many rows of responses are displayed at a time (default value: 10)

fq Applies a filter query to the search results.

fl With version 3.6, Solr limited the query's responses to a listed set of fields. With version 4.0, this parameter returns only the
score.

debug Request additional debugging information in the response. Specifying the debug=t i m ng parameter returns just the timing

information; specifying the debug=r esul t s parameter returns "explain" information for each of the documents returned;
specifying the debug=query par anet er returns all of the debug information.

Apache Solr Reference Guide 4.4 168

http://trec.nist.gov
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/search/QParserPlugin.html
https://wiki.apache.org/solr/SolrQuerySyntax

explainOther = Allows clients to specify a Lucene query to identify a set of documents. If non-blank, the explain info of each document which
matches this query, relative to the main query (specified by the q parameter) will be returned along with the rest of the
debugging information.

timeAllowed = Defines the time allowed for the query to be processed. If the time elapses before the query response is complete, partial
information may be returned.

omitHeader = Excludes the header from the returned results, if set to true. The header contains information about the request, such as the
time the request took to complete. The default is false.

wit Specifies the Response Writer to be used to format the query response.

cache=false = By default, Solr caches the results of all queries and filter queries. Set cache=f al se to disable caching of the results of a
query.

The following sections describe these parameters in detail.

The def Type Parameter

The defType parameter selects the query parser that Solr should use to process the request. For example:
def Type=di snmax

In Solr 1.3 and later, the query parser is set to dismax by default.

The sort Parameter

The sort parameter arranges search results in either ascending (asc) or descending (desc) order. The parameter can be used with either
numerical or alphabetical content. The directions can be entered in either all lowercase or all uppercase letters (i.e., both asc or ASC).

Solr can sort query responses according to document scores or the value of any indexed field with a single value (that is, any field whose
attributes in schena. xm include mul ti Val ued="f al se" and i ndexed="t r ue"), provided that:

¢ the field is non-tokenized (that is, the field has no analyzer and its contents have been parsed into tokens, which would make the sorting
inconsistent), or

® the field uses an analyzer (such as the KeywordTokenizer) that produces only a single term.

If you want to be able to sort on a field whose contents you want to tokenize to facilitate searching, use the <copyFi el d> directive in the
schema. xn file to clone the field. Then search on the field and sort on its clone.

The table explains how Solr responds to various settings of the sort parameter.

Example Result

If the sort parameter is omitted, sorting is performed as though the parameter were set to score desc.
score desc Sorts in descending order from the highest score to the lowest score.
price asc Sorts in ascending order of the price field

inStock desc, price = Sorts by the contents of the i nSt ock field in descending order, then within those results sorts in ascending order by the
asc contents of the price field.

Regarding the sort parameter's arguments:

® A sort ordering must include a field name (or scor e as a pseudo field), followed by whitespace (escaped as + or %20 in URL strings),
followed by a sort direction (asc or desc).

® Multiple sort orderings can be separated by a comma, using this syntax: sort =<fi el d name>+<di rection>, <fiel d
name>+<di rection>], ...

The st art Parameter
When specified, the st art parameter specifies an offset into a query's result set and instructs Solr to begin displaying results from this offset.
The default value is "0". In other words, by default, Solr returns results without an offset, beginning where the results themselves begin.

Setting the st art parameter to some other number, such as 3, causes Solr to skip over the preceding records and start at the document
identified by the offset.

You can use the st art parameter this way for paging. For example, if the r ows parameter is set to 10, you could display three successive pages

Apache Solr Reference Guide 4.4 169

of results by setting start to 0, then re-issuing the same query and setting start to 10, then issuing the query again and setting start to 20.

The r ows Parameter

You can use the rows parameter to paginate results from a query. The parameter specifies the maximum number of documents from the
complete result set that Solr should return to the client at one time.

The default value is 10. That is, by default, Solr returns 10 documents at a time in response to a query.

The f q (Filter Query) Parameter

The f g parameter defines a query that can be used to restrict the superset of documents that can be returned, without influencing score. It can be
very useful for speeding up complex queries, since the queries specified with f q are cached independently of the main query. When a later query
uses the same filter, there's a cache hit, and filter results are returned quickly from the cache.

When using the f g parameter, keep in mind the following:

® The f g parameter can be specified multiple times in a query. Documents will only be included in the result if they are in the intersection of
the document sets resulting from each instance of the parameter. In the example below, only documents which have a popularity greater
then 10 and have a section of 0 will match.

fg=popularity:[10 TO *] & g=section: 0

® Filter queries can involve complicated Boolean queries. The above example could also be written as a single f g with two mandatory
clauses like so:

fg=+popul arity:[10 TO *] +section: 0

®* The document sets from each filter query are cached independently. Thus, concerning the previous examples: use a single f q containing
two mandatory clauses if those clauses appear together often, and use two separate f q parameters if they are relatively independent.
(To learn about tuning cache sizes and making sure a filter cache actually exists, see The Well-Configured Solr Instance.)

® As with all parameters: special characters in an URL need to be properly escaped and encoded as hex values. Online tools are available
to help you with URL-encoding. For example: http://meyerweb.com/eric/tools/dencoder/.

The f| (Field List) Parameter

The f | parameter limits the information included in a query response to a specified list of fields. The fields need to have been indexed as stored
for this parameter to work correctly.

The field list can be specified as a space-separated or comma-separated list of field names. The string "score" can be used to indicate that the
score of each document for the particular query should be returned as a field. The wildcard character "*" selects all the stored fields in a
document. You can also add psuedo-fields, functions and transformers to the field list request.

This table shows some basic examples of how to use f 1 :

Field List Result
id name price | Return only the id, name, and price fields.
id,name,price = Return only the id, name, and price fields.

id name, price | Return only the id, name, and price fields.

id score Return the id field and the score.
* Return all the fields in each document. This is the default value of the fl parameter.
* score Return all the fields in each document, along with each field's score.

Document Transformers

Transformers modify fields returned with the query response. Transformers must first be configured in sol r confi g. xm . The sample
sol rconfi g. xm has a few examples commented out which could be enabled, but others could be added. Then the transformers could be

Apache Solr Reference Guide 4.4 170

http://meyerweb.com/eric/tools/dencoder/

added to the query request and the response will be modified accordingly.

For example, if you have enabled a transformer called "elevated”, you could mark all documents that have been elevated with the
QueryElevationComponent. One way to do that is to make this entry in sol r confi g. xm :

<transfornmer name="el evat ed"
cl ass="org. apache. sol r. response. transform Edi t ori al Marker Factory" />

Then, you would include [el evat ed] in the part of your request where you define the fields to return:

fl=id,title,[el evated]

Other common examples are to add "explain” information, add a constant "value" to all documents, or add the "shard" the document has been
indexed on. For more information about transformers, see also http://wiki.apache.org/solr/DocTransformers.

Field Name Aliases

You can change the name a field is returned with by passing a parameter of f i el dNane: di spl ayNane. This will change the name of the field in
the response to the di spl ayNane. For example:

fl=id, price:sale_price

The debug Parameter

In Solr 4, requesting debugging information with results has been simplified from a suite of related parameters to a single parameter that takes
format information as arguments. The parameter is now simply debug, with the following arguments:

® debug=t r ue: return debug information about the query only.

® debug=query: return debug information about the query only.

® debug=ti m ng: return debug information about how long the query took to process.

¢ debug=resul t s: return debug information about the results (also known as "explain")

The default behavior is not to include debugging information.

The expl ai nQt her Parameter

The expl ai nQt her parameter specifies a Lucene query in order to identify a set of documents. If this parameter is included and is set to a
non-blank value, the query will return debugging information, along with the "explain info" of each document that matches the Lucene query,
relative to the main query (which is specified by the q parameter). For example:

g=supervil | i ans&lebugQuer y=on&expl ai nQt her =i d: j ugger naut

The query above allows you to examine the scoring explain info of the top matching documents, compare it to the explain info for documents
matching i d: j ugger naut , and determine why the rankings are not as you expect.

The default value of this parameter is blank, which causes no extra "explain info" to be returned.
The ti neAl | owed Parameter

This parameter specifies the amount of time, in milliseconds, allowed for a search to complete. If this time expires before the search is complete,
any partial results will be returned.

The om t Header Parameter

This parameter may be set to either true or false.

If set to true, this parameter excludes the header from the returned results. The header contains information about the request, such as the time it
took to complete. The default value for this parameter is false.

Apache Solr Reference Guide 4.4 171

http://wiki.apache.org/solr/DocTransformers

The wt Parameter

The wt parameter selects the Response Writer that Solr should use to format the query's response. For detailed descriptions of Response
Writers, see Response Writers.

The cache=false Parameter
Solr caches the results of all queries and filter queries by default. To disable result caching, set the cache=f al se parameter.

You can also use the cost option to control the order in which non-cached filter queries are evaluated. This allows you to order less expensive
non-cached filters before expensive non-cached filters.

For very high cost filters, if cache=f al se and cost >=100 and the query implements the Post Fi | t er interface, a Collector will be requested
from that query and used to filter documents after they have matched the main query and all other filter queries. There can be multiple post filters;
they are also ordered by cost.

For example:

/1 normal function range query used as a filter, all matching documents generated up
front and cached
fqg={!frange | =10 u=100} nul (popul arity, price)

/1 function range query run in parallel with the main query like a traditional |ucene
filter
fg={!frange | =10 u=100 cache=fal se} mul (popul arity, price)

/1 function range query checked after each docunent that already natches the query and
all other filters.

Good for really expensive function queries.
fg={!frange | =10 u=100 cache=fal se cost=100}nul (popul arity, price)

The Standard Query Parser

Before Solr 1.3, the Standard Request Handler called the standard query parser as the default query parser. In versions since Solr 1.3, the
Standard Request Handler calls the DisMax query parser as the default query parser. You can configure Solr to call the standard query parser
instead, if you like.

The advantage of the standard query parser is that it enables users to specify very precise queries. The disadvantage is that it is less tolerant of
syntax errors than the DisMax query parser. The DisMax query parser is designed to throw as few errors as possible.

Topics covered in this section:

Standard Query Parser Parameters

The Standard Query Parser's Response

Specifying Terms for the Standard Query Parser

Specifying Fields in a Query to the Standard Query Parser

Boolean Operators Supported by the Standard Query Parser

Grouping Terms to Form Sub-Queries

Differences between Lucene Query Parser and the Solr Standard Query Parser
Related Topics

Standard Query Parser Parameters

In addition to the Common Query Parameters, Faceting Parameters, Highlighting Parameters, and MoreLikeThis Parameters, the standard query
parser supports the parameters described in the table below.

Parameter Description
q Defines a query using standard query syntax. This parameter is mandatory.

g.op Specifies the default operator for query expressions, overriding the default operator specified in the schema. xm file. Possible
values are "AND" or "OR".

Apache Solr Reference Guide 4.4 172

df Specifies a default field, overriding the definition of a default field in the schema. xmi file.
Default parameter values are specified in sol r confi g. xnl , or overridden by query-time values in the request.

The Standard Query Parser's Response

By default, the response from the standard query parser contains one <r esul t > block, which is unnamed. If the debugQuer y parameter is
used, then an additional <I st > block will be returned, using the name "debug". This will contain useful debugging info, including the original
query string, the parsed query string, and explain info for each document in the <result> block. If the expl ai nQt her parameter is also used, then
additional explain info will be provided for all the documents matching that query.

Sample Responses

This section presents examples of responses from the standard query parser.

The URL below submits a simple query and requests the XML Response Writer to use indentation to make the XML response more readable.
http://yourhost.tld: 9999/ sol r/sel ect ?2q=i d: SP2514N&ver si on=2. 1& ndent =1

Results:

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<r esponseHeader ><st at us>0</ st at us><QTi ne>1</ QTi me></r esponseHeader >
<result nunfFound="1" start="0">
<doc>
<arr name="cat"><str>el ectroni cs</str><str>hard drive</str></arr>
<arr name="features"><str>7200RPM 8MB cache, IDE Utra ATA-133</str>
<str>Noi se@uard, SilentSeek technol ogy, Fluid Dynanic Bearing (FDB)
notor</str></arr>
<str name="id">SP2514N</str>
<bool name="inSt ock">true</bool >
<str name="manu">Sanmsung El ectronics Co. Ltd.</str>
<str name="nane" >Sansung Spi nPoi nt P120 SP2514N - hard drive - 250 GB -
ATA-133</str>
<int name="popul arity">6</int>
<fl oat nane="price">92. 0</fl oat >
<str name="sku">SP2514N</str>
</ doc>
</result>
</ response>

Here's an example of a query with a limited field list.

http://yourhost.tld: 9999/ sol r/ sel ect ?g=i d: SP2514N&ver si on=2. 1& ndent =1&f | =i d+nane

Results:

Apache Solr Reference Guide 4.4 173

http://yourhost.tld:9999/solr/select?q=id:SP2514N&version=2.1&indent=1

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<r esponseHeader ><st at us>0</ st at us><QTi ne>2</ QTi ne></r esponseHeader >
<result nunfFound="1" start="0">
<doc>
<str nanme="id">SP2514N</str>
<str nanme="nane">Sanmsung Spi nPoi nt P120 SP2514N - hard drive - 250 GB -
ATA-133</str>
</ doc>
</result>
</ response>

Specifying Terms for the Standard Query Parser

A query to the standard query parser is broken up into terms and operators. There are two types of terms: single terms and phrases.

® Asingle term is a single word such as "test" or "hello"
® A phrase is a group of words surrounded by double quotes such as "hello dolly"

Multiple terms can be combined together with Boolean operators to form more complex queries (as described below).

1, Itisimportant that the analyzer used for queries parses terms and phrases in a way that is consistent with the way the analyzer
used for indexing parses terms and phrases; otherwise, searches may produce unexpected results.

Term Modifiers

Solr supports a variety of term modifiers that add flexibility or precision, as needed, to searches. These modifiers include wildcard characters,
characters for making a search "fuzzy" or more general, and so on. The sections below describe these modifiers in detail.

Wildcard Searches

Solr's standard query parser supports single and multiple character wildcard searches within single terms. Wildcard characters can be applied to
single terms, but not to search phrases.

Wildcard Search Type Special Example
Character
Single character (matches a single character) ? The search string t e?t would match both test and text.
Multiple characters (matches zero or more sequential * The wildcard search:
characters)
tes*

would match test, testing, and tester.

You can also use wildcard characters in the middle of a term. For
example:

te*t
would match test and text.
*est

would match pest and test.

H As of Solr 1.4, you can use a * or ? symbol as the first character of a search with the standard query parser.

i}

Fuzzy Searches

Apache Solr Reference Guide 4.4 174

Solr's standard query parser supports fuzzy searches based on the Levenshtein Distance or Edit Distance algorithm. Fuzzy searches discover
terms that are similar to a specified term without necessarily being an exact match. To perform a fuzzy search, use the tilde ~ symbol at the end
of a single-word term. For example, to search for a term similar in spelling to "roam," use the fuzzy search:

roam-

This search will match terms like foam and roams. It will also match the word "roam" itself.

An optional, additional parameter specifies the degree of similarity required for a match in a fuzzy search. The value must be between 0 and 1.
When set closer to 1, the optional parameter causes only terms with a higher similarity to be matched. For example, the search below requires a
high degree of similarity to the term "roam" in order for Solr to return a match:

roam-0. 8

If this numerical parameter is omitted, Lucene performs the search as though the parameter were set to 0.5. The sample query above is not very

scalable. Upon parsing this query will check the quasi-edit distance for every term in the index. As a result, this query is practical for only very
small indexes.

. In many cases, stemming (reducing terms to a common stem) can produce similar effects to fuzzy searches and wildcard
searches.

Proximity Searches

A proximity search looks for terms that are within a specific distance from one another.

To perform a proximity search, add the tilde character ~ and a numeric value to the end of a search phrase. For example, to search for a "apache"
and "jakarta" within 10 words of each other in a document, use the search:

"jakarta apache"~10
The distance referred to here is the number of term movements needed to match the specified phrase. In the example above, if "apache" and

"jakarta" were 10 spaces apart in a field, but "apache" appeared before "jakarta", more than 10 term movements would be required to move the
terms together and position "apache" to the right of "jakarta” with a space in between.

Range Searches

A range search specifies a range of values for a field (a range with an upper bound and a lower bound). The query matches documents whose
values for the specified field or fields fall within the range. Range queries can be inclusive or exclusive of the upper and lower bounds. Sorting is
done lexicographically, except on numeric fields. For example, the range query below matches all documents whose nod_dat e field has a value
between 20020101 and 20030101, inclusive.
nod_dat e: [20020101 TO 20030101]
Range queries are not limited to date fields or even numerical fields. You could also use range queries with non-date fields:
title:{Aida TO Carnen}
This will find all documents whose titles are between Aida and Carmen, but not including Aida and Carmen.
The brackets around a query determine its inclusiveness.

® Square brackets [] denote an inclusive range query that matches values including the upper and lower bound.

® Curly brackets { } denote an exclusive range query that matches values between the upper and lower bounds, but excluding the upper
and lower bounds themselves.

Boosting a Term with »

Lucene/Solr provides the relevance level of matching documents based on the terms found. To boost a term use the caret symbol ~ with a boost
factor (a number) at the end of the term you are searching. The higher the boost factor, the more relevant the term will be.

Boosting allows you to control the relevance of a document by boosting its term. For example, if you are searching for

"jakarta apache" and you want the term "jakarta" to be more relevant, you can boost it by adding the » symbol along with the boost factor
immediately after the term. For example, you could type:

j akarta”4 apache
This will make documents with the term jakarta appear more relevant. You can also boost Phrase Terms as in the example:

"jakarta apache"”4 "Apache Lucene"

Apache Solr Reference Guide 4.4 175

By default, the boost factor is 1. Although the boost factor must be positive, it can be less than 1 (for example, it could be 0.2).

Specifying Fields in a Query to the Standard Query Parser

Data indexed in Solr is organized in fields, which are defined in the Solr scherma. xml file. Searches can take advantage of fields to add precision
to queries. For example, you can search for a term only in a specific field, such as a title field.

The schema. xm file defines one field as a default field. If you do not specify a field in a query, Solr searches only the default field. Alternatively,
you can specify a different field or a combination of fields in a query.

To specify a field, type the field name followed by a colon ":" and then the term you are searching for within the field.

For example, suppose an index contains two fields, title and text,and that text is the default field. If you want to find a document called "The Right
Way" which contains the text "don't go this way," you could include either of the following terms in your search query:

title:"The Ri ght Way" AND text:go
title:"Do it right" AND go
Since text is the default field, the field indicator is not required; hence the second query above omits it.

The field is only valid for the term that it directly precedes, so the querytitle: Do it right will find only "Do" in the title field. It will find "it" and
"right" in the default field (in this case the text field).

Boolean Operators Supported by the Standard Query Parser

Boolean operators allow you to apply Boolean logic to queries, requiring the presence or absence of specific terms or conditions in fields in order
to match documents. The table below summarizes the Boolean operators supported by the standard query parser.

Boolean Alternative Description
Operator Symbol

AND && Requires both terms on either side of the Boolean operator to be present for a match.
NOT ! Requires that the following term not be present.
OR Il Requires that either term (or both terms) be present for a match.

+ Requires that the following term be present.

- Prohibits the following term (that is, matches on fields or documents that do not include that term). The - operator is
functional similar to the Boolean operator !. Because it's used by popular search engines such as Google, it may be
more familiar to some user communities.

Boolean operators allow terms to be combined through logic operators. Lucene supports AND, "+", OR, NOT and "-" as Boolean operators.

!, When specifying Boolean operators with keywords such as AND or NOT, the keywords must appear in all uppercase.

The standard query parser supports all the Boolean operators listed in the table above. The DisMax query parser supports only
+and -.

The OR operator is the default conjunction operator. This means that if there is no Boolean operator between two terms, the OR operator is used.
The OR operator links two terms and finds a matching document if either of the terms exist in a document. This is equivalent to a union using
sets. The symbol || can be used in place of the word OR.

In the schema. xni file, you can specify which symbols can take the place of Boolean operators such as OR. To search for documents that
contain either "jakarta apache" or just “jakarta," use the query:

"jakarta apache" jakarta
or

"jakarta apache" OR jakarta

The Boolean Operator +

The + symbol (also known as the "required" operator) requires that the term after the + symbol exist somewhere in a field in at least one
document in order for the query to return a match.

Apache Solr Reference Guide 4.4 176

For example, to search for documents that must contain “jakarta” and that may or may not contain "lucene," use the following query:

+j akarta | ucene

lﬂl This operator is supported by both the standard query parser and the DisMax query parser.

The Boolean Operator AND (&&)

The AND operator matches documents where both terms exist anywhere in the text of a single document. This is equivalent to an intersection
using sets. The symbol && can be used in place of the word AND.

To search for documents that contain "jakarta apache" and "Apache Lucene," use either of the following queries:
"jakarta apache" AND "Apache Lucene"

"jakarta apache" && "Apache Lucene"

The Boolean Operator NOT (!)

The NOT operator excludes documents that contain the term after NOT. This is equivalent to a difference using sets. The symbol ! can be used in
place of the word NOT.

The following queries search for documents that contain the phrase "jakarta apache" but do not contain the phrase "Apache Lucene":
"jakarta apache" NOT "Apache Lucene"

"jakarta apache" ! "Apache Lucene"

The Boolean Operator -
The - symbol or "prohibit" operator excludes documents that contain the term after the - symbol.
For example, to search for documents that contain "jakarta apache" but not "Apache Lucene," use the following query:

"jakarta apache" -"Apache Lucene"

Escaping Special Characters

Solr gives the following characters special meaning when they appear in a query:
+-&&|ITO N ~*20)
To make Solr interpret any of these characters literally, rather as a special character, precede the character with a backslash character \. For

example, to search for (1+1):2 without having Solr interpret the plus sign and parentheses as special characters for formulating a sub-query with
two terms, escape the characters by preceding each one with a backslash:

V(1\V+1\)\ ;2

Grouping Terms to Form Sub-Queries

Lucene/Solr supports using parentheses to group clauses to form sub-queries. This can be very useful if you want to control the Boolean logic for
a query.

The query below searches for either "jakarta" or "apache" and "website":
(jakarta OR apache) AND website

This adds precision to the query, requiring that the term "website" exist, along with either term “jakarta" and "apache."

Grouping Clauses within a Field

To apply two or more Boolean operators to a single field in a search, group the Boolean clauses within parentheses. For example, the query
below searches for a title field that contains both the word "return" and the phrase "pink panther":

title:(+return +"pink panther")

Apache Solr Reference Guide 4.4 177

Differences between Lucene Query Parser and the Solr Standard Query Parser

Solr's standard query parser differs from the Lucene Query Parser in the following ways:

®* A *may be used for either or both endpoints to specify an open-ended range query
® field:[* TO 100] finds all field values less than or equal to 100
® field:[100 TO *] finds all field values greater than or equal to 100
® field:[* TO *] matches all documents with the field
® Pure negative queries (all clauses prohibited) are allowed (only as a top-level clause)
® -inStock: fal se finds all field values where inStock is not false
* -field:[* TO *] finds all documents without a value for field
® A hook into FunctionQuery syntax. You'll need to use quotes to encapsulate the function if it includes parentheses, as shown in the
second example below:
® val:nyfield
® val:"recip(rord(nyfield),1,2,3)"
® Support for any type of query parser. Prior to Solr 4.1, the "magic" field "_quer y_ needed to be used to nest another query parser.
However, with Solr 4.1, other query parsers can be used directly using the local parameters syntax.
® {l geodi st d=10 p=20. 5, 30. 2}
® Range queries ("[a TO z]"), prefix queries ("a*"), and wildcard queries ("a*b") are constant-scoring (all matching documents get an equal
score). The scoring factors TF, IDF, index boost, and "coord" are not used. There is no limitation on the number of terms that match (as
there was in past versions of Lucene).

Specifying Dates and Times

If you use the Solr Dat eFi el d type, any queries on those fields (typically range queries) should use the TrieDate Field. Here are some examples
of valid parameters using syntax appropriate for the DateField type:

® timestanp: [*TO NOW

® createdate:[1976-03-06T23: 59: 59. 999Z TO *]

® createdate:[1995-12-31T23:59: 59.999Z TO 2007- 03- 06T00: 00: 00Z]

® pubdat e: [NOW 1YEAR/ DAY TO NOW DAY+1DAY]

® createdate:[1976-03-06T23: 59: 59. 999Z TO 1976- 03-06T23: 59: 59. 999Z+1YEAR]
® createdate:[1976-03-06T23: 59: 59. 9997/ YEAR TO 1976- 03- 06T23: 59: 59. 9997]

Related Topics

® |ocal Parameters in Queries
® Other Parsers

The DisMax Query Parser

The DisMax query parser is designed to process simple phrases (without complex syntax) entered by users and to search for individual terms
across several fields using different weighting (boosts) based on the significance of each field. Additional options enable users to influence the
score based on rules specific to each use case (independent of user input).

In general, the DisMax query parser's interface is more like that of Google than the interface of the 'standard’ Solr request handler. This similarity
makes DisMax the appropriate query parser for many consumer applications. It accepts a simple syntax, and it rarely produces error messages.

The DisMax query parser supports an extremely simplified subset of the Lucene QueryParser syntax. As in Lucene, quotes can be used to group
phrases, and +/- can be used to denote mandatory and optional clauses. All other Lucene query parser special characters (except AND and OR)
are escaped to simplify the user experience. The DisMax query parser takes responsibility for building a good query from the user's input using
Boolean clauses containing DisMax queries across fields and boosts specified by the user. It also lets the Solr administrator provide additional
boosting queries, boosting functions, and filtering queries to artificially affect the outcome of all searches. These options can all be specified as
default parameters for the handler in the sol r confi g. xm file or overridden in the Solr query URL.

Interested in the technical concept behind the DisMax name? DisMax stands for Maximum Disjunction. Here's a definition of a Maximum
Disjunction or "DisMax" query:

A query that generates the union of documents produced by its subqueries, and that scores each document with the maximum
score for that document as produced by any subquery, plus a tie breaking increment for any additional matching subqueries.

Whether or not you remember this explanation, do remember that the DisMax request handler was primarily designed to be easy to use and to
accept almost any input without returning an error.

DisMax Parameters

In addition to the common request parameter, highlighting parameters, and simple facet parameters, the DisMax query parser supports the
parameters described below. Like the standard query parser, the DisMax query parser allows default parameter values to be specified in
sol rconfi g. xm , or overridden by query-time values in the request.

Apache Solr Reference Guide 4.4 178

Parameter Description

q Defines the raw input strings for the query.

g.alt Calls the standard query parser and defines query input strings, when the q parameter is not used.

gf Query Fields: specifies the fields in the index on which to perform the query. If absent, defaults to df .

mm Minimum "Should" Match: specifies a minimum number of fields that must match in a query. If no 'mm' parameter is specified in

the query, or as a default in sol r conf i g. xnml , the effective value of the gq. op parameter (either in the query, as a default in
sol rconfi g. xm , or from the 'defaultOperator’ option in schema. xm) is used to influence the behavior. If q. op is effectively
AND'ed, then mm=100%; if q. op is OR'ed, then mm=1. Users who want to force the legacy behavior should set a default value
for the 'mm' parameter in their sol r confi g. xn file. Users should add this as a configured default for their request handlers.

This parameter tolerates miscellaneous white spaces in expressions (e.g.," 3 < -25%10 < -3\n", " \n-25%n ", "
\n3\n ").

pf Phrase Fields: boosts the score of documents in cases where all of the terms in the q parameter appear in close proximity.

ps Phrase Slop: specifies the number of positions two terms can be apart in order to match the specified phrase.

gs Query Phrase Slop: specifies the number of positions two terms can be apart in order to match the specified phrase. Used

specifically with the gf parameter.

tie Tie Breaker: specifies a float value (which should be something much less than 1) to use as tiebreaker in DisMax queries.
bq Boost Query: specifies a factor by which a term or phrase should be "boosted" in importance when considering a match.
bf Boost Functions: specifies functions to be applied to boosts. (See for details about function queries.)

The sections below explain these parameters in detail.

The g Parameter

The g parameter defines the main "query" constituting the essence of the search. The parameter supports raw input strings provided by users
with no special escaping. The + and - characters are treated as "mandatory" and "prohibited" modifiers for terms. Text wrapped in balanced quote
characters (for example, "San Jose") is treated as a phrase. Any query containing an odd number of quote characters is evaluated as if there
were no quote characters at all.

I, The g parameter does not support wildcard characters such as *.

The g. al t Parameter

If specified, the q. al t parameter defines a query (which by default will be parsed using standard query parsing syntax) when the main q
parameter is not specified or is blank. The g. al t parameter comes in handy when you need something like a query to match all documents
(don't forget & ows=0 for that one!) in order to get collection-wise faceting counts.

The gf (Query Fields) Parameter

The gf parameter introduces a list of fields, each of which is assigned a boost factor to increase or decrease that particular field's importance in
the query. For example, the query below:

gf ="fiel donen2.3 fieldTwo fiel dThree”0. 4"
assigns f i el dOne a boost of 2.3, leaves f i el dTwo with the default boost (because no boost factor is specified), and f i el dThr ee a boost of

0.4. These boost factors make matches in f i el dOne much more significant than matches in f i el dTwo, which in turn are much more significant
than matches in fi el dThr ee.

The m(Minimum Should Match) Parameter

When processing queries, Lucene/Solr recognizes three types of clauses: mandatory, prohibited, and "optional” (also known as "should" clauses).
By default, all words or phrases specified in the g parameter are treated as "optional" clauses unless they are preceded by a "+" or a "-". When
dealing with these "optional” clauses, the rmparameter makes it possible to say that a certain minimum number of those clauses must match.
The DisMax query parser offers great flexibility in how the minimum number can be specified.

The table below explains the various ways that mm values can be specified.

Syntax Example Description

Apache Solr Reference Guide 4.4 179

Positive integer 3 Defines the minimum number of clauses that must match, regardless of how many clauses there

are in total.

Negative integer -2 Sets the minimum number of matching clauses to the total number of optional clauses, minus this
value.

Percentage 75% Sets the minimum number of matching clauses to this percentage of the total number of optional

clauses. The number computed from the percentage is rounded down and used as the minimum.

Negative percentage -25% Indicates that this percent of the total number of optional clauses can be missing. The number
computed from the percentage is rounded down, before being subtracted from the total to
determine the minimum number.

An expression beginning with =~ 3<90% Defines a conditional expression indicating that if the number of optional clauses is equal to (or less

a positive integer followed by than) the integer, they are all required, but if it's greater than the integer, the specification applies.
a > or < sign and another In this example: if there are 1 to 3 clauses they are all required, but for 4 or more clauses only 90%
value are required.

Multiple conditional 2<-25% Defines multiple conditions, each one being valid only for numbers greater than the one before it. In
expressions involving > or < 9<-3 the example at left, if there are 1 or 2 clauses, then both are required. If there are 3-9 clauses all
signs but 25% are required. If there are more then 9 clauses, all but three are required.

When specifying nmvalues, keep in mind the following:

® When dealing with percentages, negative values can be used to get different behavior in edge cases. 75% and -25% mean the same
thing when dealing with 4 clauses, but when dealing with 5 clauses 75% means 3 are required, but -25% means 4 are required.

® |f the calculations based on the parameter arguments determine that no optional clauses are needed, the usual rules about Boolean
queries still apply at search time. (That is, a Boolean query containing no required clauses must still match at least one optional clause).

® No matter what number the calculation arrives at, Solr will never use a value greater than the number of optional clauses, or a value less
then 1. (In other words, no matter how low or how high the calculated result, the minimum number of required matches will never be less
then 1 or greater than the number of clauses.)

The default value of mmis 100% (meaning that all clauses must match).

The pf (Phrase Fields) Parameter

Once the list of matching documents has been identified using the f g and gf parameters, the pf parameter can be used to "boost" the score of
documents in cases where all of the terms in the q parameter appear in close proximity.

The format is the same as that used by the qf parameter: a list of fields and "boosts" to associate with each of them when making phrase queries
out of the entire q parameter.

The ps (Phrase Slop) Parameter

The ps parameter specifies the amount of "phrase slop" to apply to queries specified with the pf parameter. Phrase slop is the number of
positions one token needs to be moved in relation to another token in order to match a phrase specified in a query.

The gs (Query Phrase Slop) Parameter

The gs parameter specifies the amount of slop permitted on phrase queries explicitly included in the user's query string with the gf parameter. As
explained above, slop refers to the number of positions one token needs to be moved in relation to another token in order to match a phrase
specified in a query.

Theti e (Tie Breaker) Parameter

The t i e parameter specifies a float value (which should be something much less than 1) to use as tiebreaker in DisMax queries.

When a term from the user's input is tested against multiple fields, more than one field may match. If so, each field will generate a different score
based on how common that word is in that field (for each document relative to all other documents). The t i e parameter lets you control how
much the final score of the query will be influenced by the scores of the lower scoring fields compared to the highest scoring field.

A value of "0.0" makes the query a pure "disjunction max query": that is, only the maximum scoring subguery contributes to the final score. A

value of "1.0" makes the query a pure "disjunction sum query" where it doesn't matter what the maximum scoring sub query is, because the final
score will be the sum of the subquery scores. Typically a low value, such as 0.1, is useful.

The bg (Boost Query) Parameter

The bqg parameter specifies a raw query string (expressed in Solr query syntax) that will be included with the user's query to influence the score.
For example, if you wanted to add a relevancy boost for recent documents:

Apache Solr Reference Guide 4.4 180

g=cheese bqg=dat e\ [NOW DAY- 1YEAR TO NOW DAY\]

You can specify multiple bqg parameters. If you want your query to be parsed as separate clauses with separate boosts, use multiple bg
parameters.

The bf (Boost Functions) Parameter

The bf parameter specifies functions (with optional boosts) that will be included in the user's query to influence the score. Any function supported
natively by Solr can be used, along with a boost value. For example:

recip(rord(myfield),1,2,3)"1.5

Specifying functions with the bf parameter is just shorthand for using the val : ". .. functi on..." syntax in a bq parameter.

For example, if you want to show the most recent documents first, use

recip(rord(creationbDate), 1, 1000, 1000)

Examples of Queries Submitted to the DisMax Query Parser

Normal results for the word "video" using the StandardRequestHandler with the default search field:
http://1ocal host: 8983/ sol r/sel ect/ ?g=vi deo&f | =nanme+scor e

The "dismax" handler is configured to search across the text, features, name, sku, id, manu, and cat fields all with varying boosts designed to
ensure that "better" matches appear first, specifically: documents which match on the name and cat fields get higher scores.

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&g=vi deo

Note that this instance is also configured with a default field list, which can be overridden in the URL.

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&q=vi deo&f | =*, score

You can also override which fields are searched on and how much boost each field gets.

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&g=vi deo&qf =f eat ur es"20. 0+t ext 0. 3
You can boost results that have a field that matches a specific value.

http://1ocal host: 8983/ sol r/sel ect/ ?def Type=di smax&q=vi deo&bqg=cat : el ectroni cs"5.0

Another instance of the handler is registered using the gt "instock" and has slightly different configuration options, notably: a filter for (you
guessed it) i nSt ock: true).

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di snax&qg=vi deo&f | =nane, scor e, i nSt ock

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snmax&q=vi deo&qt =i nst ock&f | =nane, score, i nSt ock

One of the other really cool features in this handler is robust support for specifying the "BooleanQuery.minimumNumberShouldMatch" you want to
be used based on how many terms are in your user's query. These allows flexibility for typos and partial matches. For the dismax handler, one
and two word queries require that all of the optional clauses match, but for three to five word queries one missing word is allowed.

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di smax&qg=bel ki n+i pod

http://1ocal host: 8983/ sol r/sel ect/ ?def Type=di smax&q=bel ki n+i pod+gi bberi sh

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snmax&q=bel ki n+i pod+appl e

Just like the StandardRequestHandler, it supports the debugQuery option to viewing the parsed query, and the score explanations for each
document.

http://1 ocal host: 8983/ sol r/ sel ect/ ?def Type=di snmax&q=bel ki n+i pod+gi bberi sh&lebugQuery=true

Apache Solr Reference Guide 4.4 181

http://localhost:8983/solr/select/?q=video&fl=name+score
http://localhost:8983/solr/select/?defType=dismax&q=video
http://localhost:8983/solr/select/?defType=dismax&q=video&fl=*,score
http://localhost:8983/solr/select/?defType=dismax&q=video&qf=features^20.0+text^0.3
http://localhost:8983/solr/select/?defType=dismax&q=video&bq=cat:electronics^5.0
http://localhost:8983/solr/select/?defType=dismax&q=video&fl=name,score,inStock
http://localhost:8983/solr/select/?defType=dismax&q=video&qt=instock&fl=name,score,inStock
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+gibberish
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+apple
http://localhost:8983/solr/select/?defType=dismax&q=belkin+ipod+gibberish&debugQuery=true

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=di smax&q=vi deo+car d&debugQuery=true

The Extended DisMax Query Parser

The Extended DisMax (eDisMax) query parser is an improved version of the DisMax query parser. In addition to supporting all the DisMax query
parser parameters, Extended Dismax:

supports the full Lucene query parser syntax.

supports queries such as AND, OR, NOT, -, and +.

treats "and" and "or" as "AND" and "OR" in Lucene syntax mode.

respects the 'magic field' names _val _ and _query_. These are not a real fields in schema. xm , but if used it helps do special things

(like a function query in the case of _val _ or a nested query in the case of _query_). If _val _ is used in a term or phrase query, the

value is parsed as a function.

® includes improved smart partial escaping in the case of syntax errors; fielded queries, +/-, and phrase queries are still supported in this
mode.

® improves proximity boosting by using word shingles; you do not need the query to match all words in the document before proximity
boosting is applied.

® includes advanced stopword handling: stopwords are not required in the mandatory part of the query but are still used in the proximity
boosting part. If a query consists of all stopwords, such as "to be or not to be", then all words are required.

® includes improved boost function: in Extended DisMax, the boost function is a multiplier rather than an addend, improving your boost
results; the additive boost functions of DisMax (bf and bq) are also supported.

® supports pure negative nested queries: queries such as +f oo (- f 00) will match all documents.

® lets you specify which fields the end user is allowed to query, and to disallow direct fielded searches.

The Extended DisMax query parser is still under active development, in fact many changes were introduced for Solr 4. However,
many organizations are already using it in production with great success.

Extended DisMax Parameters

In addition to all the DisMax parameters, Extended DisMax includes these query parameters:

The boost Parameter

A multivalued list of strings parsed as queries with scores multiplied by the score from the main query for all matching documents. This parameter
is shorthand for wrapping the query produced by eDisMax using the Boost QPar ser Pl ugi n

The | ower caseQper at or s Parameter

A Boolean parameter indicating if lowercase "and" and "or" should be treated the same as operators "AND" and "OR".
The ps Parameter

Default amount of slop on phrase queries built with pf , pf 2 and/or pf 3 fields (affects boosting).

The pf 2 Parameter

A multivalued list of fields with optional weights, based on pairs of word shingles.

The ps2 Parameter

Default amount of slop on phrase queries built with pf , pf 2 and/or pf 3 fields (affects boosting). New with Solr 4, it is similar to ps but sets default
slop factor for pf 2. If not specified, ps is used.

The pf 3 Parameter

A multivalued list of fields with optional weights, based on triplets of word shingles. Similar to pf , except that instead of building a phrase per field
out of all the words in the input, it builds a set of phrases for each field out of each triplet of word shingles.

The ps3 Parameter

New with Solr 4. As with ps but sets default slop factor for pf 3. If not specified, ps will be used.

The st opwor ds Parameter

A Boolean parameter indicating if the St opFi | t er Fact or y configured in the query analyzer should be respected when parsing the query: if it is

Apache Solr Reference Guide 4.4 182

http://localhost:8983/solr/select/?defType=dismax&q=video+card&debugQuery=true

false, then the St opFi | t er Fact ory in the query analyzer is ignored.

The uf Parameter
Specifies which schema fields the end user is allowed to explicitly query. This parameter supports wildcards. The default is to allow all fields,

equivalent to &uf =*. To allow only title field, use &uf =ti t | e. To allow title and all fields ending with _s, use &f =titl e, *_s. To allow all fields
except title, use &uf =*-ti t| e. To disallow all fielded searches, use &uf =-*.

Examples of Queries Submitted to the Extended DisMax Query Parser

Boost the result of the query term "hello" based on the document's popularity:

http://1ocal host: 8983/ sol r/sel ect/ ?def Type=edi smax&q=hel | o&pf =t ext &qf =t ext &oost =popul ar

Search for iPods OR video:

http://1ocal host: 8983/ sol r/ sel ect/ ?def Type=edi smax&q=i pod OR vi deo

Search across multiple fields, specifying (via boosts) how important each field is relative each other:

http://1 ocal host: 8983/ sol r/ sel ect/ ?q=vi deo&def Type=edi smax&qf =f eat ur es*20. 0+t ext ~0. 3

You can boost results that have a field that matches a specific value:

http://1ocal host: 8983/ sol r/sel ect/ ?q=vi deo&def Type=edi smax&qf =f eat ur es*20. 0+t ext ~0. 3&bQ=

Using the "mm" param, 1 and 2 word queries require that all of the optional clauses match, but for queries with three or more clauses one missing
clause is allowed:

http://1 ocal host: 8983/ sol r/ sel ect/ ?q=bel ki n+i pod&def Type=edi smax&mm=2
http://1 ocal host: 8983/ sol r/ sel ect/ ?q=bel ki n+i pod+gi bberi sh&def Type=edi smax&m=2
http://1ocal host: 8983/ sol r/ sel ect/ ?q=bel ki n+i pod+appl e&def Type=edi smax&mm=2

Using negative boost

Negative query boosts have been supported at the "Query" object level for a long time (resulting in negative scores for matching documents).
Now the QueryParsers have been updated to handle this too.

Using 'slop’
Di smax and Edi smax can run queries against all query fields, and also run a query in the form of a phrase against the phrase fields. (This will

work only for boosting documents, not actually for matching.) However, that phrase query can have a 'slop,’ which is the distance between the
terms of the query while still considering it a phrase match. For example:

g=f oo bar

gf =fi el d175 fi el d2710
pf=fiel d1750 fiel d27220
def Type=di smax

With these parameters, the Dismax Query Parser generates a query that looks something like this:

Apache Solr Reference Guide 4.4 183

(+(fieldl:foo”5 OR field2:bar”10) AND (fieldl:bar"5 OR fiel d2: bar”10))

But it also generates another query that will only be used for boosting results:

fieldl:"foo bar"”~50 OR field2:"foo bar"”20

Thus, any document that has the terms "foo" and "bar" will match; however if some of those documents have both of the terms as a phrase, it will
score much higher because it's more relevant.

If you add the parameter ps (phrase slop), the second query will instead be:

ps=10 fieldl:"foo bar"~107"50 OR fiel d2:"foo bar"~10"20

This means that if the terms "foo" and "bar" appear in the document with less than 10 terms between each other, the phrase will match. For
example the doc that says:

Foo terml tern2 ternB *bar*

will match the phrase query.
How does one use phrase slop? Usually it is configured in the request handler (in sol r conf i g).

With query slop (gs) the concept is similar, but it applies to explicit phrase queries from the user. For example, if you want to search for a name,
you could enter:

g="Hans Anderson”

A document that contains "Hans Anderson” will match, but a document that contains the middle name "Christian" or where the name is written
with the last name first ("Anderson, Hans") won't. For those cases one could configure the query field gs, so that even if the user searches for an
explicit phrase query, a slop is applied.

Finally, edi smax contains not only a phrase fields (pf) parameters, but also phrase and query fields 2 and 3. You can use those fields for setting
different fields or boosts. Each of those can use a different phrase slop.

Using the 'magic fields' _val_and _query_

If the 'magic field' name _val _ is used in a term or phrase query, the value is parsed as a function.

The Solr Query Parser's use of _val _ and _quer y_ differs from the Lucene Query Parser in the following ways:
® |f the magic field name _val _ is used in a term or phrase query, the value is parsed as a function.

® |t provides a hook into Funct i onQuery syntax. Quotes are necessary to encapsulate the function when it includes parentheses. For
example:

_val _:nyfield
_val _:"recip(rord(myfield),1,2,3)"

®* The Solr Query Parser offers nested query support for any type of query parser (via QParserPlugin). Quotes are often necessary to
encapsulate the nested query if it contains reserved characters. For example:

Apache Solr Reference Guide 4.4 184

http://wiki.apache.org/solr/FunctionQuery

query:"{\ ! di smax; qf =nyfi el d} how;, now; br own; cow'

Although not technically a syntax difference, note that if you use the Solr DateField type, any queries on those fields (typically range queries)
should use either the Complete ISO 8601 Date syntax that field supports, or the DateMath Syntax to get relative dates. For example:

timestanmp:[* TO NOW

createdate:[1976-03-06T23: 59: 59. 999Z TO *]

creat edat e: [1995- 12- 31T23: 59: 59. 999Z TO 2007- 03- 06T00: 00: 00Z]

pubdat e: [NOM 1YEAR/ DAY TO NOW DAY+1DAY]

createdate: [1976- 03-06T23: 59: 59. 999Z TO 1976- 03- 06T23: 59: 59. 999Z+1VYEAR]
createdate: [1976- 03-06T23: 59: 59. 9997/ YEAR TO 1976- 03- 06T23: 59: 59. 9997]

H TO must be uppercase, or Solr will report a ‘Range Group' error.

i}

Local Parameters in Queries

Local parameters are arguments in a Solr request that are specific to a query parameter. Local parameters provide a way to add meta-data to
certain argument types such as query strings. (In Solr documentation, local parameters are sometimes referred to as LocalParams.)

Local parameters are specified as prefixes to arguments. Take the following query argument, for example:
g=sol r rocks

We can prefix this query string with local parameters to provide more information to the Standard Query Parser. For example, we can change the
default operator type to "AND" and the default field to "title":

g={!qg. op=AND df =title}solr rocks

These local parameters would change the query to require a match on both "solr" and "rocks" while searching the "title" field by default.

Basic Syntax of Local Parameters

To specify a local parameter, insert the following before the argument to be modified:
® Begin with {!
® |nsert any number of key=value pairs separated by white space
® End with } and immediately follow with the query argument

You may specify only one local parameters prefix per argument. Values in the key-value pairs may be quoted via single or double quotes, and
backslash escaping works within quoted strings.

Query Type Short Form

If a local parameter value appears without a name, it is given the implicit name of "type". This allows short-form representation for the type of
query parser to use when parsing a query string. Thus

q={'di smax qf =nyfiel d}solr rocks

is equivalent to:

gq={!type=di smax qf=nyfield}solr rocks

Specifying the Parameter Value with the 'v' Key

A special key of v within local parameters is an alternate way to specify the value of that parameter.
gq={!di smax gf =nyfiel d}solr rocks

is equivalent to

Apache Solr Reference Guide 4.4 185

http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/schema/DateField.html
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html

gq={!type=di smax qf=nyfield v="solr rocks'}

Parameter Dereferencing

Parameter dereferencing or indirection lets you use the value of another argument rather than specifying it directly. This can be used to simplify
queries, decouple user input from query parameters, or decouple front-end GUI parameters from defaults set in sol rconfi g. xm .

gq={!di smax qf =nyfield}solr rocks
is equivalent to:

g={!type=di smax gf =nyfield v=%$qq}&gqg=sol r rocks

Other Parsers

In addition to the main query parsers discussed earlier, there are several other query parsers that can be used instead of or in conjunction with
the main parsers for specific purposes. This section details the other parsers, and gives examples for how they might be used.

Many of these parsers are expressed the same way as Local Parameters in Queries.
Query parsers discussed in this section:

Boost Query Parser

Field Query Parser

Function Query Parser
Function Range Query Parser
Join Query Parser

Lucene Query Parser

Max Score Query Parser

Nested Query Parser

Old Lucene Query Parser
Prefix Query Parser

Raw Query Parser

Spatial Filter Query Parser
Surround Query Parser
Switch Query Parser
Term Query Parser

Boost Query Parser

Boost QPar ser extends the QPar ser Pl ugi n and creates a boosted query from the input value. The main value is the query to be boosted.
Parameter b is the function query to use as the boost. The query to be boosted may be of any type.

Examples:

Creates a query "foo" which is boosted (scores are multiplied) by the function query | og(popul arity):

{!boost b=l og(popul arity)}foo

Creates a query "foo" which is boosted by the date boosting function referenced in Reci pr ocal Fl oat Functi on:

{!boost b=reci p(ns(NON nydatefield), 3. 16e-11,1,1)}foo0

Field Query Parser

The Fi el dQPar ser extends the QPar ser Pl ugi n and creates a field query from the input value, applying text analysis and constructing a
phrase query if appropriate. The parameter f is the field to be queried.

Example:

Apache Solr Reference Guide 4.4 186

{!field f=nyfiel d} Foo Bar

This example creates a phrase query with "foo" followed by "bar" (assuming the analyzer for myf i el d is a text field with an analyzer that splits on
whitespace and lowercase terms). This is generally equivalent to the Lucene query parser expression nyfi el d: " Foo Bar".

Function Query Parser

The Funct i onQPar ser extends the QPar ser Pl ugi n and creates a function query from the input value. This is only one way to use function
queries in Solr; for another, more integrated, approach, see the section on Function Queries.

Example:

{!func}! og(foo)

Function Range Query Parser

The Funct i onRangeQPar ser extends the QPar ser Pl ugi n and creates a range query over a function. This is also referred to as f r ange, as
seen in the examples below.

Other parameters:

Parameter Description

| The lower bound, optional

u The upper bound, optional

incl Include the lower bound: true/false, optional, default=true

incu Include the upper bound: true/false, optional, default=true
Examples:

{!frange | =1000 u=50000} nyfield

fg={!frange | =0 u=2. 2} sun{user_ranking, edi tor_ranking)

Both of these examples are restricting the results by a range of values found in a declared field or a function query. In the second example, we're
doing a sum calculation, and then defining only values between 0 and 2.2 should be returned to the user.

For more information about range queries over functions, see Yonik Seeley's introductory blog post Ranges over Functions in Solr 1.4, hosted at
SearchHub.org.

Join Query Parser

Joi nQPar ser extends the QPar ser Pl ugi n. It allows normalizing relationships between documents with a join operation. This is different from
in concept of a join in a relational database because no information is being truly joined. An appropriate SQL analogy would be an “inner query".

Examples:

Find all products containing the word "ipod", join them against manufacturer docs and return the list of manufacturers:

{!j oi n+f ronFmanu_i d_s+t o=i d} i pod

Find all manufacturer docs named "belkin", join them against product docs, and filter the list to only products with a price less than $12:

Apache Solr Reference Guide 4.4 187

http://searchhub.org/2009/07/06/ranges-over-functions-in-solr-14/

{!] oi n+f ron¥i d+t o=manu_i d_s} conpName_s: Bel ki n&f g=pri ce: [*+TO+12]

For more information about join queries, see the Solr Wiki page on Joins. Erick Erickson has also written a blog post about join performance
called Solr and Joins, hosted by SearchHub.org.

Lucene Query Parser

The LuceneQPar ser extends the QPar ser Pl ugi n by parsing Solr's variant on the Lucene QueryParser syntax. This is effectively the same
query parser that is used in Lucene. It uses the operators g. op, the default operator ("OR" or "AND") and df , the default field name.

Example:

{!lucene q. op=AND df =text }nyfield:foo +bar -baz

For more information about the syntax for the Lucene Query Parser, see the Lucene javadocs.

Max Score Query Parser

The MaxScor eQPar ser extends the LuceneQPar ser but returns the Max score from the clauses. It does this by wrapping all SHOULD clauses
ina Di sjuncti onMaxQuery with tie=1.0. Any MUST or PRCHI BI TED clauses are passed through as-is. Non-boolean queries, e.g.
NumericRange falls-through to the LuceneQPar ser parser behavior.

Example:

{!'maxscore tie=0.01}C OR (D AND E)

Nested Query Parser

The Nest edPar ser extends the QPar ser Pl ugi n and creates a nested query, with the ability for that query to redefine its type via local
parameters. This is useful in specifying defaults in configuration and letting clients indirectly reference them.

Example:

{!query def Type=func v=$ql}

If the q1 parameter is price, then the query would be a function query on the price field. If the g1 parameter is {!lucene}inStock:true}} then a term
query is created from the Lucene syntax string that matches documents with i nSt ock=t r ue. These parameters would be defined in
sol rconfig. xm ,inthe def aul t s section:

<l st name="defaul ts"
<str name="ql">{!lucene}i nStock:true</str>
</lst>

For more information about the possibilities of nested queries, see Yonik Seeley's blog post Nested Queries in Solr, hosted by SearchHub.org.

Old Lucene Query Parser

QA dLuceneQPar ser extends the QPar ser Pl ugi n by parsing Solr's variant of Lucene's QueryParser syntax, including the deprecated sort
specification after the query.

Example:

Apache Solr Reference Guide 4.4 188

http://wiki.apache.org/solr/Join
http://searchhub.org/2012/06/20/solr-and-joins/
http://lucene.apache.org/core/4_0_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
http://searchhub.org/2009/03/31/nested-queries-in-solr/

{!'lucenePlusSort} nyfield:foo +bar -baz;price asc

Prefix Query Parser

Pref i xQPar ser extends the QPar ser Pl ugi n by creating a prefix query from the input value. Currently no analysis or value transformation is
done to create this prefix query. The parameter is f , the field. The string after the prefix declaration is treated as a wildcard query.

Example:

{!prefix f=nyfield}foo

This would be generally equivalent to the Lucene query parser expression nyf i el d: f oo*.

Raw Query Parser

RawQPar ser extends the QPar ser Pl ugi n by creating a term query from the input value without any text analysis or transformation. This is
useful in debugging, or when raw terms are returned from the terms component (this is not the default). The only parameter is f , which defines
the field to search.

Example:

{!raw f=nyfiel d} Foo Bar

This example constructs the query: Ter mQuery(Ter m(" nyfi el d","Foo Bar")).

For easy filter construction to drill down in faceting, the TermQParserPlugin is recommended. For full analysis on all fields, including text fields,
you may want to use the FieldQParserPlugin.

Spatial Filter Query Parser

Spati al Fi |l t er QPar ser extends the QPar ser Pl ugi n by creating a spatial Filter based on the type of spatial point used. The field must
implement SpatialQueryable. All units are in Kilometers.

This query parser takes the following parameters:

Parameter Description

sfield The field on which to filter. Required.
pt The point to use as a reference. Must match the dimension of the field. Required.
d The distance in km. Required.

The distance measure used currently depends on the FieldType. Lat LonType defaults to using haversine, Poi nt Type defaults to Euclidean
(2-norm).

This example shows the syntax:

{!geofilt sfield=<location_field> pt=<l|at,|on> d=<di stance>}

Here are some examples with values configured:

fg={!geofilt sfield=store pt=10.312,-20.556 d=3.5}

Apache Solr Reference Guide 4.4 189

http://lucene.apache.org/solr/api-4_0_0-BETA/org/apache/solr/schema/SpatialQueryable.html

fg={!geofilt sfield=store}&pt=10.312,-20&01=3.5

fqg={!geofilt}&sfiel d=store&pt=10.312, - 20&d=3.5

If using geofi | t with Lat LonType, it is capable of producing scores equal to the computed distance from the point to the field, making it useful
as a component of the main query or a boosting query.

There is more information about spatial searches available in the section Spatial Search.

Surround Query Parser

Sur roundQPar ser extends the QPar ser Pl ugi n. This provides support for the Surround query syntax, which provides proximity search
functionality. There are two operators: w creates an ordered span query and n creates an unordered one. Both operators take a numeric value to
indicate distance between two terms. The default is 1, and the maximum is 99. Note that the query string is not analyzed in any way.

Example:

{!surround 3w(foo, bar)}

This example would find documents where the terms "foo" and "bar" were no more than 3 terms away from each other (i.e., no more than 2 terms
between them).

This query parser will also accept boolean operators (AND, OR, and NOT, in either upper- or lowercase), wildcards, quoting for phrase searches,
and boosting. The wand n operators can also be expressed in upper- or lowercase.

More information about Surround queries can be found at http://wiki.apache.org/solr/SurroundQueryParser.

Switch Query Parser
Swi t chQPar ser is a QPar ser Pl ugi n that acts like a "switch" or "case" statement.

The primary input string is trimmed and then prefixed with case. for use as a key to lookup a "switch case" in the parser's local params. If a
matching local param is found the resulting param value will then be parsed as a subquery, and returned as the parse result.

The case local param can be optionally be specified as a switch case to match missing (or blank) input strings. The def aul t local param can
optionally be specified as a default case to use if the input string does not match any other switch case local params. If default is not specified,
then any input which does not match a switch case local param will result in a syntax error.

In the examples below, the result of each query is "XXX":

{!'switch case.foo=XXX case. bar=zzz case. yak=qqq}f oo

{!'switch case.foo=qqq case. bar=XXX case.yak=zzz} bar // extra whitespace is trinmed

{!'switch case.foo=qqq case. bar=zzz def aul t =XXX} asdf /1 fallback to the default

{!switch case=XXX case. bar=zzz case. yak=qqq} /1 blank input uses 'case'

A practical usage of this QPar sePl ugi n, is in specifying appends fq params in the configuration of a SearchHandler, to provide a fixed set of
filter options for clients using custom parameter names. Using the example configuration below, clients can optionally specify the custom

Apache Solr Reference Guide 4.4 190

http://wiki.apache.org/solr/SurroundQueryParser

parameters i n_st ock and shi ppi ng to override the default filtering behavior, but are limited to the specific set of legal values
(shipping=any|free, in_stock=yes|no|all).

<r equest Handl er nanme="/sel ect" cl ass="sol r. Sear chHandl er" >
<l st name="defaul ts">
<str name="in_stock">yes</str>
<str nanme="shi ppi ng">any</str>

</lst>
<l st nanme="appends" >
<str name="fq">{!switch case.all="*:*'

case.yes="inStock:true'

case. no='inStock: f al se’

v=3$i n_stock}</str>

<str name="fq">{!switch case.any="*:*'
case. free=" shi ppi ng_cost: 0.0’
v=$shi ppi ng} </ str>
</lst>
</ request Handl er >

Term Query Parser

Ter nQPar ser extends the QPar ser Pl ugi n by creating a single term query from the input value equivalent to r eadabl eTol ndexed() . This is
useful for generating filter queries from the external human readable terms returned by the faceting or terms components. The only parameter is f
, for the field.

Example:

{I'termf=weight}1.5

For text fields, no analysis is done since raw terms are already returned from the faceting and terms components. To apply analysis to text fields
as well, see the Field Query Parser, above.

If no analysis or transformation is desired for any type of field, see the Raw Query Parser, above.

Highlighting
Solr provides a collection of highlighting utilities which can be called by various Request Handlers to include "highlighted" matches in field values.

These highlighting utilities may be used with the DisMax, Extended DisMax, or standard query parsers.

. Some parameters may be overridden on a per-field basis with the following syntax:
f.<fiel dNane>. <ori gi nal Par am>=<val ue>. For example: f . cont ent s. hl . sni ppet s=2

The table below describes Solr's parameters for highlighting.

Parameter Description

hi When set to “true”, enables highlighted snippets to be generated in the query response. If set to "false" or to a
blank or missing value, disables highlighting.

The default value is blank, which disables highlighting.

hl.q Specifies an overriding query term for highlighting. If hl . q is specified, the highlighter will use that term rather
than the main query term.

Apache Solr Reference Guide 4.4 191

hl.fl

hl.snippets

hl.fragsize

hl.mergeContinuous

hl.requireFieldMatch

hl.maxAnalyzedChars

hl.maxMultiValuedToExamine

hl.maxMultiValuedToMatch

hl.alternateField

hl.maxAlternateFieldLength

hl.formatter

hl.simple.pre hl.simple.post

hl.fragmenter

Apache Solr Reference Guide 4.4

Specifies a list of fields to highlight. Accepts a comma- or space-delimited list of fields for which Solr should
generate highlighted snippets. If left blank, highlights the defaultSearchField (or the field specified the df
parameter if used) for the StandardRequestHandler. For the DisMaxRequestHandler, the gf fields are used as
defaults.

A '*' can be used to match field globs, such as 'text_* or even *' to highlight on all fields where highlighting is
possible. When using *', consider adding hl . r equi r eFi el dMvat ch=t r ue.

The default value is blank.

Specifies maximum number of highlighted snippets to generate per field. Note: it is possible for any number of
snippets from zero to this value to be generated. This parameter accepts per-field overrides.

The default value is "1".

Specifies the size, in characters, of fragments to consider for highlighting. "0" indicates that the whole field
value should be used (no fragmenting). This parameter accepts per-field overrides.

The default value is "100".

Instructs Solr to collapse contiguous fragments into a single fragment. “true" indicates contiguous fragments
will be collapsed into single fragment. This parameter accepts per-field overrides.

The default value is “false", which is also the backward-compatible setting.

If set to true, highlights terms only if they appear in the specified field. Normally, terms are highlighted in all
requested fields regardless of which field matched the query.

The default value is “false".

Specifies the number of characters into a document that Solr should look for suitable snippets.

The default value is "51200".

Specifies the maximum number of entries in a multi-valued field to examine before stopping. This can
potentially return zero results if the limit is reached before any matches are found. If used with the

maxMul ti Val uedToMat ch, whichever limit is reached first will determine when to stop looking.

The default value is i nt eger . MAX_VALUE.

Specifies the maximum number of matches in a multi-valued field that are found before stopping. If
hl . maxMul ti Val uedToExani ne is also defined, whichever limit is reached first will determine when to stop
looking.

The default value is i nt eger . MAX_VALUE.

Specifies a field to be used as a backup default summary if Solr cannot generate a snippet (because no terms
match). This parameter accepts per-field overrides.

By default, Solr does not select a field for a backup summary.

Specifies the maximum number of characters of the field to return. Any value less than or equal to 0 means the
field's length is unlimited.

The default value is unlimited.
Requires the use of the hl . al t er nat eFi el d parameter.

Selects a formatter for the highlighted output. Currently the only legal value is "simple", which surrounds a
highlighted term with a customizable pre- and post-text snippet. This parameter accepts per-field overrides.

The default value is "simple".

Specifies the text that should appear before and after a highlighted term when using the simple formatter. This
parameter accepts per-field overrides.

The default values are "" and "".

Specifies a text snippet generator for highlighted text. The standard fragmenter is gap (which is so called
because it creates fixed-sized fragments with gaps for multi-valued fields). Another option is r egex, which tries
to create fragments that resemble a specified regular expression.

The hl.fragmenter parameter accepts per-field overrides.

The default value is gap.

192

hl.useFastVectorHighlighter The FastVectorHighlighter is a TermVector-based highlighter that offers higher performance than the standard
highlighter in many cases. To use the FastVectorHighlighter, set this parameter to t r ue. You must also turn on
ternmVectors,ternPositions,andternfsets for each field that will be highlighted. Lastly, you should
use a boundary scanner to prevent the FastVectorHighlighter from truncating your terms. In most cases, using
the br eakl t er at or boundary scanner will give you excellent results. See the section Using Boundary
Scanners with the Fast Vector Highlighter for more details about boundary scanners.

hl.phraseLimit To improve the performance of the FastVectorHighlighter, you can set a limit on the number (int) of phrases to
be analyzed for highlighting.

The default value for this parameter is i nt eger . MAX_VALUE.
hl.boundaryScanner Specifies one of two boundary scanners to use with the FastVectorHighlighter: si npl e or br eakl t er at or .
See the section Using Boundary Scanners with the Fast Vector Highlighter for more information about the

boundary scanners.

hl.usePhraseHighlighter If set to "true," instructs Solr to use the Lucene SpanScorer class to highlight phrase terms only when they
appear within the query phrase in the document.

The default is "true."
hl.highlightMultiTerm If set to "true," instructs Solr to highlight phrase terms that appear in multi-term queries.
The default is "true."

hl.regex.slop Specifies the factor by which the r egex fragmenter can stray from the ideal fragment size (given by
hl . f ragsi ze) to accommodate a regular expression. For instance, a slop of 0.2 with f r agsi ze of 100
should yield fragments between 80 and 120 characters in length. It is usually good to provide a slightly smaller
f ragsi ze when using the r egex fragmenter.
The default value is 0.6.

hl.regex.pattern Specifies the regular expression for fragmenting. This could be used to extract sentences.

hl.regex.maxAnalyzedChars Instructs Solr to analyze only this many characters from a field when using the r egex fragmenter (after which,
the fragmenter produces fixed-sized fragments). Applying a complicated r egex to a huge field is
computationally expensive.
The default value is "10000".

hl.preserveMulti If true, multi-valued fields will return all values in the order they were saved in the index. If false, the default,
only values that match the highlight request will be returned.

Using Boundary Scanners with the Fast Vector Highlighter

The Fast Vector Highlighter will occasionally truncate highlighted words. To prevent this, implement a boundary scanner in sol r confi g. xm ,
then use the hl . boundar yScanner parameter to specify the boundary scanner for highlighting.

Solr supports two boundary scanners: br eakl t er at or and si npl e.
The br eakl t er at or Boundary Scanner
The br eakl t er at or boundary scanner offers excellent performance right out of the box by taking locale and boundary type into account. In

most cases you will want to use the br eakl t er at or boundary scanner. To implement the br eakl t er at or boundary scanner, add this code to
the hi ghl i ght i ng section of your sol rconfi g. xm file, adjusting the type, language, and country values as appropriate to your application:

<boundar yScanner name="breaklterator"
cl ass="sol r. hi ghl i ght. Breakl t er at or Boundar yScanner " >
<l st name="defaul ts">
<str nanme="hl.bs.type" >WORD</ str >
<str name="hl.bs. | anguage" >en</str>
<str name="hl.bs. country">US</str>
</lst>
</ boundar yScanner >

Possible values for the hl . bs. t ype parameter are WORD, LINE, SENTENCE, and CHARACTER.

The si npl e Boundary Scanner

Apache Solr Reference Guide 4.4 193

The si npl e boundary scanner scans term boundaries for a specified maximum character value and for common delimiters such as punctuation
marks. The si npl e boundary scanner may be useful for some custom To implement the si npl e boundary scanner, add this code to the
hi ghl i ghti ng section of your sol rconfi g. xm file, adjusting the values as appropriate to your application:

<boundar yScanner nane="si npl e" class="sol r. hi ghlight. Si npl eBoundaryScanner"
defaul t="true">

<l st nanme="defaul ts">

<str nanme="hl . bs. maxScan" >10</str>

<str name="hl.bs.chars">., ! ?2\t\n</str>

</lst>

</ boundar yScanner >

MoreLikeThis

The Mor eLi keThi s search component enables users to query for documents similar to a document in their result list. It does this by using terms
from the original document to find similar documents in the index.

There are three ways to use MoreLikeThis. The first, and most common, is to use it as a request handler. In this case, you would send text to the
MoreLikeThis request handler as needed (as in when a user clicked on a "similar documents" link). The second is to use it as a search
component. This is less desirable since it performs the MoreLikeThis analysis on every document returned. This may slow search results. The
final approach is to use it as a request handler but with externally supplied text. This case, also referred to as the MoreLikeThisHandler, will
supply information about similar documents in the index based on the text of the input document.

Covered in this section:

How MoreLikeThis Works

Common Parameters for MoreLikeThis
Parameters for the MoreLikeThisComponent.
Parameters for the MoreLikeThisHandler
Related Topics

How MoreLikeThis Works

Mor eLi keThi s constructs a Lucene query based on terms in a document. It does this by pulling terms from the defined list of fields (see the
m t. fl parameter, below). For best results, the fields should have stored term vectors in schema. xml . For example:

<field name="cat" ... ternVectors="true" />

If term vectors are not stored, Mor eLi keThi s will generate terms from stored fields. A uni queKey must also be stored in order for MoreLikeThis
to work properly.

The next phase filters terms from the original document using thresholds defined with the MoreLikeThis parameters. Finally, a query is run with
these terms, and any other query parameters that have been defined (see the i t . gf parameter, below) and a new document set is returned.

lﬂl In Solr 4.1, MoreLikeThis supports distributed search.

Common Parameters for MoreLikeThis

The table below summarizes the Mor eLi keThi s parameters supported by Lucene/Solr. These parameters can be used with any of the three
possible MoreLikeThis approaches.

Parameter Description
mit.fl Specifies the fields to use for similarity. If possible, these should have stored t er n\Vect or s.

mit.mintf Specifies the Minimum Term Frequency, the frequency below which terms will be ignored in the source document.

Apache Solr Reference Guide 4.4 194

mit.mindf Specifies the Minimum Document Frequency, the frequency at which words will be ignored which do not occur in at least this
many documents.

mit.maxdf = Specifies the Maximum Document Frequency, the frequency at which words will be ignored which occur in more than this many
documents. New in Solr 4.1

mit.minwl = Sets the minimum word length below which words will be ignored.

mlt.maxwl = Sets the maximum word length above which words will be ignored.

mit.maxqt = Sets the maximum number of query terms that will be included in any generated query.

mit.maxntp = Sets the maximum number of tokens to parse in each example document field that is not stored with TermVector support.
mit.boost Specifies if the query will be boosted by the interesting term relevance. It can be either "true" or "false".

mit.qf Query fields and their boosts using the same format as that used by the DisMaxRequestHandler. These fields must also be
specifiedinm t.fl.

Parameters for the MoreLikeThisComponent.

Using MoreLikeThis as a search component returns similar documents for each document in the response set. In addition to the common
parameters, these additional options are available:

Parameter Description

mit If set to true, activates the Mor eLi keThi s component and enables Solr to return Mor eLi keThi s results.

mit.count Specifies the number of similar documents to be returned for each result. The default value is 5.

Parameters for the MoreLikeThisHandler

The table below summarizes parameters accessible through the Mor eLi keThi sHandl er . It supports faceting, paging, and filtering using
common query parameters, but does not work well with alternate query parsers.

Parameter Description

mit.match.include Specifies whether or not the response should include the matched document. If set to false, the response will look like a
normal select response.

mlt.match.offset Specifies an offset into the main query search results to locate the document on which the Mor eLi keThi s query should
operate. By default, the query operates on the first result for the q parameter.

mit.interestingTerms = Controls how the Mor eLi keThi s component presents the "interesting" terms (the top TF/IDF terms) for the query.
Supports three settings. The setting list lists the terms. The setting none lists no terms. The setting details lists the terms
along with the boost value used for each term. Unless m t . boost =t r ue, all terms will have boost =1. 0.

Related Topics

® RequestHandlers and SearchComponents in SolrConfig

Faceting

As described in the section Overview of Searching in Solr, faceting is the arrangement of search results into categories based on indexed terms.
Searchers are presented with the indexed terms, along with numerical counts of how many matching documents were found were each term.
Faceting makes it easy for users to explore search results, narrowing in on exactly the results they are looking for.

Topics covered on this page:

General Parameters

Field-Value Faceting Parameters
Range Faceting

Date Faceting Parameters

Local Parameters for Faceting
Pivot (Decision Tree) Faceting
Facets and Time Zone

Related Topics

Apache Solr Reference Guide 4.4 195

General Parameters

The table below summarizes the general parameters for controlling faceting.

Parameter Description
facet If set to true, enables faceting.

facet.query = Specifies a Lucene query to generate a facet count.
These parameters are described in the sections below.

The f acet Parameter

If set to "true," this parameter enables facet counts in the query response. If set to "false" to a blank or missing value, this parameter disables
faceting. None of the other parameters listed below will have any effect unless this parameter is set to "true.” The default value is blank.

The f acet . query Parameter

This parameter allows you to specify an arbitrary query in the Lucene default syntax to generate a facet count. By default, Solr's faceting feature
automatically determines the unique terms for a field and returns a count for each of those terms. Using f acet . query, you can override this
default behavior and select exactly which terms or expressions you would like to see counted. In a typical implementation of faceting, you will
specify a number of f acet . quer y parameters. This parameter can be particularly useful for numeric-range-based facets or prefix-based facets.

You can set the f acet . quer y parameter multiple times to indicate that multiple queries should be used as separate facet constraints.

To use facet queries in a syntax other than the default syntax, prefix the facet query with the name of the query notation. For example, to use the
hypothetical myf unc query parser, you could set the f acet . quer y parameter like so:

facet. query={!nyfunc}nanme~fred

Field-Value Faceting Parameters

Several parameters can be used to trigger faceting based on the indexed terms in a field.

When using this parameter, it is important to remember that "term" is a very specific concept in Lucene: it relates to the literal field/value pairs that
are indexed after any analysis occurs. For text fields that include stemming, lowercasing, or word splitting, the resulting terms may not be what
you expect. If you want Solr to perform both analysis (for searching) and faceting on the full literal strings, use the copyFi el d directive in the
schema. xni file to create two versions of the field: one Text and one String. Make sure both are i ndexed="t r ue" . (For more information about
the copyFi el d directive, see Documents, Fields, and Schema Design.)

The table below summarizes Solr's field value faceting parameters.

Parameter Description

facet.field Identifies a field to be treated as a facet.

facet.prefix Limits the terms used for faceting to those that begin with the specified prefix.

facet.sort Controls how faceted results are sorted.

facet.limit Controls how many constraints should be returned for each facet.

facet.offset Specifies an offset into the facet results at which to begin displaying facets.

facet.mincount Specifies the minimum counts required for a facet field to be included in the response.

facet.missing Controls whether Solr should compute a count of all matching results which have no value for the field, in addition to

the term-based constraints of a facet field.
facet.method Selects the algorithm or method Solr should use when faceting a field.

facet.enum.cache.minDF = Specifies the minimum document frequency (the number of documents matching a term) for which the
filterCache should be used when determining the constraint count for that term.

These parameters are described in the sections below.

The facet. fiel d Parameter

The f acet . fi el d parameter identifies a field that should be treated as a facet. It iterates over each Term in the field and generate a facet count

Apache Solr Reference Guide 4.4 196

using that Term as the constraint. This parameter can be specified multiple times in a query to select multiple facet fields.

1. If you do not set this parameter to at least one field in the schema, none of the other parameters described in this section will
have any effect.
The f acet . prefi x Parameter

The f acet . pref i x parameter limits the terms on which to facet to those starting with the given string prefix. This does not limit the query in any
way, only the facets that would be returned in response to the query.

This parameter can be specified on a per-field basis with the syntax of f . <f i el dnanme>. f acet . prefi x.

The f acet . sort Parameter

This parameter determines the ordering of the facet field constraints.

", The true/false values for this parameter were deprecated in Solr 1.4.

facet.sort Results

Setting

count Sort the constraints by count (highest count first).

index Return the constraints sorted in their index order (lexicographic by indexed term). For terms in the ASCII range, this will be

alphabetically sorted.

The default is count if facet. i mit is greater than 0, otherwise, the default is i ndex.

This parameter can be specified on a per-field basis with the syntax of f . <f i el dnanme>. f acet. sort.

Thefacet.limt Parameter

This parameter specifies the maximum number of constraint counts (essentially, the number of facets for a field that are returned) that should be
returned for the facet fields. A negative value means that Solr will return unlimited number of constraint counts.

The default value is 100.

This parameter can be specified on a per-field basis to apply a distinct limit to each field with the syntax of f . <fi el dname>. facet.limt.

The f acet . of f set Parameter

The f acet . of f set parameter indicates an offset into the list of constraints to allow paging.
The default value is 0.

This parameter can be specified on a per-field basis with the syntax of f . <fi el dname>. f acet . of f set .

The f acet . m ncount Parameter

The f acet . m ncount parameter specifies the minimum counts required for a facet field to be included in the response. If a field's counts are
below the minimum, the field's facet is not returned.

The default value is 0.

This parameter can be specified on a per-field basis with the syntax of f . <fi el dnanme>. f acet . mi ncount .

The f acet . m ssi ng Parameter

If set to true, this parameter indicates that, in addition to the Term-based constraints of a facet field, a count of all results that match the query but
which have no facet value for the field should be computed and returned in the response.

The default value is false.

This parameter can be specified on a per-field basis with the syntax of f . <f i el dname>. f acet . m ssi ng.

Apache Solr Reference Guide 4.4 197

The f acet . net hod Parameter

The facet.method parameter selects the type of algorithm or method Solr should use when faceting a field.

Setting Results

enum Enumerates all terms in a field, calculating the set intersection of documents that match the term with documents that match the
guery. This method is recommended for faceting multi-valued fields that have only a few distinct values. The average number of
values per document does not matter. For example, faceting on a field with U.S. States such as Al abama, Al aska,
Womi ng would lead to fifty cached filters which would be used over and over again. The fi | t er Cache should be large enough to
hold all the cached filters.

fc Calculates facet counts by iterating over documents that match the query and summing the terms that appear in each document. This
is currently implemented using an Unl nver t edFi el d cache if the field either is multi-valued or is tokenized (according to
Fi el dType. i sTokened()). Each document is looked up in the cache to see what terms/values it contains, and a tally is
incremented for each value. This method is excellent for situations where the number of indexed values for the field is high, but the
number of values per document is low. For multi-valued fields, a hybrid approach is used that uses term filters from the
filterCache for terms that match many documents. The letters f ¢ stand for field cache.

fcs Per-segment field faceting for single-valued string fields. Enable with f acet . met hod=f cs and control the number of threads used
with the t hr eads local parameter. This parameter allows faceting to be faster in the presence of rapid index changes.

The default value is f ¢ (except for fields using the Bool Fi el d field type) since it tends to use less memory and is faster when a field has many
unique terms in the index.

This parameter can be specified on a per-field basis with the syntax of f . <f i el dnanme>. f acet . met hod.

The facet. enum cache. m nDf Parameter

This parameter indicates the minimum document frequency (the number of documents matching a term) for which the filterCache should be used
when determining the constraint count for that term. This is only used with the f acet . net hod=enummethod of faceting.

A value greater than zero decreases the filterCache's memory usage, but increases the time required for the query to be processed. If you are
faceting on a field with a very large number of terms, and you wish to decrease memory usage, try setting this parameter to a value between 25
and 50, and run a few tests. Then, optimize the parameter setting as necessary.

The default value is 0, causing the filterCache to be used for all terms in the field.

This parameter can be specified on a per-field basis with the syntax of f . <f i el dname>. f acet. enum cache. m nDF.

Range Faceting

You can use Range Faceting on any date field or any numeric field that supports range queries. This is particularly useful for stitching together a
series of range queries (as facet by query) for things like prices. As of Solr 3.1, Range Faceting is preferred over Date Faceting (described below).

Parameter Description

facet.range Specifies the field to facet by range.

facet.range.start Specifies the start of the facet range.

facet.range.end Specifies the end of the facet range.

facet.range.gap Specifies the span of the range as a value to be added to the lower bound.

facet.range.hardend = A boolean parameter that specifies how Solr handles a range gap that cannot be evenly divided between the range start
and end values. If true, the last range constraint will have the f acet . r ange. end value an upper bound. If false, the last
range will have the smallest possible upper bound greater then f acet . r ange. end such that the range is the exact
width of the specified range gap. The default value for this parameter is false.

facet.range.include = Specifies inclusion and exclusion preferences for the upper and lower bounds of the range. See the
facet.range. i ncl ude topic for more detailed information.

facet.range.other Specifies counts for Solr to compute in addition to the counts for each facet range constraint.

The f acet . range Parameter
The f acet . r ange parameter defines the field for which Solr should create range facets. For example:

facet.range=priceé&facet.range=age

Apache Solr Reference Guide 4.4 198

The f acet . range. start Parameter

The f acet . range. st art parameter specifies the lower bound of the ranges. You can specify this parameter on a per field basis with the
syntax of f . <f i el dnane>. f acet . range. st art . For example:

f.price.facet.range.start=0.0&f . age. facet.range. start=10

The facet.range.end Parameter

The facet.range.end specifies the upper bound of the ranges. You can specify this parameter on a per field basis with the syntax of
f.<fiel dnane>. f acet. range. end. For example:

f.price.facet.range. end=1000. 0&f . age. facet.range. start =99

The f acet . range. gap Parameter

The span of each range expressed as a value to be added to the lower bound. For date fields, this should be expressed using the

Dat eMat hPar ser syntax (such as, f acet . range. gap=%2B1DAY ... ' +1DAY'). You can specify this parameter on a per-field basis with the
syntax of f . <f i el dnanme>. f acet . r ange. gap. For example:

f.price.facet.range. gap=100&f . age. f acet . range. gap=10

Gaps can also be variable width by passing in a comma separated list of the gap size to be used. The last gap specified will be used to fill out all
remaining gaps if the number of gaps given does not go evenly into the range. Variable width gaps are useful, for example, in spatial applications
where one might want to facet by distance into three buckets: walking (0-5KM), driving (5-100KM), or other (100KM+). For example:

facet. date. gap=1, 2, 3, 10

This creates 4+ buckets of size, 1, 2, 3 and then 0 or more buckets of 10 days each, depending on the start and end values.

The f acet . r ange. har dend Parameter

The f acet . r ange. har dend parameter is a Boolean parameter that specifies how Solr should handle cases where the f acet . r ange. gap
does not divide evenly between f acet . range. start and f acet . range. end. If true, the last range constraint will have the

facet . range. end value as an upper bound. If false, the last range will have the smallest possible upper bound greater then

facet. range. end such that the range is the exact width of the specified range gap. The default value for this parameter is false. This
parameter can be specified on a per field basis with the syntax f . <f i el dnane>. f acet . range. har dend.

The f acet . range. i ncl ude Parameter

By default, the ranges used to compute range faceting between f acet . range. start and f acet . r ange. end are inclusive of their lower
bounds and exclusive of the upper bounds. The "before" range defined with the f acet . r ange. ot her parameter is exclusive and the "after"
range is inclusive. This default, equivalent to "lower" below, will not result in double counting at the boundaries. You can use the
facet.range. i ncl ude parameter to modify this behavior using the following options:

Option Description
lower All gap-based ranges include their lower bound.
upper All gap-based ranges include their upper bound.

edge The first and last gap ranges include their edge bounds (lower for the first one, upper for the last one) even if the corresponding
upper/lower option is not specified.

outer The "before" and "after" ranges will be inclusive of their bounds, even if the first or last ranges already include those boundaries.

all Includes all options: lower, upper, edge, outer.

You can specify this parameter on a per field basis with the syntax of f . <fi el dnane>. f acet . range. i ncl ude, and you can specify it multiple
times to indicate multiple choices.

.ﬂ. To ensure you avoid double-counting, do not choose both | ower and upper, do not choose out er, and do not choose al | .

The f acet . range. ot her Parameter

The f acet . r ange. ot her parameter specifies that in addition to the counts for each range constraint between f acet . range. start and
f acet . range. end, counts should also be computed for these options:

Apache Solr Reference Guide 4.4 199

http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html

Option Description

before All records with field values lower then lower bound of the first range.

after All records with field values greater then the upper bound of the last range.
between = All records with field values between the start and end bounds of all ranges.
none Do not compute any counts.

all Compute counts for before, between, and after.

This parameter can be specified on a per field basis with the syntax of f . <f i el dnanme>. f acet . r ange. ot her . In addition to the al | option,
this parameter can be specified multiple times to indicate multiple choices, but none will override all other options.

facet.range.hardend

A Boolean parameter instructing Solr what to do in the event that f acet . r ange. gap does not divide evenly between f acet . r ange. st art
and f acet . range. end. If this is true, the last range constraint will have an upper bound of f acet . r ange. end; if false, the last range will have
the smallest possible upper bound greater then f acet . r ange. end such that the range is exactly f acet . r ange. gap wide.

The default is false.

This parameter can be specified on a per field basis.

facet.range.other

This param indicates that in addition to the counts for each range constraint between f acet . r ange. st art and f acet . r ange. end, counts
should also be computed for...

bef or e all records with field values lower then lower bound of the first range

af t er all records with field values greater then the upper bound of the last range
bet ween all records with field values between the start and end bounds of all ranges
none compute none of this information

al | shortcut for bef or e, bet ween, and af t er

This parameter can be specified on a per field basis.

In addition to the al | option, this parameter can be specified multiple times to indicate multiple choices -- but none will override all other options.

facet.range.include

By default, the ranges used to compute range faceting between facet.range.start and facet.range.end are inclusive of their lower bounds and
exclusive of the upper bounds. The "before" range is exclusive and the "after" range is inclusive. This default, equivalent to | ower below, will not
result in double counting at the boundaries. This behavior can be modified by the f acet . r ange. i ncl ude param, which can be any combination
of the following options...
® | ower = all gap based ranges include their lower bound
® upper = all gap based ranges include their upper bound
® edge = the first and last gap ranges include their edge bounds (i.e., lower for the first one, upper for the last one) even if the
corresponding upper/lower option is not specified
® out er =the "before" and "after" ranges will be inclusive of their bounds, even if the first or last ranges already include those boundaries.
® al | =shorthand for lower, upper, edge, outer
This parameter can be specified on a per field basis.
This parameter can be specified multiple times to indicate multiple choices.

If you want to ensure you don't double-count, don't choose both lower & upper, don't choose outer, and don't choose all.

Date Faceting Parameters

As of Solr 3.1, date faceting has been deprecated in favor of Range Faceting, which provides more flexibility with dates and numeric fields. Date
Faceting can be used, however. The response structure is slightly different, but the functionality is equivalent (except that it supports numeric
fields as well as dates).

Several parameters can be used to trigger faceting based on Date ranges computed using simple DateMathParser expressions.

When using Date Faceting, the f acet . dat e, f acet. date. start, facet. date. end, and f acet . dat e. gap parameters are all mandatory.

Name What it does

Apache Solr Reference Guide 4.4 200

http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html

facet.date Allows y

ou to specify names of fields (of type Dat eFi el d, described in the section, Field Types Included with Solr) which

should be treated as date facets. Can be specified multiple times to indicate multiple date facet fields.

facet.date.start The lower boundary for the first date range for all Date Faceting on this field. This should be a single date expression which
may use the DateMathParser syntax. Can be specified on a per field basis.

facet.date.end The min

imum upper boundary for the last date range for all Date Faceting on this field. This should be a single date

expression which may use the DateMathParser syntax. Can be specified on a per field basis.

facet.date.gap The size of each date range expressed as an interval to be added to the lower bound using the DateMathParser syntax.
Can be specified on a per field basis. Example: f acet . dat e. gap=%2B1DAY (+1DAY)

facet.date.other Indicates that in addition to the counts for each date range constraint between f acet . dat e. start and

facet.

dat e. end, counts should also be computed for:

bef or e: all records with field values lower then lower bound of the first range

af t er: all records with field values greater then the upper bound of the last range
bet ween: all records with field values between the start and end bounds of all ranges
none: compute none of this information

al | : shortcut for bef or e, bet ween, and af ter .

Can be specified on a per field basis. In addition to the al | option, this parameter can be specified multiple times
to indicate multiple choices, but none will override all other options.

facet.date.include = By default, the ranges used to compute date faceting between f acet . dat e. start and f acet . dat e. end are all
inclusive of both endpoints, while the "before" and "after" ranges are not inclusive. This behavior can be modified by the

facet.

dat e. i ncl ude parameter, which can be any combination of the following options:

® | ower = all gap based ranges include their lower bound
® upper = all gap based ranges include their upper bound
® edge = the first and last gap ranges include their edge bounds (ie: lower for the first one, upper for the last one)

even if the corresponding upper/lower option is not specified

out er =the "before" and "after" ranges will be inclusive of their bounds, even if the first or last ranges already
include those boundaries.

al | = shorthand for lower, upper, edge, outer

This parameter can be specified on a per field basis, and can be specified multiple times to indicate multiple
choices.

Local Parameters for Faceting

The LocalParams syntax allows overriding global settings. It can also provide a method of adding metadata to other parameter values, much like

XML attributes.

Tagging and Excluding

Filters

You can tag specific filters and exclude those filters when faceting. This is useful when doing multi-select faceting.

Consider the following example query with faceting:

g=mai nquer y&f g=st at us:

publ i c&f q=doct ype: pdf & acet =on&f acet . fi el d=doct ype

Because everything is already constrained by the filter doct ype: pdf , the f acet . fi el d=doct ype facet command is currently redundant and
will return O counts for everything except doct ype: pdf .

To implement a multi-select facet for doctype, a GUI may want to still display the other doctype values and their associated counts, as if the
doct ype: pdf constraint had not yet been applied. For example:

[1 Word (42)
[x] PDF (96)
[1 Excel (11)
[1T HTM. (63)

=== Docunent Type ===

To return counts for doctype values that are currently not selected, tag filters that directly constrain doctype, and exclude those filters when

faceting on doctype.

Apache Solr Reference Guide 4.

4 201

http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html
http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/util/DateMathParser.html

g=nmi nquer y&f gq=st at us: publ i c& q={!t ag=dt } doct ype: pdf & acet =on&f acet . fi el d={! ex=dt } doct ype

Filter exclusion is supported for all types of facets. Both the t ag and ex local parameters may specify multiple values by separating them with
commas.

Changing the Output Key
To change the output key for a faceting command, specify a new name with the key local parameter. For example:
facet.fiel d={!ex=dt key=nyl abel }doctype

The parameter setting above causes the results to be returned under the key "mylabel” rather than "doctype" in the response. This can be helpful
when faceting on the same field multiple times with different exclusions.

Pivot (Decision Tree) Faceting

Pivoting is a summarization tool that lets you automatically sort, count, total or average data stored in a table. It displays the results in a second
table showing the summarized data. Pivot faceting lets you create a summary table of the results from a query across numerous documents. With
Solr 4, pivot faceting supports nested facet queries, not just facet fields.

Another way to look at it is that the query produces a Decision Tree, in that Solr tells you "for facet A, the constraints/counts are X/N, Y/M, etc. If

you were to constrain A by X, then the constraint counts for B would be S/P, T/Q, etc.". In other words, it tells you in advance what the "next" set
of facet results would be for a field if you apply a constraint from the current facet results.

facet.pivot

The f acet . pi vot parameter defines the fields to use for the pivot. Multiple f acet . pi vot values will create multiple “facet_pivot" sections in
the response. Separate each list of fields with a comma.

As of Solr 4.1, local parameters can be used in pivot facet queries.

facet.pivot.mincount

The f acet . pi vot . mi ncount parameter defines the minimum number of documents that need to match in order for the facet to be included in
results. The default is 1.

For example, we can use Solr's example data set to make a query like this:

http://1ocal host: 8983/ sol r/ sel ect ?2q=*: *&f acet. pi vot =cat, popul ari ty, i nSt ock&f acet . pi vot =p
&f acet =true&f acet . fiel d=cat & acet .| i m t =5& ows=0&wt =j son& ndent =t r ue&f acet . pi vot. m ncoun

This query will returns the data below, with the pivot faceting results found in the section "facet_pivot":

Apache Solr Reference Guide 4.4 202

"facet _counts":{
"facet _queries":{},
"facet _fields":{
"cat": [
"el ectronics", 14,
"currency", 4,
"menory", 3,
"connector", 2,
"graphics card", 2]},
"facet _dates":{},
"facet _ranges":{},
"facet _pivot":{
"cat, popul arity,inStock":[{
"field":"cat",
"val ue": "el ectronics",

"count": 14,

"pivot":[{
"field":"popularity",
"val ue": 6,

"count":5,
"pivot":[{

"field":"inStock",
"val ue":true
"“count":5}]},

Pivot faceting supports distributed searching.

Facets and Time Zone

You can construct your query to use the t z parameter, which overrides the time zone used when rounding dates in Dat eMat h expressions for
the entire request. This applies to all date range queries and date faceting.

For instance, a request that does not include date parameters, like this:

http://1ocal host: 8983/ sol r/ sel ect ?i ndent =on&ver si on=2. 2&q=* ¥8A* & q=&st art =0& ows=108&f | =*
&qt =&wt =&expl ai nO her =&hl . f 1 =&

can be modified by adding facet parameters for dates:

&f acet =t rue&f acet . dat e=manuf act ur edat e_dt &f acet . dat e. st art =2005- 01- 31T15: 00: 00Z

&f acet . dat e. end=2006- 05- 31T15: 00: 00Z&f acet . dat e. gap=¥2B1MONTH DAY&f acet . dat e. t z=Asi a/ Tok

The result would be a date facet request with monthly gap in Tokyo time (GMT+9:00).

One problem may be that some time zones observe Daylight Savings Time, and some don't. For instance, consider this query:

http://1ocal host: 8983/ sol r/ sel ect ?i ndent =on&ver si on=2. 2&q=* ¥8A* & q=&st art =0& ows=108&f | =*
&expl ai nGt her =&hl . f| =&start = 2007-07-30T0O0: 00: 00. 0002/ DAY&end =
2007-07-31T00: 00: 00. 000Z/ DAY

&gap = \ +1DAY&t z=Asi a/ Si ngapore

Apache Solr Reference Guide 4.4 203

The way to make sure that your return reflects Daylight Savings Time is to simply add '/DAY" to the end of each parameter, which will round the
times to the beginning of the day. Since the rounding takes t z into account, this query will come out to 8:00 (the difference between GMT and
Singapore time).

&start=2007-07- 30T00: 00: 00. 000Z/ DAY&end=2007- 07- 31TOO0: 00: 00. 000Z/ DAY
&gap=+1DAY&t z=Asi a/ Si ngapor e

Related Topics

® SimpleFacetParameters from the Solr Wiki.

Result Grouping

Result Grouping groups documents with a common field value into groups and returns the top documents for each group. For example, if you
searched for "DVD" on an electronic retailer's e-commerce site, you might be returned three categories such as "TV and Video," "Movies," and
"Computers," with three results per category. In this case, the query term "DVD" appeared in all three categories, so Solr groups them together in
order to increase relevancy for the user.

Result Grouping is separate from Faceting. Though it is conceptually similar, faceting returns all relevant results and allows the user to refine the
results based on the facet category. For example, if you searched for "shoes" on a footwear retailer's e-commerce site, you would be returned all
results for that query term, along with selectable facets such as "size," “color," "brand," and so on.

However, with Solr 4 you can also group facets. The grouped faceting works with the first gr oup. f i el d parameter, and other gr oup. fi el d
parameters are ignored. Grouped faceting only supports f acet . f i el d for string based fields that are not tokenized and are not multivalued.

Grouped faceting currently doesn't support date and pivot faceting, but it does support range faceting.
Grouped faceting differs from non grouped facets (sum of all facets) == (total of products with that property) as shown in the following example:
Object 1

® name: Phaser 4620a

®* ppm: 62

® product_range: 6
Object 2

® name: Phaser 4620i

® ppm: 65

® product_range: 6
Object 3

® name: ML6512

®* ppm: 62

® product_range: 7

If you ask Solr to group these documents by "product_range", then the total amount of groups is 2, but the facets for ppm are 2 for 62 and 1 for
65.

Request Parameters

Result Grouping takes the following request parameters. Any number of these request parameters can be included in a single request:

Parameter Type Description
group Boolean If true, query results will be grouped.
group.field string The name of the field by which to group results. The field be single-valued, and either be indexed or a

field type that has a value source and works in a function query, such as Ext er nal Fi | eFi el d. It
must also be a string-based field, such as St r Fi el d or Text Fi el d

group.func query Group based on the unique values of a function query. Supported only in Sol4r 4.0.
group.query query Return a single group of documents that match the given query.
rows integer The number of groups to return. The default value is 10.

Apache Solr Reference Guide 4.4 204

http://wiki.apache.org/solr/SimpleFacetParameters

start
group.limit
group.offset

sort

group.sort

group.format

group.main

group.ngroups

group.truncate

group.facet

group.cache.percent

integer
integer
integer

sortspec

sortspec

grouped/simple

Boolean

Boolean

Boolean

Boolean

integer

between 0 and
100

Specifies an initial offset for the list of groups.
Specifies the number of results to return for each group. The default value is 1.
Specifies an initial offset for the document list of each group.

Specifies how Solr sorts the groups relative to each other. For example, sort =popul arity desc
will cause the groups to be sorted according to the highest popularity document in each group. The
default value is score desc.

Specifies how Solr sorts documents within a single group. The default value is scor e desc.

If this parameter is set to si npl e, the grouped documents are presented in a single flat list, and the
start and r ows parameters affect the numbers of documents instead of groups.

If true, the result of the first field grouping command is used as the main result list in the response,
using gr oup. f or nat =si npl e.

If true, Solr includes the number of groups that have matched the query in the results. The default
value is false.

If true, facet counts are based on the most relevant document of each group matching the query. The
default value is false.

Determines whether to compute grouped facets for the field facets specified in facet.field parameters.
Grouped facets are computed based on the first specified group. As with normal field faceting, fields
shouldn't be tokenized (otherwise counts are computed for each token). Grouped faceting supports
single and multivalued fields. Default is false. New with Solr 4.

Setting this parameter to a number greater than 0 enables caching for result grouping. Result
Grouping executes two searches; this option caches the second search. The default value is 0. Testing
has shown that group caching only improves search time with Boolean, wildcard, and fuzzy queries.
For simple queries like term or "match all* queries, group caching degrades performance.

Any number of group commands (gr oup. fi el d, gr oup. f unc, gr oup. quer y) may be specified in a single request.

Grouping is also supported for distributed searches. Currently gr oup. t r uncat e and gr oup. f unc are the only parameters that aren't supported

for distributed searches.

Examples

All of the following examples work with the data provided in the Solr Example directory.

Grouping Results by Field

In this example, we will group results based on the manu_exact field, which specifies the manufacturer of the items in the sample dataset.

http://1ocal host: 8983/ sol r/ sel ect 2wt =j son& ndent =t rue&f | =i d, nane&q=sol r +nenor y&gr oup=t r ue&gr oup. fi el d=manu_e

Apache Solr Reference Guide 4.4

205

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name&q=solr+memory&group=true&group.field=manu_exact

{

"grouped": {
"manu_exact ": {
"mat ches": 6
"groups":[{
"groupVal ue": " Apache Software Foundation",
"doclist":{"nunmFound":1,"start":0,"docs": [
{
"id":"SOLR1000",
"name":"Solr, the Enterprise Search Server"}]
3
{

"groupVal ue":"Corsair Mcrosystens Inc.",
"doclist":{"nunfound":2,"start": 0, "docs": [
{
"id":"VS1GB400C3",
"name": " CORSAI R Val ueSel ect 1GB 184-Pi n DDR SDRAM Unbuffered DDR 400 (PC
3200) System Menory - Retail"}]
I3

{
"groupVal ue": " A- DATA Technol ogy Inc.",

"doclist":{"nunFound":1,"start":0, "docs": [
{
"id":"VDBDB1Al6"
"name": " A- DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC
3200) System Menory - CEM'}]

1
{
"groupVal ue": " Canon Inc.",
"doclist":{"nunFound":1,"start":0, "docs": [
{
"id":"0579B002",
"name": " Canon Pl XMA MP500 All-In-One Photo Printer"}]
h
{
"groupVal ue": " ASUS Computer Inc.",
"doclist":{"nunFound":1,"start":0, "docs": [
{
"id":"EN7800GTX/ 2DHTV/ 256 M'
"name": " ASUS Extreme N7800GTX/ 2DHTV (256 MB)"}]
}
}
]
}
}

The response indicates that there are six total matches for our query. For each unique value of gr oup. fi el d, Solr returns a docLi st with the
top scoring document. The docLi st also includes the total number of matches in that group as the nunfound value. The groups are sorted by
the score of the top document within each group.

We can run the same query with the request parameter gr oup. mai n=t r ue. This will format the results as a single flat document list. This flat
format does not include as much information as the normal result grouping query results, but it may be easier for existing Solr clients to parse.

http://1ocal host: 8983/ sol r/ sel ect 2wt =j son& ndent =t rue&f | =i d, nanme, nanuf act ur er &=sol r +menor y&gr oup=t r ue&gr oug

Apache Solr Reference Guide 4.4 206

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true

{

"responseHeader": {

"status": 0,
"QTime": 1,
"parans": {
"fl":"id, nane, manuf acturer",

"indent":"true",

"g":"solr menory",
"group.field":"manu_exact",
"group. main":"true",
"group":"true",
"w":"json"}},

"grouped": {},
"response”: {"nunfFound": 6, "start": 0, "docs": [
{
"id":"SOLR1000",

nane":"Solr, the Enterprise Search Server"},

"id":"VS1GB400C3",

"name": " CORSAI R Val ueSel ect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200)
System Menory - Retail "},
{
"id":"VDBDBlAl6",
"name": " A- DATA V-Series 1GB 184-Pin DDR SDRAM Unbuf fered DDR 400 (PC 3200)
System Menory - CEM'},
{
"id":"0579B002",
"name": " Canon Pl XMA MP500 All-1n-One Photo Printer"},

"i d": " ENV8OOGTX/ 2DHTV/ 256 M ,
“name”: " ASUS Extreme N7800GTX/ 2DHTV (256 MB)"}]

Grouping by Query

In this example, we will use the gr oup. query parameter to find the top three results for “memory" in two different price ranges: 0.00 to 99.99,
and over 100.

http://1ocal host: 8983/ sol r/ sel ect 2wt =j son& ndent =t r ue&f | =nane, pri ce&g=nenor y&gr oup=t r ue&gr oup. query=price: [C

Apache Solr Reference Guide 4.4 207

http://localhost:8983/solr/select?wt=json&indent=true&fl=name,price&q=memory&group=true&group.query=price:\[0+TO+99.99\]&group.query=price:\[100+TO+*\]&group.limit=3

"responseHeader": {

"status": 0,

"QrTime": 42,

"parans": {
"fl":"name, price",
"indent":"true",
"q":"nmenmory",
"group.limt":"3",
"group.query":["price:[0 TO 99.99]",

"price:[100 TO *]"],

"group":"true",
"w":"json"}},

"grouped”: {
"price:[0 TO 99.99]":{
"mat ches": 5,
"doclist":{"nunFound":1,"start":0, "docs": [
{

"name": " CORSAI R Val ueSel ect 1GB 184-Pi n DDR SDRAM Unbuf fered DDR 400 (PC
3200) System Menory - Retail",
"price":74.99}]

I3
"price:[100 TO *]":{
"mat ches": 5,
"doclist":{"nunFound": 3,"start":0, "docs": [

{
"name":"CORSAIR XMs5 2GB (2 x 1GB) 184-Pin DDR SDRAM Unbuffered DDR 400

(PC 3200) Dual Channel
Kit System Menory - Retail",
"price":185. 0},
{
"nane": " Canon Pl XMA MP500 All -1 n-One Photo Printer",
"price":179.99},

"name": " ASUS Extrenme N7800GTX/ 2DHTV (256 MB)",
"price":479.95}]

In this case, Solr found five matches for "memory," but only returns four results grouped by price. This is because one result for "memory" did not
have a price assigned to it.

Distributed Result Grouping

Solr also supports result grouping on distributed indexes. If you are using result grouping on the "/select" request handler, you must provide the
shar ds parameter described here. If you are using result grouping on a request handler other than "/select", you must also provide the
shards. qt parameter:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information about distributed indexing, see Distributed
Search with Index Sharding

shards.qt = Specifies the request handler Solr uses for requests to shards. This parameter is not required for the / sel ect request handler.

For example:
http://1ocal host: 8983/ sol r/ sel ect 2wt =j son& ndent =t rue&f | =i d, nanme, manuf act ur er &=sol r +menor y&gr oup=t r ue&gr oug

Apache Solr Reference Guide 4.4 208

http://localhost:8983/solr/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true&shards=solr-shard1:8983/solr,solr-shard2:8983/solr

Spell Checking

The SpellCheck component is designed to provide inline query suggestions based on other, similar, terms. The basis for these suggestions can
be terms in a field in Solr, externally created text files, or fields in other Lucene indexes.

Topics covered in this section:

® Configuring the SpellCheckComponent
® Spell Check Parameters
® Distributed SpellCheck

Configuring the SpellCheckComponent

Define Spell Check in sol rconfi g. xm

The first step is to specify the source of terms in sol r conf i g. xm . There are three approaches to spell checking in Solr, discussed below.

IndexBasedSpellChecker

The | ndexBasedSpel | Checker uses a Solr index as the basis for a parallel index used for spell checking. It requires defining a field as the
basis for the index terms; a common practice is to copy terms from some fields (such asti t| e, body, etc.) to another field created for spell
checking. Here is a simple example of configuring sol r confi g. xm with the | ndexBasedSpel | Checker :

<sear chConponent name="spel | check" cl ass="sol r. Spel | CheckConponent ">
<l st name="spel | checker">
<str name="cl assnanme" >sol r. | ndexBasedSpel | Checker </ str>
<str nanme="spel | checkl ndexDi r">./spel | checker</str>
<str name="field">content</str>
<str name="buil dOnConmi t">true</str>
</lst>
</ sear chConponent >

The first element defines the sear chConponent to use the sol r. Spel | CheckConponent . The cl assnane is the specific implementation of
the SpellCheckComponent, in this case sol r . | ndexBasedSpel | Checker . Defining the cl assnane is optional; if not defined, it will default to
| ndexBasedSpel | Checker .

The spel | checkl ndexDi r defines the location of the directory that holds the spellcheck index, while the f i el d defines the source field
(defined in schema. xm) for spell check terms. When choosing a field for the spellcheck index, it's best to avoid a heavily processed field to get
more accurate results. If the field has many word variations from processing synonyms and/or stemming, the dictionary will be created with those
variations in addition to more valid spelling data.

Finally, buildOnCommit defines whether to build the spell check index at every commit (that is, every time new documents are added to the
index). It is optional, and can be omitted if you would rather set it to f al se.

DirectSolrSpellChecker
The Di r ect Sol r Spel | Checker uses terms from the Solr index without building a parallel index like the | ndexBasedSpel | Checker . Itis

considered experimental and still in development, but is being used widely. This spell checker has the benefit of not having to be built regularly,
meaning that the terms are always up-to-date with terms in the index. Here is how this might be configured in sol r confi g. xm

Apache Solr Reference Guide 4.4 209

<sear chConponent nane="spel | check" cl ass="sol r. Spel | CheckConponent ">
<l st nanme="spel | checker">

<str name="name">defaul t</str>

<str name="fiel d">name</str>

<str name="cl assnane">sol r. Di rect Sol r Spel | Checker </ str>

<str nane="di stanceMeasure">i nternal </str>

<fl oat nane="accuracy">0.5</fl oat >

<i nt name="nmaxEdi t s">2</int>

<int name="m nPrefix">1</int>

<i nt name="naxl nspecti ons">5</int>

<int nanme="m nQuerylLengt h">4</int>

<fl oat nane="naxQueryFrequency">0.01</fl oat >

<fl oat nane="t hreshol dTokenFr equency">. 01</f | oat >
</lst>
</ sear chConponent >

When choosing a f i el d to query for this spell checker, you want one which has relatively little analysis performed on it (particularly analysis such
as stemming). Note that you need to specify a field to use for the suggestions, so like the | ndexBasedSpel | Checker, you may want to copy
data from fields like ti t | e, body, etc., to a field dedicated to providing spelling suggestions.

Many of the parameters relate to how this spell checker should query the index for term suggestions. The di st anceMeasur e defines the metric
to use during the spell check query. The value "internal” uses the default Levenshtein metric, which is the same metric used with the other spell
checker implementations.

Because this spell checker is querying the main index, you may want to limit how often it queries the index to be sure to avoid any performance
conflicts with user queries. The accur acy setting defines the threshold for a valid suggestion, while maxEdi t s defines the number of changes to
the term to allow. Since most spelling mistakes are only 1 letter off, setting this to 1 will reduce the number of possible suggestions (the default,
however, is 2); the value can only be 1 or 2. mi nPr ef i x defines the minimum number of characters the terms should share. Setting this to 1
means that the spelling suggestions will all start with the same letter, for example.

The max| nspect i ons parameter defines the maximum number of possible matches to review before returning results; the default is 5.

m nQuer yLengt h defines how many characters must be in the query before suggestions are provided; the default is 4. maxQuer yFr equency
sets the maximum threshold for the number of documents a term must appear in before being considered as a suggestion. This can be a
percentage (such as .01, or 1%) or an absolute value (such as 4). A lower threshold is better for small indexes. Finally,

treshol dTokenFr equency sets the minimum number of documents a term must appear in, and can also be expressed as a percentage or an
absolute value.

FileBasedSpellChecker

The Fi | eBasedSpel | Checker uses an external file as a spelling dictionary. This can be useful if using Solr as a spelling server, or if spelling
suggestions don't need to be based on actual terms in the index. In sol r confi g. xm , you would define the searchComponent as so:

<sear chConponent nane="spel | check" cl ass="sol r. Spel | CheckConponent ">
<l st name="spel | checker">
<str name="cl assnanme" >sol r. Fi | eBasedSpel | Checker </ str>
<str name="nane">file</str>
<str name="sourcelLocation">spellings.txt</str>
<str name="char act er Encodi ng" >UTF- 8</ st r>
<str name="spel | checkl ndexDir">./spel | checkerFile</str>
</lst>
</ sear chConponent >

The differences here are the use of the sour ceLocat i on to define the location of the file of terms and the use of char act er Encodi ng to
define the encoding of the terms file.

In the previous example, name is used to name this specific definition of the spellchecker. Multiple definitions can co-exist in a
single sol rconfi g. xm , and the name helps to differentiate them when they are defined in the schema. xm . If only defining
one spellchecker, no name is required.

Apache Solr Reference Guide 4.4 210

WordBreakSolrSpellChecker

A parallel implementation, Wor dBr eak Sol r Spel | Checker offers suggestions by combining adjacent query terms and/or breaking terms into
multiple words. It is a Spel | CheckConponent enhancement, leveraging Lucene's Wor dBr eak Spel | Checker . It can detect spelling errors
resulting from misplaced whitespace without the use of shingle-based dictionaries and provides collation support for word-break errors, including
cases where the user has a mix of single-word spelling errors and word-break errors in the same query. It also provides shard support.

Here is how it might be configured in sol rconfi g. xm :

<sear chConponent name="spel | check" cl ass="solr. Spel | CheckConponent ">
<l st name="spel | checker" >
<str nanme="nane">wor dbr eak</str>
<str nane="cl assnanme" >sol r. Wr dBr eakSol r Spel | Checker </ str>
<str nanme="field">lowerfilt</str>
<str nanme="conbi neWrds" >true</str>
<str name="breakWrds">true</str>
<i nt name="naxChanges">10</i nt >
</lst>
</ sear chConponent >

Some of the parameters will be familiar from the discussion of the other spell checkers, such as nane, cl assnane, and f i el d. New for this spell
checker is combi neWor ds, which defines whether words should be combined in a dictionary search (default is true); br eakWor ds, which defines
if words should be broken during a dictionary search (default is true); and naxChanges, an integer which defines how many times the spell
checker should check collation possibilities against the index (default is 10).

The spelichecker can be configured with a traditional checker (ie: Di r ect Sol r Spel | Checker). The results are combined and collations can
contain a mix of corrections from both spellcheckers.

Add It to a Request Handler

Queries will be sent to a RequestHandler. If every request should generate a suggestion, then you would add the following to the
request Handl er that you are using:

<str nanme="spel | check">true</str>

One of the possible parameters is the spel | check. di cti onary to use, and multiples can be defined. With multiple dictionaries, all specified
dictionaries are consulted and results are interleaved. Collations are created with combinations from the different spellcheckers, with care taken
that multiple overlapping corrections do not occur in the same collation.

Here is an example with multiple dictionaries:

<r equest Handl er nanme="spel | CheckW t hWor dbr eak"

cl ass="org. apache. sol r. handl er. conponent . Sear chHand!| er " >
<l st name="defaul ts">

<str name="spel | check. di cti onary">defaul t</str>
<str name="spel | check. di cti onary">wor dbr eak</str>
<str name="spel | check. count">20</str>

</[lst>

<arr name="| ast - conponent s">
<str>spel | check</str>

<larr>

</ request Handl er >

Spell Check Parameters

The SpellCheck component accepts the parameters described in the table below. All of these parameters can be overridden by specifying
spel | check. col | at ePar am xx where xx is the parameter you are overriding.

Apache Solr Reference Guide 4.4 211

Parameter

spellcheck

spellcheck.q or q
spellcheck.build
spellcheck.collate
spellcheck.maxCollations

spellcheck.maxCollationTries

spellcheck.maxCollationEvaluations

spellcheck.collateExtendedResult

spellcheck.collateMaxCollectDocs
spellcheck.count
spellcheck.dictionary

spellcheck.extendedResults

spellcheck.onlyMorePopular

spellcheck.maxResultsForSuggest

spellcheck.alternative TermCount
spellcheck.reload
spellcheck.accuracy

spellcheck.<DICT_NAME> key

The spel | check Parameter

Description

Turns on or off SpellCheck suggestions for the request. If true, then spelling suggestions will be
generated.

Selects the query to be spellchecked.

Instructs Solr to build a dictionary for use in spellchecking.

Causes Solr to build a new query based on the best suggestion for each term in the submitted query.
This parameter specifies the maximum number of collations to return.

This parameter specifies the number of collation possibilities for Solr to try before giving up.

This parameter specifies the maximum number of word correction combinations to rank and evaluate
prior to deciding which collation candidates to test against the index.

If true, returns an expanded response detailing the collations found. If spel | check. col | at e is false,
this parameter will be ignored.

The maximum number of documents to collect when testing potential Collations

Specifies the maximum number of spelling suggestions to be returned.

Specifies the dictionary that should be used for spellchecking.

Causes Solr to return additional information about spellcheck results, such as the frequency of each
original term in the index (origFreq) as well as the frequency of each suggestion in the index (frequency).
Note that this result format differs from the non-extended one as the returned suggestion for a word is
actually an array of lists, where each list holds the suggested term and its frequency.

Limits spellcheck responses to queries that are more popular than the original query.

The maximum number of hits the request can return in order to both generate spelling suggestions and
set the "correctlySpelled" element to "false".

The count of suggestions to return for each query term existing in the index and/or dictionary.
Reloads the spellchecker.
Specifies an accuracy value to help decide whether a result is worthwhile.

Specifies a key/value pair for the implementation handling a given dictionary.

This parameter turns on SpellCheck suggestions for the request. If true, then spelling suggestions will be generated.

The spel | check. q or q Parameter

This parameter specifies the query to spellcheck. If spel | check. q is defined, then it is used; otherwise the original input query is used. The
spel | check. g parameter is intended to be the original query, minus any extra markup like field names, boosts, and so on. If the g parameter is
specified, then the Spel | i ngQuer yConvert er class is used to parse it into tokens; otherwise the Wi t espaceTokeni zer is used. The choice
of which one to use is up to the application. Essentially, if you have a spelling "ready" version in your application, then it is probably better to use
spel | check. g. Otherwise, if you just want Solr to do the job, use the g parameter.

. The SpellingQueryConverter class does not deal properly with non-ASCII characters. In this case, you have either to use
spel | check. g, or implement your own QueryConverter.

The spel | check. bui | d Parameter

If set to true, this parameter creates the dictionary that the SolrSpellChecker will use for spell-checking. In a typical search application, you will
need to build the dictionary before using the SolrSpellChecker. However, it's not always necessary to build a dictionary first. For example, you can
configure the spellchecker to use a dictionary that already exists.

The dictionary will take some time to build, so this parameter should not be sent with every request.

The spel | check. r el oad Parameter

If set to true, this parameter reloads the spellchecker. The results depend on the implementation of Sol r Spel | Checker. rel oad() . In a typical

Apache Solr Reference Guide 4.4

212

implementation, reloading the spellchecker means reloading the dictionary.

The spel | check. count Parameter

This parameter specifies the maximum number of suggestions that the spellchecker should return for a term. If this parameter isn't set, the value
defaults to 1. If the parameter is set but not assigned a number, the value defaults to 5. If the parameter is set to a positive integer, that number
becomes the maximum number of suggestions returned by the spellchecker.

The spel | check. onl yMor ePopul ar Parameter

If true, Solr will to return suggestions that result in more hits for the query than the existing query. Note that this will return more popular
suggestions even when the given query term is present in the index and considered "“correct".

The spel | check. maxResul t sFor Suggest Parameter

For example, if this is set to 5 and the user's query returns 5 or fewer results, the spellchecker will report "correctlySpelled=false" and also offer
suggestions (and collations if requested). Setting this greater than zero is useful for creating "did-you-mean?" suggestions for queries that return a
low number of hits.

The spel | check. al t ernati veTer nCount Parameter

Specify the number of suggestions to return for each query term existing in the index and/or dictionary. Presumably, users will want fewer
suggestions for words with docFrequency>0. Also setting this value turns "on" context-sensitive spell suggestions.

The spel | check. ext endedResul t s Parameter

This parameter causes to Solr to include additional information about the suggestion, such as the frequency in the index.

The spel | check. col | at e Parameter

If true, this parameter directs Solr to take the best suggestion for each token (if one exists) and construct a new query from the suggestions. For
example, if the input query was "jawa class lording" and the best suggestion for “jawa" was "java" and "lording" was "loading", then the resulting
collation would be "java class loading".

The spellcheck.collate parameter only returns collations that are guaranteed to result in hits if re-queried, even when applying original f g
parameters. This is especially helpful when there is more than one correction per query.

", This only returns a query to be used. It does not actually run the suggested query.

The spel | check. maxCol | ati ons Parameter

The maximum number of collations to return. The default is 1. This parameter is ignored if spel | check. col | at e is false.

The spel | check. maxCol | ati onTri es Parameter

This parameter specifies the number of collation possibilities for Solr to try before giving up. Lower values ensure better performance. Higher
values may be necessary to find a collation that can return results. The default value is 0, which maintains backwards-compatible (Solr 1.4)
behavior (do not check collations). This parameter is ignored if spel | check. col | at e is false.

The spel | check. maxCol | ati onEval uati ons Parameter

This parameter specifies the maximum number of word correction combinations to rank and evaluate prior to deciding which collation candidates
to test against the index. This is a performance safety-net in case a user enters a query with many misspelled words. The default is 10,000
combinations, which should work well in most situations.

The spel | check. col | at eExt endedResul t Parameter

If true, this parameter returns an expanded response format detailing the collations Solr found. The default value is false and this is ignored if
spel | check. col | at e is false.

The spel | check. col | at eMaxCol | ect Docs Parameter

This parameter specifies the maximum number of documents that should be collect when testing potential collations against the index. A value of
0 indicates that all documents should be collected, resulting in exact hit-counts. Otherwise an estimation is provided as a performance
optimization in cases where exact hit-counts are unnecessary — the higher the value specified, the more precise the estimation.

Apache Solr Reference Guide 4.4 213

The default value for this parameter is 0, but when spel | check. col | at eExt endedResul t s is false, the optimization is always used as if a 1
had been specified.

The spel | check. di cti onary Parameter

This parameter causes Solr to use the dictionary named in the parameter's argument. The default setting is "default". This parameter can be used
to invoke a specific spellchecker on a per request basis.

The spel | check. accur acy Parameter

Specifies an accuracy value to be used by the spell checking implementation to decide whether a result is worthwhile or not. The value is a float
between 0 and 1. Defaults to Fl oat . M N_VALUE.

The spel | check. <DI CT_NAME>. key Parameter

Specifies a key/value pair for the implementation handling a given dictionary. The value that is passed through is just key=val ue (
spel | check. <Dl CT_NAME>. is stripped off.

For example, given a dictionary called f oo, spel | check. f 0o. myKey=nyVal ue would result in myKey=mnyVal ue being passed through to the
implementation handling the dictionary f o0o.

Example

This example shows the results of a simple query that defines a query using the spel | check. g parameter. The query also includes a
spel | check. bui | d=t r ue parameter, which is needs to be called only once in order to build the index. spel | check. bui | d should not be
specified with for each request.

http://1 ocal host: 8983/ sol r/ spel | CheckConmpRH?q=:
&spel | check. g=hel | %20ul t r ashar &spel | check=t r ue&spel | check. bui | d=t rue

Results:

<l st name="spel | check" >
<l st name="suggesti ons">

<l st name="hel | ">
<i nt nanme="nunFound">1</i nt>
<int name="start O fset">0</int>
<int name="endO fset">4</int>
<arr name="suggestion">

<str>del |l </str>

</arr>

</lst>

<l st name="ul trashar">
<i nt nanme="nunFound">1</i nt>
<int name="startOf fset">5</int>
<int name="endO fset">14</int >
<arr name="suggestion">

<str>ul trasharp</str>

</arr>

</lst>

</|st>
</lst>

Distributed SpellCheck

The Spel | CheckConponent also supports spellchecking on distributed indexes. If you are using the SpellCheckComponent on a request
handler other than "/select", you must provide the following two parameters:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information about distributed indexing, see Distributed
Search with Index Sharding

Apache Solr Reference Guide 4.4 214

http://localhost:8983/solr/spellCheckCompRH?q=*:*&spellcheck.q=hell%20ultrashar&spellcheck=true&spellcheck.build=true
http://localhost:8983/solr/spellCheckCompRH?q=*:*&spellcheck.q=hell%20ultrashar&spellcheck=true&spellcheck.build=true

shards.qt = Specifies the request handler Solr uses for requests to shards. This parameter is not required for the / sel ect request handler.

For example: htt p: / /| ocal host : 8983/ sol r/ sel ect ?q=:
&spel | check=t rueé&spel | check. bui | d=t rue&spel | check. g=t oyat a&qt =spel | &har ds. qt =spel | &har ds=sol r- shar d1: 8983/

In case of a distributed request to the SpellCheckComponent, the shards are requested for at least five suggestions even if the
spel | check. count parameter value is less than five. Once the suggestions are collected, they are ranked by the configured distance measure
(Levenstein Distance by default) and then by aggregate frequency.

Suggester

Solr includes an autosuggest component called Suggester, which is built on the SpellCheck search component. The autocomplete suggestions
that Suggester provides come from a dictionary that is either based on the main index or on a dictionary file that you provide. It is common to
provide only the top-N suggestions, either ranked alphabetically or according to their usefulness for an average user (such as popularity or the
number of returned results).

Because this feature is based on the SpellCheck search component, configuring Suggester is similar to configuring spell checking. Unlike the
SpellCheck Component, however, Suggester has no direct indexing option at this time.

Insol rconfi g. xnl , we need to add a search component and a request handler.

Covered in this section:

Adding the Suggest Search Component
Adding the Suggest Request Handler
Defining a Field for Suggester

Related Topics

Adding the Suggest Search Component

The first step is to add a search component to sol r confi g. xml to extend the SpellChecker. Here is some sample code that could be used.

<sear chConponent cl ass="sol r. Spel | CheckConponent” nane="suggest">
<l st nane="spel | checker">
<str name="nane">suggest</str>
<str name="cl assnanme" >or g. apache. sol r. spel | i ng. suggest . Suggester</str>
<str name="1 ookupl npl " >or g. apache. sol r. spel | i ng. suggest . tst. TSTLookup</str>

<str name="field">nane</str> <!-- the indexed field to derive suggestions from
-->
<fl oat name="t hreshol d">0. 005</f| oat >
<str name="buil dOnConmit">true</str>
<l--
<str nanme="sourcelLocation">anerican-english</str>
-->
</|st>

</ sear chConponent >

One of the most important parameters is the | ookupl npl , which is described in more detail below. In this example, the sour ceLocat i on is
commented out, which means that a dictionary file will not be used. Instead, the field defined with the f i el d parameter will be used as the
dictionary. We've included the unused sour ceLocat i on in the example to demonstrate it's usage.

Suggester Search Component Parameters

The Suggester search component takes the following configuration parameters:

Parameter Description

searchComponent = Arbitrary name for the search component.
name

Apache Solr Reference Guide 4.4 215

http://localhost:8983/solr/select?q=*:*&spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=spell&shards.qt=spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr
http://localhost:8983/solr/select?q=*:*&spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=spell&shards.qt=spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr

name A symbolic name for this spellchecker. You can refer to this name in the URL parameters and in the SearchHandler

configuration.
classname The full class name of the component: or g. apache. sol r. spel | i ng. Suggest er
lookupImpl Lookup implementation. Choose one of these four:

org. apache. sol r. suggest . f st. FSTLookup: automaton-based lookup. This implementation is slower to build, but
provides the lowest memory cost. We recommend using this implementation unless you need more sophisticated matching
results, in which case you should use the Jaspell implementation.

or g. apache. sol r. suggest . wf st . WFSTLookup: weighted automaton representation; an alternative to FSTLookup for
more fine-grained ranking. WFSTLookup does not use buckets, but instead a shortest path algorithm. Note that it expects
weights to be whole numbers. If weight is missing it's assumed to be 1.0. Weights affect the sorting of matching
suggestions when spel | check. onl yMor ePopul ar =t r ue is selected: weights are treated as "popularity” score, with
higher weights preferred over suggestions with lower weights.

or g. apache. sol r. suggest . j aspel | . Jaspel | Lookup: a more complex lookup based on a ternary trie from the
JaSpell project. Use this implementation if you need more sophisticated matching results.

or g. apache. sol r. suggest . t st. TSTLookup: a simple compact ternary trie based lookup.

All four implementations will likely run at similar speed when requests are made through HTTP. Direct benchmarks of
these classes indicate that FSTLookup provides better performance compared to the other three methods, and at a much
lower memory cost. We recommend using the FSTLookup implementation unless you need more sophisticated matching,
in which case you should use the JaspellLookup implementation or FSTLookupFactory.

buildOnCommit or = False by default. If true then the lookup data structure will be rebuilt after commit. If false, then the lookup data will be built
buildOnOptimize only when requested by URL parameter spel | check. bui | d=t r ue. Use bui | dOnConmi t to rebuild the dictionary with
every commit, or bui | dOnOpt i mi ze to build the dictionary only when the index is optimized.

. Currently implemented lookups keep their data in memory, so unlike spellchecker data, this data is
discarded on core reload and not available until you invoke the build command, either explicitly or
implicitly during a commit.

queryConverter Allows defining an alternate converter that can parse phrases in dictionary files. It passes the whole string to the query
analyzer rather than analyzing it for spelling. Define it in sol r confi g. xnl as <quer yConverter
name="queryConverter" class="org. apache. sol r.spel | ing. Suggest QueryConverter"/>.

sourceLocation The path to the dictionary file. If this value is empty then the main index will be used as a source of terms and weights.
field If sour ceLocat i on is empty then terms from this field in the index will be used when building the trie.
threshold A value between zero and one representing the minimum fraction of the total documents where a term should appear in

order to be added to the lookup dictionary.

When you use the index as the dictionary, you may encounter many invalid or uncommon terms. The t hr eshol d
parameter addresses this issue. By setting the t hr eshol d parameter to a value just above zero, you can greatly reduce
the number of unusable terms in your dictionary while maintaining most of the common terms. The example above sets the
t hr eshol d value to 0.5%. The t hr eshol d parameter does not affect file-based dictionaries.

Using a Dictionary File

If using a dictionary file, it should be a plain text file in UTF-8 encoding. Blank lines and lines that start with a '#' are ignored. The remaining lines
must consist of either a string without literal TAB (\u0007) characters, or a string and a TAB separated floating-point weight. You can use both
single terms and phrases in a dictionary file.

This is a sanple dictionary file.

acquire
accidental ly\t2.0
acconmpdat e\t 3.0

Adding the Suggest Request Handler

After adding the search component, a request handler must be added to sol r conf i g. xm . This request handler will set a number of parameters

Apache Solr Reference Guide 4.4 216

http://jaspell.sourceforge.net/

for serving suggestion requests and incorporate the "suggest" search component defined in the previous step. Because the Suggester is based
on the SpellCheckComponent, the request handler shares many of the same parameters.

<request Handl er cl ass="org. apache. sol r. handl er. conponent . Sear chHandl er"
name="/suggest" >
<l st name="defaul ts">
<str nanme="spel | check">true</str>
<str name="spel | check. di cti onary" >suggest </str>
<str name="spel | check. onl yMor ePopul ar" >t rue</str>
<str name="spel | check. count">5</str>
<str name="spel | check. col | ate" >true</str>
</lst>
<arr nanme="conponents">
<str>suggest</str>
</arr>
</ request Handl er >

Suggester Request Handler Parameters

The Suggester request handler takes the following configuration parameters:

Parameter Description

spellcheck=true This parameter should always be true, because we always want to run the Suggester for queries submitted to
this handler.

spellcheck.dictionary The name of the dictionary component configured in the search component.

spellcheck.onlyMorePopular | If true, then suggestions will be sorted by weight ("popularity”), which is the recommended setting. The count
parameter will effectively limit this to a top-N list of best suggestions. If false, suggestions are sorted
alphabetically.

spellcheck.count Specifies the number of suggestions for Solr to return.

spellcheck.collate If true, Solr provides a query collated with the first matching suggestion.

Defining a Field for Suggester

Any field can be used as the basis of the dictionary (if not using an explicit dictionary file). You may want to create a custom field for this purpose,
and use the copy fields feature to copy text from various fields to the dedicated "suggester" field.

<field i ndexed="true" multiVal ued="true" name="suggestions" stored="fal se"
type="text Spel | "/ >

You may want to define a custom fi el dType in schema. xm to prevent over-analysis of the content of a field for use in suggestions. For
example, if you have some analysis that stems terms, you wouldn't want the stemmed terms in the suggestion list, since the stemmed forms of
words would be presented to users. Here is an example that could be used:

<fiel dType cl ass="solr. TextFi el d* nanme="t ext Spel | * posi tionl ncrement Gap="100">
<anal yzer >
<t okeni zer cl ass="sol r. St andar dTokeni zer Factory"/>
<filter class="solr.StandardFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</ anal yzer >
</fieldType>

Related Topics

Apache Solr Reference Guide 4.4 217

® RequestHandlers and SearchComponents in SolrConfig
® Solr Field Types
® Copying Fields

Function Queries

Function queries enable you to generate a relevancy score using the actual value of one or more numeric fields. Function queries are supported
by the DisMax, Extended DisMax, and standard query parsers.

Function queries use functions. The functions can be a constant (numeric or string literal), a field, another function or a parameter substitution
argument. You can use these functions to modify the ranking of results for users. These could be used to change the ranking of results based on
a user's location, or some other calculation.

Function query topics covered in this section:

Using Function Query
Available Functions
Example Function Queries
Sort By Function

Related Topics

Using Function Query
Functions must be expressed as function calls (for example, sun{ a, b) instead of simply a+b).
There are three principal ways of including function queries in a Solr query:

® Introduce a function query with the _val _ keyword. For example:

_val _:nynunericfield _val _:"recip(rord(nyfield),1,2,3)"

® Use a parameter that has an explicit type of FunctionQuery, such as the DisMax query parser's bf (boost function) parameter. Note that
the bf parameter actually takes a list of function queries separated by white space and each with an optional boost. Make sure you
eliminate any internal white space in single function queries when using bf . For example:

g=di smax&bf ="or d(popul arity)”~0.5 reci p(rord(price), 1, 1000, 1000)"0. 3"

® Add the results of FunctionQueries as fields to a document. For instance, for:

& | =sum(x, y),id,a,b,c,score

the output would be:

<str nane="id">f oo</str>
<fl oat name="sun(x,y)">40</fl oat >
<fl oat name="score">0.343</fl oat >

Only functions with fast random access are recommended.

Available Functions

The table below summarizes the functions available for function queries.

Apache Solr Reference Guide 4.4 218

Function

abs

and

constant

def

div

dist

docfreq(field,val)

exists

field

hsin

fl

idf

Description

Returns the absolute value of the specified value or
function.

Returns a value of true if and only if both of its operands
are true.

Specifies a floating point constant.

def is short for default. Returns the value of field "field",
or if the field does not exist, returns the default value
specified. and yields the first value where

exi sts()==true.)

Divides one value or function by another. div(x,y) divides
X byy.

Return the distance between two vectors (points) in an
n-dimensional space. Takes in the power, plus two or
more ValueSource instances and calculates the
distances between the two vectors. Each ValueSource
must be a number. There must be an even number of
ValueSource instances passed in and the method
assumes that the first half represent the first vector and
the second half represent the second vector.

Returns the number of documents that contain the term
in the field. This is a constant (the same value for all
documents in the index).

You can quote the term if it's more complex, or do
parameter substitution for the term value.

Returns TRUE if any member of the field exists.

Returns the numeric field value of an indexed (not
multi-valued) field with a maximum of one value per
document. The syntax is simply the field name by itself.
0 is returned for documents without a value in the field.

The Haversine distance calculates the distance between
two points on a sphere when traveling along the sphere.
The values must be in radians. hsi n also take a
Boolean argument to specify whether the function should
convert its output to radians.

Defines the fields of a document that are returned in
response to a query. You need to specify scor e as one
of the fields to return if you want any calculated values to
be returned in the score.

Inverse document frequency; a measure of whether the
term is common or rare across all documents. Obtained
by dividing the total number of documents by the
number of documents containing the term, and then
taking the logarithm of that quotient. See also t f .

Apache Solr Reference Guide 4.4

Syntax Examples

abs(x)
abs(-5)

and(" bl ue", "sky") is true only if the sky is blue.

1.5

_val _:1.5

def (rating, 5): This def () function returns the rating, or if
no rating specified in the doc, returns 5

def (nyfield, 1.0): equivalentto
if(exists(nyfield),nyfield,1.0)

div(l,y)
di v(sun(x, 100), max(y, 1))

dist(2, x, y, 0, 0): calculates the Euclidean distance
between (0,0) and (x,y) for each document

dist(1l, x, y, 0, 0):calculatesthe Manhattan (taxicab)
distance between (0,0) and (x,y) for each document

dist(2, x,y,z,0,0,0): Euclidean distance between (0,0,0)
and (x,y,z) for each document.

dist(1,x,Yy,z,e,f,qg): Euclidean distance between (x,y,z)
and (e,f,g) where each letter is a field name

docfreqg(text,solr)
docfreqg(text,'solr")

&
def Type=f unc&q=docf req(t ext, $myt er m) &yt er mesol r

exi st s(aut hor) returns TRUE for any document has a value
in the "author" field.

exi st s(query(price:5.00)) returns TRUE if "price"
contains "5.00".

_val _:nyFloatField

hsin(2, true, x, y, 0, 0)

fl=* score

idf (l'istl,326.55): measures the inverse of the frequency
of the occurrence of the number 326.55in1i st 1.

219

linear

log

map

max

maxdoc

ms

norm(field)

not

numdocs

or

Enables conditional function queries. | F(t est ;
val uel; val ue2) where:

® test isorrefers to a logical value or expression
that returns a logical value (TRUE or FALSE).

® val uel is the value that is returned by the
function if test yields TRUE.

® val ue?2 is the value that is returned by the
function if test yields FALSE.

® [fval ue2 is omitted it is assumed to be FALSE;
if val uel is also omitted it is assumed to be
TRUE.
An expression can be any function which
outputs boolean values, or even functions
returning numeric values, in which case value 0
will be interpreted as false, or strings, in which
case empty string is interpreted as false.

Implements nt x+c where mand ¢ are constants and x
is an arbitrary function. This is equivalent to

sum(product (m x), c), but slightly more efficient as it
is implemented as a single function.

Returns the log base 10 of the specified function.

Maps any values of the function x that fall within min and
max inclusive to the specified target. The arguments
min,max,target are constants. The function outputs the
field's value if it does not fall between min and max.

Returns the max of another function and a constant,
which are specified as arguments: max(x, ¢) . The max
function is useful for "bottoming out" another function at
some constant.

Returns the number of documents in the index, including
those that are marked as deleted but have not yet been
purged. This is a constant (the same value for all
documents in the index).

Returns milliseconds of difference between its
arguments. Dates are relative to the Unix or POSIX time
epoch, midnight, January 1, 1970 UTC. Arguments may
be numerically indexed date fields such as TrieDate (the
default in 1.4), or date math based on a constant date or
NOW.

s () : Equivalent to ms(NOW , number of milliseconds
since the epoch.

ms(a): Returns the number of milliseconds since the
epoch that the argument represents.

Returns the "norm" stored in the index, the product of
the index time boost and the length normalization factor,
according to the Similarity for the field.

A logically negative value.

Returns the number of documents in the index, not
including those that are marked as deleted but have not
yet been purged. This is a constant (the same value for

all documents in the index).

A logical disjunction.

Apache Solr Reference Guide 4.4

if(color=="red"; 100; if(color=="green"; 50;
25)) :

This function checks the document field "color”, and if it is "red"
returns 100, if it is "green" returns 50, else returns 25.

I'inear(x, mc)
i near (x, 2, 4) returns 2*x+4

1 og(x) 1 og(sun{x, 100))

map(X, m n, max, target)

map(x, 0, 0, 1) - changes any values of 0 to 1. This can be
useful in handling default 0 values.

map(x, m n, max, target, al tarQg)

map(x, 0, 0, 1, 0) - changes any values of 0 to 1 and if the
value is not zero it can be set to the value of the 5th argument
instead of defaulting to the field's value.

max(nyfield,O0)

maxdoc(|ist1)

ns(NOW DAY)

ns(2000- 01- 01T00: 00: 002)

nms(nydat ef i el d)

ms(a, b) : Returns the number of milliseconds that b occurs
before a (that is, a - b) Examples:

s (NOW nydat ef i el d)

ms(mydat ef i el d, 2000- 01- 01T0O0: 00: 00Z)

nms(dat ef i el d1, datefi el d2)

nor ('t ext)

if (NOT valuel) [
false.

] : TRUE only when val uel is

nunmdocs(|ist1)

(val uel OR val ue2): TRUE if either val uel or val ue2 is
true.

220

http://lucene.apache.org/java/3_0_0/api/core/org/apache/lucene/search/Similarity.html%7CSimilarity

ord

pow

product

query

recip

rord

Returns the ordinal of the indexed field value within the
indexed list of terms for that field in Lucene index order
(lexicographically ordered by unicode value), starting at
1. In other words, for a given field, all values are ordered
lexicographically; this function then returns the offset of
a particular value in that ordering. The field must have a
maximum of one value per document (not multi-valued).
0 is returned for documents without a value in the field.

1. ord() depends on the position in an
index and can change when other
documents are inserted or deleted.

See also r or d below.

Raises the specified base to the specified power.
pow(X, y) raises x to the power of y.

Returns the product of multiple values or functions,
which are specified in a comma-separated list.

Returns the score for the given subquery, or the default
value for documents not matching the query. Any type of
subquery is supported through either parameter
de-referencing $ot her par amor direct specification of
the query string in the Local Parameters through the v
key.

Performs a reciprocal function with

reci p(nyfield, ma,b) implementing a/ (n*x+b) .
m a, b are constants, and x is any arbitrarily complex
function.

When a and b are equal, and x>=0, this function has a
maximum value of 1 that drops as x increases.
Increasing the value of a and b together results in a
movement of the entire function to a flatter part of the
curve. These properties can make this an ideal function
for boosting more recent documents when x is
rord(datefield).

Returns the reverse ordering of that returned by or d.

Apache Solr Reference Guide 4.4

ord(nyl ndexedFi el d)

_val _:"ord(nmyl ndexedFi el d)"

Example: If there were only three values
("apple","banana”,"pear") for a particular field, then:
ord("appl e")=1lord("banana")=2ord("pear") =3

pow(X, y)
pow(x, | og(y))
pow(X, 0. 5) : the same as sqrt

product (x,y,...)
product (x, 2)
product (X, y)

query(subquery, default)

g=pr oduct (popul arity, query({!dismax v="solr
rocks' }) : returns the product of the popularity and the score of
the DisMax query.

g=pr oduct (popul arity,
query(%$qq)) &q={! di smax}sol r rocks: equivalent to the
previous query, using parameter de-referencing.

g=pr oduct (popul arity,

query(%$qq, 0. 1)) &jgq={! di smax} sol r rocks: specifies a
default score of 0.1 for documents that don't match the DisMax
query.

reci p(nmyfield, ma,b)
reci p(rord(creationbDate), 1, 1000, 1000)

rord(nyDat eFi el d)
_val _:"rord(nyDat eFi el d)"

rord(nyDat eFi el d) : a metric for how old a document is. The

youngest document will return 1. The oldest document will return
the total number of documents.

221

scale

sgedist

sqrt

strdist

sub

sum

sumtotaltermfreq

termfreq

tf

Scales values of the function x such that they fall
between the specified mi nTar get and naxTar get
inclusive. The current implementation traverses all of the
function values to obtain the min and max, so it can pick
the correct scale.

The current implementation cannot distinguish when
documents have been deleted or documents that have
no value. It uses 0.0 values for these cases. This means
that if values are normally all greater than 0.0, one can
still end up with 0.0 as the min value to map from. In
these cases, an appropriate map() function could be
used as a workaround to change 0.0 to a value in the
real range, as shown here:

scale(map(x,0,0,5),1,2)

The Square Euclidean distance calculates the 2-norm
(Euclidean distance) but does not take the square root,
thus saving a fairly expensive operation. It is often the
case that applications that care about Euclidean
distance do not need the actual distance, but instead
can use the square of the distance. There must be an
even number of ValueSource instances passed in and
the method assumes that the first half represent the first
vector and the second half represent the second vector.

Returns the square root of the specified value or
function.

Calculate the distance between two strings. Uses the
Lucene spell checker St ri ngDi st ance interface and
supports all of the implementations available in that
package, plus allows applications to plug in their own via
Solr's resource loading capabilities. st r di st takes
(stringl, string2, distance measure). Possible values for
distance measure are:

jw: Jaro-Winkler
edit: Levenstein or Edit distance

ngram: The NGramDistance, if specified, can optionally
pass in the ngram size too. Default is 2.

FQN: Fully Qualified class Name for an implementation
of the StringDistance interface. Must have a no-arg
constructor.

Returns x-y from sub(x,y).

Returns the sum of multiple values or functions, which
are specified in a comma-separated list.

Returns the sum of t ot al t er nf r eq values for all
terms in the field in the entire index (i.e., the number of
indexed tokens for that field). (Aliases
suntotalternfreqtosttf.)

Returns the number of times the term appears in the
field for that document.

Term frequency; returns the term frequency factor for the
given term, using the Similarity for the field. The t f - i df
value increases proportionally to the number of times a
word appears in the document, but is offset by the
frequency of the word in the document, which helps to
control for the fact that some words are generally more
common than others. See also i df .

Apache Solr Reference Guide 4.4

scal e(x, m nTar get, maxTar get)
scal e(x, 1, 2) : scales the values of x such that all values will
be between 1 and 2 inclusive.

sgedi st(x_td, y_td, 0, 0)

sqrt (x)sqrt (100)sqgrt (sun(x, 100))

strdist("SOLR',id, edit)

sub(nyfield, nyfield2)
sub(100, sqrt(nyfield))
sum(x, Yy, .

..) sun(x, 1)
sun(x, y)
sunm(sqgrt(x),log(y), z,0.5)

If doc1:(fieldX:A B C) and doc2:(fieldX:A A A A):
docFreq(fieldX A) =2 (Aappears in 2 docs)

freq(docl, fieldX A) =4 (Aappears 4times in doc 2)
total TernFreq(fiel dX:A) =5 (A appears 5 times across
all docs)

sunTot al TernFreq(fiel dX) =7 infi el dX there are 5 As,
1B,1C

ternfreq(text,' nenory')

tf(text, 'solr")

222

http://lucene.apache.org/java/3_0_0/api/core/org/apache/lucene/search/Similarity.html

top Causes the function query argument to derive its values
from the top-level IndexReader containing all parts of an
index. For example, the ordinal of a value in a single
segment will be different from the ordinal of that same
value in the complete index.
The ord() and rord() functions implicitly use t op(),
and hence or d(f 0o) is equivalent to t op(ord(foo0)).

Totaltermfreq Returns the number of times the term appears in the ttf(text, menory')
field in the entire index. (Aliases t ot al t er nfreq to
ttf.)

xor() Logical exclusive disjunction, or one or the other but not = xor (fi el d1, fi el d2) returns TRUE if either fi el d1 or
both. fi el d2 is true; FALSE if both are true.

Example Function Queries

To give you a better understanding of how function queries can be used in Solr, suppose an index stores the dimensions in meters x,y,z of some
hypothetical boxes with arbitrary names stored in field boxname. Suppose we want to search for box matching name f i ndbox but ranked
according to volumes of boxes. The query parameters would be:

g=boxnane: fi ndbox_val _: " product (product (x, V), z)

This query will rank the results based on volumes. In order to get the computed volume, you will need to request the scor e, which will contain the
resultant volume:

& 1 =*, score

Suppose that you also have a field storing the weight of the box as wei ght . To sort by the density of the box and return the value of the density in
score, you would submit the following query:

http://1ocal host: 8983/ sol r/ sel ect/ ?q=boxnane: fi ndbox_val _di v(wei ght, product (product (x,y)
X y z weight score

Sort By Function

You can sort your query results by the output of a function. For example, to sort results by distance, you could enter:

http://1ocal host: 8983/ sol r/sel ect ?2q=*: *&sort =di st (2, pointl, point2) desc

Sort by function also supports pseudo-fields: fields can be generated dynamically and return results as though it was normal field in the index. For
example,

& I =i d, sum(x, y),score

would return:

<str nane="id">f oo</str>
<fl oat name="sum(x,y)">40</fl oat >
<fl oat name="score">0.343</fl oat >

Related Topics

® FunctionQuery

Spatial Search

Solr supports location data for use in spatial/geospatial searches. Using spatial search, you can:

Apache Solr Reference Guide 4.4 223

https://wiki.apache.org/solr/FunctionQuery

® Index points or other shapes

® Filter search results by a bounding box or circle or by other shapes

® Sort or boost scoring by distance

® Index and search multi-value time or other numeric durations
With Solr 4, there are two field types for spatial search: Lat LonType (or its non-geodetic twin Poi nt Type), or
Spati al Recur si vePrefi xTreeFi el dType (RPT for short). RPT is new in Solr 4, offering more features than LatLonType, although
LatLonType is still more appropriate when efficient distance sorting/boosting is desired. They can both be used simultaneously.

For more information on Solr spatial search, see http://wiki.apache.org/solr/SpatialSearch.

Indexing and Configuration

For indexing geodetic points (latitude and longitude), supply the pair of numbers as a string with a comma separating them in latitude then
longitude order. For non-geodetic points, the order is x,y for PointType, and for RPT you must use a space instead of a comma.

See the bottom of this page for RPT configuration specifics.
Spatial Filters
The following parameters are used for spatial search:

Parameter Description

d distance, in kilometers

pt a lat/lon coordinate point

sfield a spatial field, by default a | ocat i on (lat/lon) field type.
geofilt

The geofi | t filter allows you to retrieve results based on the distance from a given point. For example, to find all results for a product search
within five kilometers of the lat/lon point, you could enter &q=*: *&f q={! geof i It sfi el d=st or e} &t =45. 15, - 93. 85&d=5. This filter
returns all results within a circle of the given radius around the initial point:

bbox

bbox allows you to filter results based on a specified area around a given point. bbox takes the same parameters as geof i | t, but rather than
calculating all points in a circle within the given radius from the initial point, it only calculates the lower left and upper right corners of a square that
would enclose a circle with the given radius. To return all results within five kilometers of a give point, you could enter . . . &q=: & q={! bbox

sfi el d=st or e} &t =45. 15, - 93. 85&d=5. The resulting bounding box would encompass all points within a five kilometer circle around the
initial point, but it would also include some extra points in the corners of the bounding box that fall outside the five kilometer radius. Bounding box
filters therefore can return results that fall outside your desired parameters, but they are much less "expensive" to implement.

T.

5 KM

Apache Solr Reference Guide 4.4 224

http://wiki.apache.org/solr/SpatialSearch

. When a bounding box includes a pole, the | ocat i on field type produces a "bounding bowl" (a spherical cap) that includes all
values that are north or south of the latitude of the bounding box corner (the lower left and the upper right) that is closer to the
equator. In other words, Solr still calculates what the coordinates of the upper right corner and the lower left corner of the box
would be just as in all other filtering cases, but it then take the corner that is closest to the equator (since it goes over the pole it
may not be the lower left, despite the name) and filters by latitude only. This returns more matches than a pure bounding box
match, but the query is both faster and easier to construct.

Post filtering

Post filtering is an option available for spatial queries qualifying bbox and geofi | t with Lat LonType, which specifies latitude and longitude.
LatLonType is passed as numbers in the query, as shown in Example 1 below.

Filtering is usually done in parallel with or before the main query. Post filters are applied after the main query. This is important when the filter
itself is very time-consuming, so it's better to always apply it to matching documents instead of all documents.

Distance Function Queries

There are three function queries that support spatial search: di st , to determine the distance between two points; hsi n, to calculate the distance
between two points on a sphere; and sqedi st , to calculate the square Euclidean distance between two points. For more information about these
function queries, see the section on Function Queries.

geodi st

geodi st is a distance function that takes three optional parameters: (sfi el d, | ati t ude, | ongi t ude) . You can use the geodi st function to
sort results by distance or score return results.

For example, to sort your results by ascending distance, enter
.&g=*:*&f q={! geofilt}&sfiel d=st ore&pt =45. 15, - 93. 85&d=50&sor t =geodi st asc.

To return the distance as the document score, enter . . . &g={! f unc} geodi st () &sfi el d=st or e&pt =45. 15, - 93. 85&sort =scor e+asc.

More Examples

Here are a few more useful examples of what you can do with spatial search in Solr.

Use as a Sub-Query to Expand Search Results

Here we will query for results in Jacksonville, Florida, or within 50 kilometers of 45.15,-93.85 (near Buffalo, Minnesota):

&g=*: *&f q=(state: "FL" AND city:"Jacksonville") OR
query:"{!geofilt}"&sfiel d=store&pt=45. 15, - 93. 85&d0=50&sort =geodi st () +asc

Facet by Distance

To facet by distance, use the Frange query parser:

&q=*: *&sfi el d=st or e&pt =45. 15, - 93. 85&f acet . query={!frange | =0 u=5}geodi st () & acet. query={!frange |=5.001
u=3000} geodi st ()

Boost Nearest Results

Using the DisMax or Extended DisMax, you can combine spatial search with the boost function to boost the nearest results:

&q. alt=*;:*& gq={!geofilt}&sfiel d=store&pt=45. 15, - 93. 85&d=50&bf =r eci p(geodi st (), 2, 200, 20) &ort =score desc

SpatialRecursivePrefixTreeFieldType (abbreviated as RPT)

Solr 4's new spatial field offers several new features and improvements over the former approach:

New shapes: polygons, line strings, and other new shapes

Multi-valued indexed fields

Ability to index non-point shapes as well as point shapes

Rectangles with user-specified corners. The Solr 3 approach only supports bounding box of a circle
Multi-value distance sort and score boosting

Well-Known-Text support when JTS is used (for polygons, etc.)

Apache Solr Reference Guide 4.4 225

http://wiki.apache.org/solr/FunctionQuery#dist
http://wiki.apache.org/solr/FunctionQuery#hsin.2C_ghhsin_-_Haversine_Formula
https://wiki.apache.org/solr/FunctionQuery#sqedist_-_Squared_Euclidean_Distance

RPT incorporates the basic features of LatLonType and PointType, such as lat-lon bounding boxes and circles.

Schema configuration

The first step to using RPT is to register a field type in schema. xm . There are several options for this field type.

Setting

name

class

spatialContextFactory

units

distErrPct

maxDistErr

geo

worldBounds

distCalculator

prefixTree

maxLevels

Description
The name of the field type.

For most use cases, using sol r. Spat i al Recur si vePrefi xTr eeFi el dType will be sufficient. Since the new
spatial module in Lucene is meant to be a framework for different spatial "strategies", another class may be used. See
the Spatial4J project for more information.

If polygons or other shapes beyond a point, rectangle or circle are used, the JTS Topology Suite is a required
dependency. If you intend to use those shapes, defined the class here.

This is required, and currently can only be "degrees".

Defines the default precision of non-point shapes, as a fraction between 0.0 (fully precise) to 0.5. The closer this
number is to zero, the more accurate the shape will be. However, more precise indexed shapes use more disk space
and take longer to index.

Defines the highest level of detail required for indexed data. If left blank, the default is one meter, just a bit less than
0.000009 degrees.

If true, the default, latitude and longitude coordinates will be based on WGS84 instead of Euclidean/Cartesian based. If
false, the coordinates will be Euclidean/Cartesian-based.

Defines the valid numerical ranges for x and y, in the format of "minX minY maxX maxY". If geo=t r ue, this is assumed
"-180 -90 180 90". If geo=f al se, you should define your boundaries for non-geospatial uses.

Defines the distance calculation algorithm. If geo=t r ue, "haversine" is the default. If geo=f al se, "cartesian" will be
the default. Other possible values are "lawOfCosines", "vincentySphere" and "cartesian"2".

Defines the spatial grid implementation. Since a PrefixTree (such as RecursivePrefixTree) maps the world as a grid,
each grid cell is decomposed to another set of grid cells at the next level. Using a "geohash" implementation, there are
32 children at each level. If geo=t r ue, "geohash" is the only option. If geo=f al se, "quad" could be used for

pr ef i xTr ee, which has 4 children at each level.

Sets the maximum grid depth for indexed data. It may be simpler to use maxDi st Err to calculate real distances.

<fiel dType nane="location_rpt"

spati al Cont ext Fact ory="com spati al 4j . core. context.jts. JtsSpati al Cont ext Fact ory"

class="sol r. Spati al Recursi vePrefi xTreeFi el dType"

di st ErrPct =" 0. 025"
maxDi st Err="0. 000009"
uni t s="degrees" />

Once the field type has been defined, use it to define a field.

Because RPT has more advanced features, some of which are new and experimental, please review the Solr Wiki at
http://wiki.apache.org/solr/SolrAdaptersForLuceneSpatial4 for more information about using this field type.

As of Solr 4.1, RPT supports the {! geofi | t } and {! bbox} query parsers. The geodi st () function query will be supported in

Solr 4.5.

The Terms Component

The Terms Component provides access to the indexed terms in a field and the number of documents that match each term. This can be useful for
building an auto-suggest feature or any other feature that operates at the term level instead of the search or document level. Retrieving terms in
index order is very fast since the implementation directly uses Lucene's TermEnum to iterate over the term dictionary.

In a sense, this component provides fast field-faceting over the whole index, not restricted by the base query or any filters. The document
frequencies returned are the number of documents that match the term, including any documents that have been marked for deletion but not yet

removed from the index.

Apache Solr Reference Guide 4.4

226

https://github.com/spatial4j/spatial4j
http://sourceforge.net/projects/jts-topo-suite/
http://wiki.apache.org/solr/SolrAdaptersForLuceneSpatial4

To use the Terms Component, users can pass in a variety of options to control what terms are returned. These parameters are:

Parameter Description

terms If set to true, terms on the Terms Component. By default, the Terms Component is
turned off.

terms.fl Specifies the field from which to retrieve terms.

terms.lower Specifies the term at which to start. If not specified, the empty string is used, causing

Solr to start at the beginning of the field.

terms.lower.incl | If set to true, includes the lower-bound term in the result set. By default, this
parameter is set to true.

terms.mincount = Specifies the minimum document frequency to return in order for a term to be
included in a query response. Results are inclusive of the mincount (that is, >=
mincount). This parameter is optional.

terms.maxcount = Specifies the maximum document frequency a term must have in order to be
included in a query response. The default setting is -1, which sets no upper bound.
Results are inclusive of the maxcount (that is, <= maxcount). This parameter is

optional.
terms.prefix Restricts matches to terms that begin with the specified string.
terms.limit Specifies the maximum number of terms to return. The default is 10. If the limit is set

to a number less than 0, then no maximum limit is enforced.

terms.upper Specifies the term to stop at. Any application using the Terms component must set
eitherterns.limt orterms. upper.

terms.upper.incl | If set to true, includes the upper bound term in the result set. The default is false.

terms.raw If set to true, returns the raw characters of the indexed term, regardless of whether it
is human-readable. For instance, the indexed form of numeric numbers is not
human-readable. The default is false.

The output is a list of the terms and their document frequency values.

Examples

The following examples use the sample Solr configuration located in the <Sol r >/ exanpl e directory.
The query below requests the first ten terms in the name field.
http://1ocal host: 8983/ solr/ternms?terns. fl =nane

Results:

Apache Solr Reference Guide 4.4

Syntax

terns=

terns.

terns.

terns.

terns.

terns.

terns.

terns.

terns.

terns.

terns.

{true| fal se}

fl=field

| ower=term

I ower.incl={true|fal se

m ncount =i nt eger

maxcount =i nt eger

prefix={string}

|'i mt=integer

upper =upper _term

upper . i ncl ={true| fal se

raw={true| f al se}

227

http://localhost:8983/solr/terms?terms.fl=name

<?xm version="1.0" encodi ng="UTF-8"?>

<r esponse>

<l st nanme="responseHeader" >

<int name="status">0</int>

<i nt nanme="Qri me">1</int >

</|st>

<l st name="terns">

<l st nanme="nane">
<int nanme="0">5</int>
<int name="1">15</int>
<int nanme="11">5</int>
<int nanme="120">5</int>
<int name="133">5</int>
<int name="184">15</int>
<int name="19">5</int>
<int name="1900">5</int >
<int name="2">15</int>
<i nt name="20">5</int>

</lst>

</lst>

</ response>

The query below requests the first ten terms in the name field, beginning with the first term that begins with the letter a.
http://1 ocal host: 8983/ solr/terns?terns. fl =nane&t er ns. | ower =a

Results:

<?xm version="1.0" encodi ng="UTF-8"?>

<r esponse>

<l st nanme="responseHeader" >
<int name="status">0</int>
<i nt nanme="Qri me">2</int >

</|st>

<l st name="terns">

<l st nanme="nane">
<int nanme="a">8</int>
<i nt nanme="adat a">5</int>
<int name="all">5</int>
<int name="al |l inon">5</int>
<i nt nanme="anber">1</int>
<i nt name="appl " >5</int>
<int name="asus">5</int>
<int name="ata">5</int>
<int name="ati">5</int>
<int name="b">b</int>
</lst>

</lst>

</ response>

Using the Terms Component for an Auto-Suggest Feature

If the Suggester doesn't suit your needs, you can use the Terms component in Solr to build a similar feature for your own search application.
Simply submit a query specifying whatever characters the user has typed so far as a prefix. For example, if the user has typed "at", the search

engine's interface would submit the following query:

Apache Solr Reference Guide 4.4

228

http://localhost:8983/solr/terms?terms.fl=name&terms.lower=a

http://1ocal host: 8983/ solr/terms?terns. fl =name&t er ms. prefi x=at

Result:

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<l st name="responseHeader" >
<i nt nanme="stat us">0</int>
<int name="Qri me">120</i nt>
</lst>
<l st name="terns">
<l st nane="nane">
<int name="ata">5</int> <int nanme="ati">5</int>
</lst>
</|st>
</ response>

You can use the parameter oni t Header =t r ue to omit the response header from the query response, like so:

http://1ocal host: 8983/ solr/ternms?termns. fl =name&t er ms. prefi x=at & ndent =t r ue&wt =j son&omi t Header =t r ue

Result:
{
"terms": [
"name", [
"ata", 1,
"ati",1]]}

Distributed Search Support

The TermsComponent also supports distributed indexes. For the / t er ms request handler, you must provide the following two parameters:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information about distributed indexing, see Distributed
Search with Index Sharding.

shards.qt = Specifies the request handler Solr uses for requests to shards.

The Term Vector Component

The Term Vector Component (TVC) is a search component designed to return information about documents. For each document, the TVC can
return the term vector, the term frequency, inverse document frequency, position, and offset information. The TVC is stored when setting the
t er mVect or attribute on a field:

<field nane="feat ures"
type="text"

i ndexed="true"
stored="true"

mul ti Val ued="true"
ternVect ors="true"
ternPositions="true"
termOffsets="true"/>

As with most components, there are a number of options that are outlined in the samples below. All examples are based on the Solr example.

Apache Solr Reference Guide 4.4 229

http://localhost:8983/solr/terms?terms.fl=name&terms.prefix=at
http://localhost:8983/solr/terms?terms.fl=name&terms.prefix=at&indent=true&wt=json&omitHeader=true

Enabling the TermVectorComponent

Changes for sol rconfi g. xml
To enable the TermVectorComponent, you need to configure a sear chConponent element in your sol rconfi g. xm file, like so:
<searchComponent name="tvComponent" class="org.apache.solr.handler.component.TermVectorComponent"/>

A request handler configuration using this component could look like this:

<request Handl er nane="tvrh" cl ass="org. apache. sol r. handl er. conponent . Sear chHandl er" >
<l st name="defaul ts">
<bool name="tv">true</bool >
</lst>
<arr name="| ast - conponent s">
<str >t vConponent </ str>
</arr>
</ request Handl er >

Invoking the Term Vector Component
The example below shows an invocation of this component:
http://1ocal host: 8983/ sol r/ sel ect/ ?90=%3A&ver si on=2. 2&st art =0& ows=10& ndent =on&qt =t vr h& v=t r ue

In the example, the component is associated with a request handler named t vr h, but you can associate it with any request handler. To turn on
the component for a request, add the t v=t r ue parameter (or add it to your RequestHandler defaults configuration).

Example output: See http://wiki.apache.org/solr/TermVectorComponentExampleEnabled

Optional Parameters

The example below shows optional parameters for this component:

http://1ocal host: 8983/ sol r/sel ect/ ?q=%3A
&versi on=2. 2&st art =0& ows=10& ndent =on&qt =t vr h& v=true&t v.tf =t rue&t v. df =t rue&t v. posi ti onsé&t v. of f set s=true

Boolean Description

Parameters

tv.all A shortcut that invokes all the parameters listed below.

tv.df Returns the Document Frequency (DF) of the term in the collection. This can be computationally expensive.

tv.offsets Returns offset information for each term in the document.

tv.positions Returns position information.

tv.tf Returns document term frequency info per term in the document.

tv.tf_idf Calculates TF*IDF for each term. Requires the parameterstv. tf and t v. df to be "true". This can be computationally

expensive. (The results are not shown in example output)

To learn more about TermVector component output, see the Wiki page: http://wiki.apache.org/solr/TermVectorComponentExampleOptions
For schema requirements, see the Wiki page: http://wiki.apache.org/solr/FieldOptionsByUseCase

The Term Vector component also accepts these optional parameters:

Parameters = Description
tv.doclds Returns term vectors for the specified list of Lucene document IDs (not the Solr Unique Key).

tv.fl Returns term vectors for the specified list of fields. If not specified, the f | parameter is used.

Apache Solr Reference Guide 4.4 230

http://localhost:8983/solr/select/?q=*%3A*&version=2.2&start=0&rows=10&indent=on&qt=tvrh&tv=true
http://wiki.apache.org/solr/TermVectorComponentExampleEnabled
http://localhost:8983/solr/select/?q=*%3A*&version=2.2&start=0&rows=10&indent=on&qt=tvrh&tv=true&tv.tf=true&tv.df=true&tv.positions&tv.offsets=true
http://localhost:8983/solr/select/?q=*%3A*&version=2.2&start=0&rows=10&indent=on&qt=tvrh&tv=true&tv.tf=true&tv.df=true&tv.positions&tv.offsets=true
http://wiki.apache.org/solr/TermVectorComponentExampleOptions
http://wiki.apache.org/solr/FieldOptionsByUseCase

SolrJd and the Term Vector Component

Neither the SolrQuery class nor the QueryResponse class offer specific method calls to set Term Vector Component parameters or get the
"termVectors" output. However, there is a patch for it: SOLR-949.

The Stats Component

The Stats component returns simple statistics for numeric, string, and date fields within the document set.

Stats Component Parameters
The Stats Component accepts the following parameters:
Parameter Description

stats If true, then invokes the Stats component.

stats.field = Specifies a field for which statistics should be generated. This parameter may be invoked multiple times in a query in order to
request statistics on multiple fields. (See the example below.)

stats.facet = Returns sub-results for values within the specified facet.

Statistics Returned

The table below describes the statistics returned by the Stats component.

Name Description

min The minimum value in the field.

max The maximum value in the field.

sum The sum of all values in the field.

count The number of non-null values in the field.
missing The number of null values in the field.

sumOfSquares = Sum of all values squared (useful for st ddev).

mean The average (v1 + v2 + vN)/N
stddev Standard deviation, measuring how widely spread the values in the data set are.
Example

The query below:

http://1 ocal host: 8983/ sol r/ sel ect ?2q=:
&stats=true&stats.field=price&stats.fiel d=popul arity& ows=0& ndent =true

Would produce the following results:

Apache Solr Reference Guide 4.4 231

https://issues.apache.org/jira/browse/SOLR-949
http://localhost:8983/solr/select?q=*:*&stats=true&stats.field=price&stats.field=popularity&rows=0&indent=true
http://localhost:8983/solr/select?q=*:*&stats=true&stats.field=price&stats.field=popularity&rows=0&indent=true

<l st name="stats">
<l st name="stats fields">
<l st name="price">
<doubl e name="mi n">0. 0</ doubl e>
<doubl e name="nmax">2199. 0</ doubl e>
<doubl e nane="sunt' >5251. 2699999999995</ doubl e>
<l ong nanme="count " >15</1 ong>
<l ong name="m ssi ng">11</1 ong>
<doubl e name="suntX Squar es" >6038619. 160300001</ doubl e>
<doubl e nanme="nean" >350. 08466666666664</ doubl e>
<doubl e nane="st ddev">547. 737557906113</ doubl e>
</lst>
<l st name="popul arity">
<doubl e nanme="m n">0. 0</ doubl e>
<doubl e nanme="nmax">10. 0</ doubl e>
<doubl e nanme="suni >90. 0</ doubl e>
<l ong nane="count " >26</1 ong>
<l ong nane="mi ssi ng">0</| ong>
<doubl e name="suntX Squar es" >628. 0</ doubl e>
<doubl e nane="nmean">3. 4615384615384617</ doubl e>
<doubl e nane="st ddev">3.5578731762756157</ doubl e>
</|st>
</lst>
</lst>

Here are the same results with faceting requested for the field i nSt ock, using the parameter &st at s. f acet =i nSt ock.

Apache Solr Reference Guide 4.4

232

<l st name="{*}stats{*}">
<l st name="{*}stats{*} _fields">
<l st name="price">
<doubl e name="m n">0. 0</ doubl e>
<doubl e nanme="nmax">2199. 0</ doubl e>
<doubl e nane="sunt' >5251. 2699999999995</ doubl e>
<l ong nanme="count " >15</1 ong>
<l ong name="m ssi ng">11</1 ong>
<doubl e name="suntX Squar es" >6038619. 160300001</ doubl e>
<doubl e nanme="nean" >350. 08466666666664</ doubl e>
<doubl e nane="st ddev">547. 737557906113</ doubl e>
<l st nanme="facets">
<l st name="i nSt ock">
<l st name="fal se">
<doubl e nanme="m n">11. 5</ doubl e>
<doubl e name="nmax">649. 99</ doubl e>
<doubl e nane="sunt >1161. 39</ doubl e>
<l ong nane="count">4</1|ong>
<l ong nanme="m ssi ng">0</1 ong>
<doubl e name="suntX Squar es" >653369. 2551</ doubl e>
<doubl e nane="nean" >290. 3475</ doubl e>
<doubl e nane="st ddev">324. 63444676281654</ doubl e>
</lst>
<l st name="true">
<doubl e nane="m n">0. 0</ doubl e>
<doubl e name="nax">2199. 0</ doubl e>
<doubl e name="sunt >4089. 879999999999</ doubl e>
<l ong nanme="count">11</1 ong>
<l ong nane="mi ssi ng">0</1 ong>
<doubl e name="suntX Squar es" >5385249. 905200001</ doubl e>
<doubl e name="nean" >371. 8072727272727</ doubl e>
<doubl e name="st ddev" >621. 6592938755265</ doubl e>
</lst>
</|st>
</lst>
</lst>
</lst>

The Stats Component and Faceting
The facet field can be selectively applied. That is if you want stats on field "A" and "B", you can facet a on "X" and B on "Y" using the parameters:

&stats.fiel d=A&f. A stats.facet=X&stats.field=B&f.B.stats.facet=Y

! All facet results are returned, so be careful what fields you ask for.

i}

Multi-valued fields and facets may be slow.

Multi-value fields rely on Unl nver t edFi el d. j ava for implementation. This is like a FieldCache, so be aware of your memory footprint.

The Query Elevation Component

The Query Elevation Component lets you configure the top results for a given query regardless of the normal Lucene scoring. This is sometimes
called "sponsored search," "editorial boosting," or "best bets." This component matches the user query text to a configured map of top results. The
text can be any string or non-string IDs, as long as it's indexed. Although this component will work with any QueryParser, it makes the most sense
to use with DisMax or eDisMax.

Apache Solr Reference Guide 4.4 233

https://wiki.apache.org/solr/QueryElevationComponent

The Query Elevation Component is supported by distributed searching.

Configuring the Query Elevation Component

You can configure the Query Elevation Component in the sol r conf i g. xm file. The default configuration looks like this:

<sear chConponent nane="el evator" class="sol r. QueryEl evati onConponent" >
<I-- pick a fieldType to analyze queries -->
<str name="queryFi el dType">string</str>
<str name="config-file">el evate. xm </str>

</ sear chConponent >

<request Handl er nane="/el evate" cl ass="solr. SearchHandl er" startup="1azy">
<l st nanme="defaul ts">
<str name="echoParans">explicit</str>
</|st>
<arr nanme="| ast - conponent s" >
<str>el evator</str>
</arr>
</ request Handl er >

Optionally, in the Query Elevation Component configuration you can also specify the following to distinguish editorial results from "normal” results:

<str nanme="editorial Marker Fi el dNanme" >f oo</ str>

The Query Elevation Search Component takes the following arguments:

Argument Description

gueryFieldType | Specifies which fieldType should be used to analyze the incoming text. For example, it may be appropriate to use a fieldType
with a LowerCaseFilter.

config-file Path to the file that defines query elevation. This file must exist in $<i nst anceDi r >/ conf/ <confi g-fil e>or
$<dat aDi r >/ <config-fil e>.

If the file exists in the /conf/ directory it will be loaded once at startup. If it exists in the data directory, it will be reloaded for
each IndexReader.

forceElevation = By default, this component respects the requested sort parameter: if the request asks to sort by date, it will order the results
by date. If f or ceEl evat i on=t r ue (the default), results will first return the boosted docs, then order by date.

el evat e. xn

Elevated query results are configured in an external XML file specified in the confi g-fi | e argument. An el evat e. xni file might look like this:

Apache Solr Reference Guide 4.4 234

https://wiki.apache.org/solr/QueryElevationComponent

<el evat e>

<query text="AAA">
<doc id="A" />
<doc id="B" />

</ query>

<query text="ipod">
<doc id="A" />

<I'-- you can optionally exclude documents froma query result -->
<doc id="B" exclude="true" />

</ query>
</ el evat e>

In this example, the query "AAA" would first return documents A and B, then whatever normally appears for the same query. For the query "ipod",
it would first return A, and would make sure that B is not in the result set.

Using the Query Elevation Component

The enabl eEl evat i on Parameter

For debugging it may be useful to see results with and without the elevated docs. To hide results, use enabl eEl evat i on=f al se:
http://1ocal host: 8983/ sol r/ el evat e?g=YYYY&ebugQuer y=t r ue&enabl eEl evati on=true

http://1ocal host: 8983/ sol r/ el evat e?g=YYYY&ebugQuer y=t r ue&enabl eEl evati on=f al se

The f or ceEl evat i on Parameter

You can force elevation during runtime by adding f or ceEl evat i on=t r ue to the query URL:

http://1 ocal host: 8983/ sol r/ el evat e?q=YYYY&ebugQuer y=t r ue&enabl eEl evati on=t r ue&f or ceEl evati on=true
The excl usi ve Parameter

You can force Solr to return only the results specified in the elevation file by adding excl usi ve=t r ue to the URL:

http://1ocal host: 8983/ sol r/ el evat e?q=YYYY&ebugQuer y=t r ue&excl usi ve=tr ue

The f g Parameter

Query elevation respects the standard filter query (f q) parameter. That is, if the query contains the f g parameter, all results will be within that
filter even if el evat e. xm adds other documents to the result set.

Response Writers

A Response Writer generates the formatted response of a search. Solr supports a variety of Response Writers to ensure that query responses
can be parsed by the appropriate language or application.

The wt parameter selects the Response Writer to be used. The table below lists the most common settings for the wt parameter.

wt Parameter Setting Response Writer Selected

csv CSVResponseWriter

json JSONResponseWriter

php PHPResponseWriter

phps PHPSerializedResponseWriter

Apache Solr Reference Guide 4.4 235

http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=true
http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=false
http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&enableElevation=true&forceElevation=true
http://localhost:8983/solr/elevate?q=YYYY&debugQuery=true&exclusive=true

python PythonResponseWriter

ruby RubyResponseWriter
velocity VelocityResponseWriter
xml XMLResponseWriter
xslt XSLTResponseWriter

The Standard XML Response Writer

The XML Response Writer is the most general purpose and reusable Response Writer currently included with Solr. It is the format used in most
discussions and documentation about the response of Solr queries.

Note that the XSLT Response Writer can be used to convert the XML produced by this writer to other vocabularies or text-based formats.

The behavior of the XML Response Writer can be driven by the following query parameters.

The ver si on Parameter

The ver si on parameter determines the XML protocol used in the response. Clients are strongly encouraged to always specify the protocol
version, so as to ensure that the format of the response they receive does not change unexpectedly when the Solr server is upgraded.

XML Notes Comments

Version

2.0 An <ar r > tag was used for multiValued fields only if there was more then one value. Not supported in Solr
4.

21 An <arr > tag is used for multiValued fields even if there is only one value. Not supported in Solr
4.

2.2 The format of the responseHeader changed to use the same <I st > structure as the rest of the Supported in Solr 4.

response.

The default value is the latest supported.

The styl esheet Parameter

The styl esheet parameter can be used to direct Solr to include a <?xml - styl esheet type="text/xsl" href="..."?>declaration in
the XML response it returns.

The default behavior is not to return any stylesheet declaration at all.

1. Use of the st yl esheet parameter is discouraged, as there is currently no way to specify external stylesheets, and no
stylesheets are provided in the Solr distributions. This is a legacy parameter, which may be developed further in a future
release.

The i ndent Parameter

If the i ndent parameter is used, and has a non-blank value, then Solr will make some attempts at indenting its XML response to make it more
readable by humans.

The default behavior is not to indent.
The XSLT Response Writer

The XSLT Response Writer applies an XML stylesheet to output. It can be used for tasks such as formatting results for an RSS feed.

t r Parameter

The XSLT Response Writer accepts one parameter: the t r parameter, which identifies the XML transformation to use. The transformation must
be found in the Solr conf / xsl t directory.

The Content-Type of the response is set according to the <xsl : out put > statement in the XSLT transform, for example: <xsl : out put
medi a-type="text/htm"/>

Apache Solr Reference Guide 4.4 236

Configuration

The example below, from the default sol r confi g. xm file, shows how the XSLT Response Writer is configured.

<l--
Changes to XSLT transforns are taken into account
every xsltCachelLifetimeSeconds at nost.
-->
<quer yResponseWiter
name="xslt"
cl ass="org. apache. sol r. request . XSLTResponseWiter"
>
<int name="xslt CacheLi feti neSeconds" >5</i nt>
</ quer yResponseW it er >

A value of 5 for xsl t CachelLi f et i meSeconds is good for development, to see XSLT changes quickly. For production you probably want a

much higher value.

JSON Response Writer

A very commonly used Response Writer is the JsonResponseW i t er, which formats output in JavaScript Object Notation (JSON), a lightweight

data interchange format specified in specified in RFC 4627. Setting the wt parameter to j son invokes this Response Writer.

With Solr 4, the JsonResponseW i t er has been changed:

® The default mime type for the writer is now appl i cati on/j son.
® The example solrconfig.xml has been updated to explicitly use this parameter to set the type to t ext / pl ai n:

<quer yResponseWiter nane="json" class="solr.JSONResponseWiter">
<!-- For the purposes of the tutorial, JSON response are witten as
plain text so that it's easy to read in *any* browser.
If you are building applications that consune JSON, just renove
this override to get the default "application/json" mne type.
-->
<str name="content-type">text/plain</str>
</ quer yResponseW i ter>

Python Response Writer

Solr has an optional Python response format that extends its JSON output in the following ways to allow the response to be safely evaluated by

the python interpreter:

true and false changed to True and False

Python unicode strings are used where needed

ASCII output (with unicode escapes) is used for less error-prone interoperability
newlines are escaped

null changed to None

PHP Response Writer and PHP Serialized Response Writer

Solr has a PHP response format that outputs an array (as PHP code) which can be evaluated. Setting the wt parameter to php invokes the PHP

Response Writer.

Example usage:

Apache Solr Reference Guide 4.4

237

$code = file_get_contents(' http://1ocal host: 8983/ sol r/ sel ect ?2q=i Pod&nt =* php*') ;

eval ("$result =" . $code . ";");
print_r($result);

Solr also includes a PHP Serialized Response Writer that formats output in a serialized array. Setting the wt parameter to phps invokes the PHP
Serialized Response Writer.

Example usage:

$serializedResult =

file_get_contents(' http://local host: 8983/ sol r/sel ect ?2q=i Pod&wm =*php{*}s');
$result = unserialize($serializedResult);

print_r($result);

Before you use either the PHP or Serialized PHP Response Writer, you may first need to un-comment these two lines in sol rconfi g. xm :

<queryResponseWiter nanme="php" cl ass="org.apache. solr.request. PHPResponseWiter"/>

<quer yResponseWiter nanme="phps"
cl ass="org. apache. sol r. request . PHPSeri al i zedResponseWiter"/>

Ruby Response Writer

Solr has an optional Ruby response format that extends its JSON output in the following ways to allow the response to be safely evaluated by
Ruby's interpreter:

Ruby's single quoted strings are used to prevent possible string exploits.
\'and ' are the only two characters escaped.

Unicode escapes are not used. Data is written as raw UTF-8.

nil used for null.

=> is used as the key/value separator in maps.

Here is a simple example of how one may query Solr using the Ruby response format:

require 'net/http'

h = Net::HTTP. new' | ocal host', 8983)

hresp, data = h.get('/solr/sel ect?q=i Pod&w =ruby', nil)
rsp = eval (data)

puts 'nunmber of matches = ' + rsp['response'][’ nunFound'].to_s
#print out the nane field for each returned docunment
rsp['response']['docs'].each { |doc| puts 'nanme field ="' + doc['nane'\] }

CSV Response Writer

The CSV response writer returns a list of documents in comma-separated values (CSV) format. Other information that would normally be included
in a response, such as facet information, is excluded.

The CSV response writer supports multi-valued fields, and the output of this CSV format is compatible with Solr's CSV update format. As of Solr
4.3, it can also support pseudo-fields.

CSV Parameters

These parameters specify the CSV format that will be returned. You can accept the default values or specify your own.

Parameter Default Value

Apache Solr Reference Guide 4.4 238

https://wiki.apache.org/solr/UpdateCSV

csv.encapsulator
csv.escape None

csv.separator ,

csv.header Defaults to true. If false, Solr does not print the column headers
csv.newline \n
csv.null Defaults to a zero length string. Use this parameter when a document has no value for a particular field.

Multi-Valued Field CSV Parameters

These parameters specify how multi-valued fields are encoded. Per-field overrides for these values can be done using
f.<fiel dname>. csv. separator=|.

Parameter Default Value

csv.mv.encapsulator = None

csv.mv.escape \
csv.mv.separator Defaults to the csv. separ at or value
Example

http://1ocal host: 8983/ sol r/ sel ect ?q=i pod&f | =i d, cat, nane, popul arity, price, score&w =csv returns:

i d, cat, nane, popul arity, price, score

| W02, "el ectronics, connector”",iPod & i Pod Mni USB 2.0 Cable,1,11.5,0.98867977
F8V7067- APL-KI T, "el ectronics, connector", Bel kin Mobile Power Cord for iPod w
Dock, 1, 19. 95, 0. 6523595

MA147LL/ A "el ectroni cs, nusi c", Appl e 60 GB i Pod with Video Pl ayback

Bl ack, 10, 399. 0, 0. 2446348

Velocity Response Writer

The VelocityResponseWriter (also known as Solritas) is an optional plugin available in the cont ri b/ vel oci ty directory. It is used to power the
Velocity Search Ul in the example configuration.

Its jar and dependencies must be added (via <lib> or solr/home lib inclusion), and must be registered in solrconfig.xml like this:

<quer yResponseWiter nane="vel ocity" class="solr. Vel ocityResponseWiter"/>

For more information about the Velocity Response Writer, see https://wiki.apache.org/solr/\VVelocityResponseWriter.

Binary Response Writer

Solr also includes a Response Writer that outputs binary format for use with a Java client. See Client APIs for more details.

Near Real Time Searching

Near Real Time (NRT) search means that documents are available for search almost immediately after being indexed: additions and updates to
documents are seen in 'near’ real time. Solr 4 no longer blocks updates while a commit is in progress. Nor does it wait for background merges to
complete before opening a new search of indexes and returning.

With NRT, you can modify a cormi t command to be a soft commit, which avoids parts of a standard commit that can be costly. You will still

want to do standard commits to ensure that documents are in stable storage, but soft commits let you see a very near real time view of the index
in the meantime. However, pay special attention to cache and autowarm settings as they can have a significant impact on NRT performance.

Apache Solr Reference Guide 4.4 239

http://localhost:8983/solr/select?q=ipod&fl=id,cat,name,popularity,price,score&wt=csv
https://wiki.apache.org/solr/VelocityResponseWriter

Commits and Optimizing

A commit operation makes index changes visible to new search requests. A hard commit uses the transaction log to get the id of the latest
document changes, and also calls f sync on the index files to ensure they have been flushed to stable storage and no data loss will result from a
power failure.

A soft commit is much faster since it only makes index changes visible and does not f sync index files or write a new index descriptor. If the
JVM crashes or there is a loss of power, changes that occurred after the last hard commit will be lost. Search collections that have NRT
requirements (that want index changes to be quickly visible to searches) will want to soft commit often but hard commit less frequently. A
softCommit may be "less expensive" in terms of time, but not free, since it can slow throughput.

An optimize is like a hard commit except that it forces all of the index segments to be merged into a single segment first. Depending on the use,
this operation should be performed infrequently (e.g., nightly), if at all, since it involves reading and re-writing the entire index. Segments are
normally merged over time anyway (as determined by the merge policy), and optimize just forces these merges to occur immediately.

Soft commit takes uses two parameters: maxDocs and maxTi me.

Parameter Description

maxDocs Integer. Defines the number of documents to queue before pushing them to the index. It works in conjunction with the
updat e_handl er _aut osof t conmi t _nmax_t i me parameter in that if either limit is reached, the documents will be pushed to
the index.

maxTi me The number of milliseconds to wait before pushing documents to the index. It works in conjunction with the
updat e_handl er _aut osof t conmi t _nax_docs parameter in that if either limit is reached, the documents will be pushed to
the index.

Use maxDocs and maxTi e judiciously to fine-tune your commit strategies.

AutoCommits

An autocommit also uses the parameters maxDocs and maxTi me. However it's useful in many strategies to use both a hard aut oconmi t and
aut osof t conmi t to achieve more flexible commits.

A common configuration is to do a hard aut oconmi t every 1-10 minutes and a aut osof t conmi t every second. With this configuration, new
documents will show up within about a second of being added, and if the power goes out, soft commits are lost unless a hard commit has been
done.

For example:

<aut oSof t Commi t >
<maxTi ne>1000</ maxTi ne>
</ aut oSof t Comi t >

It's better to use maxTi e rather than maxDocs to modify an aut oSof t Conmi t , especially when indexing a large number of documents through
the commit operation. It's also better to turn off aut oSof t Conmmi t for bulk indexing.

Optional Attributes for commi t and opti mi ze

Parameter Valid Description
Attributes
wai t Sear cher true, false Block until a new searcher is opened and registered as the main query searcher, making the changes

visible. Default is true.

sof t Commi t true, false Perform a soft commit. This will refresh the view of the index faster, but without guarantees that the
document is stably stored. Default is false.

expungeDel et es true, false Valid for conmmi t only. This parameter purges deleted data from segments. The default is false.

maxSegnents = integer Valid for opt i mi ze only. Optimize down to at most this number of segments. The default is 1.
N

Example of commi t and opt i mi ze with optional attributes:

Apache Solr Reference Guide 4.4 240

<commit wait Searcher="fal se"/>
<commit waitSearcher="fal se" expungeDel etes="true"/>
<optim ze wait Searcher="fal se"/>

Passing commi t and conmi t Wt hi n parameters as part of the URL

Update handlers can also get conmi t -related parameters as part of the update URL. This example adds a small test document and causes an
explicit commit to happen immediately afterwards:

http://1ocal host: 8983/ sol r/ updat e?stream body=<add><doc>
<field nane="id">testdoc</fiel d></ doc></ add>&comi t =t r ue

Alternately, you may want to use this:

http://1ocal host: 8983/ sol r/ updat e?stream body=<opti m ze/ >

This example causes the index to be optimized down to at most 10 segments, but won't wait around until it's done (wai t FI ush=f al se):

curl "http://1ocal host: 8983/ sol r/ updat e?opti m ze=t r ue&maxSegnent s=10&wai t Fl ush=f al se'

This example adds a small test document with a conmi t W' t hi n instruction that tells Solr to make sure the document is committed no later than
10 seconds later (this method is generally preferred over explicit commits):

curl http://1ocal host: 8983/ sol r/ updat e?conmi t Wt hi n=10000
-H "Content-Type: text/xm " --data-binary
' <add><doc><fi el d name="i d">t estdoc</fi el d></ doc></ add>'

Changing default commi t Wt hi n Behavior

The commi t W t hi n settings allow forcing document commits to happen in a defined time period. This is used most frequently with Near Real
Time Searching, and for that reason the default is to perform a soft commit. This does not, however, replicate new documents to slave servers in
a master/slave environment. If that's a requirement for your implementation, you can force a hard commit by adding a parameter, as in this
example:

<comi t Wt hi n>
<sof t Commi t >f al se</soft Conmi t >
</ comm t Wt hin>

With this configuration, when you call conmi t W' t hi n as part of your update message, it will automatically perform a hard commit every time.

RealTime Get

For index updates to be visible (searchable), some kind of commit must reopen a searcher to a new point-in-time view of the index. The realtime
get feature allows retrieval (by uni que- key) of the latest version of any documents without the associated cost of reopening a searcher. This is
primarily useful when using Solr as a NoSQL data store and not just a search index.

Realtime Get currently relies on the update log feature, which is enabled by default. It relies on an update log, which is configured in
sol rconfig. xm , in a section like:

Apache Solr Reference Guide 4.4 241

<updat eLog>
<str name="dir">${solr.ulog.dir:}</str>
</ updat eLog>

The latest exanpl e sol rconfi g. xm should also have a request handler named / get already defined.

Start (or restart) the Solr server, and then index a document:

curl "http://local host: 8983/ sol r/ update/json?comitWthi n=10000000
-H 'Content-type:application/json' -d '[{"id":"mydoc","title":"realtime-get
test!"}]"

If you do a normal search, this document should not be found:

http://1ocal host: 8983/ sol r/ sel ect ?q=i d: nydoc

"response":
{"nunfFound": 0, "start":0,"docs":[]}

However if you use the realtime get handler exposed at / get , you should be able to retrieve that document:

http://1ocal host: 8983/ sol r/ get ?i d=mydoc

{"doc":{"id":"nydoc","title":"realtime-get test!"]}}

You can also specify multiple documents at once via the ids parameter and a comma separated list of ids, or by using multiple id parameters. If
you specify multiple ids, or use the ids parameter, the response will mimic a normal query response to make it easier for existing clients to parse.
Since you've only indexed one document, the following equivalent examples just repeat the same id.

http://1ocal host: 8983/ sol r/ get ?i ds=nydoc, nydoc
http://1ocal host: 8983/ sol r/ get ?i d=nmydoc& d=nydoc

{"response":
{"nunfound": 2,"start": 0, "docs":
[{ "id":"nydoc", "title":["realtinme-get test!"]},
{ "id":"nydoc", "title":["realtine-get test!"]}]

Apache Solr Reference Guide 4.4 242

The Well-Configured Solr Instance

This section tells you how to fine-tune your Solr instance for optimum performance. This section covers the following topics:
Configuring solrconfig.xml: Describes how to work with the main configuration file for Solr.

Solr Cores and solr.xml: Describes how to configure your Solr core, or multiple Solr cores within a single instance.

Lucene IndexWriters: Describes how to configure the index writers in the underlying Lucene engine.

HTTP Request Dispatcher: Describes how to configure Solr's response to HTTP requests

JVM Settings: Gives some guidance on best practices for working with Java Virtual Machines.

' The focus of this section is on configuring a single Solr instance. To scale a Solr implementation in a cluster environment, see
SolrCloud. There are also options to scale through sharding or replication, described in the section Legacy Scaling and
Distribution.

For more information about factors affecting Solr performance, see http://wiki.apache.org/solr/SolrPerformanceFactors.

Configuring solrconfig.xml

The sol rconfi g. xm file is the configuration file with the most parameters affecting Solr itself. While configuring Solr, you'll work with
sol rconfi g. xm often. The file comprises a series of XML statements that set configuration values. In sol r confi g. xm , you configure
important features such as:

® request handlers

® listeners (processes that "listen" for particular query-related events; listeners can be used to trigger the execution of special code, such as
invoking some common queries to warm-up caches)

® the Request Dispatcher for managing HTTP communications
¢ the Admin Web interface
® parameters related to replication and duplication (these parameters are covered in detail in Legacy Scaling and Distribution)

The sol rconfi g. xm file is found in the sol r/ conf/ directory. The example file is well-commented, and includes information on best practices
for most installations.

We've covered the options in the following sections:

DataDir and DirectoryFactory in SolrConfig

Lib Directives in SolrConfig

Managed Schema Definition in SolrConfig

IndexConfig in SolrConfig

UpdateHandlers in SolrConfig

Query Settings in SolrConfig

RequestDispatcher in SolrConfig

RequestHandlers and SearchComponents in SolrConfig

Substituting System Properties in Solr Config Files

Solr supports substitution of system properties, which allow the JVM to specify substitutions within sol r confi g. xm and sol r. xm . The syntax
is ${ property:[defaul t val ue]}. This allows defining a default that can be overridden when Solr is launched. For example, in the example
sol rconfi g. xm , you will see this value which defines the locking type to use:

<l ockType>${sol r. | ock. type: native}</| ockType>

When starting Solr's example application, you could launch it with:

Apache Solr Reference Guide 4.4 243

http://wiki.apache.org/solr/SolrPerformanceFactors

java -Dsolr.lock.type=sinple -jar start.jar

The properties can also be added to a file called sol r cor e. properti es in the conf directory. The file should be formatted like this example:

#sol rcore. properties
| ock. type=native

Then the property can be used in sol r confi g. xm like this:

<l ockType>${Il ock. t ype} </ | ockType>

More Information
® The Solr Wiki has a comprehensive page on sol r confi g. xm , at http://wiki.apache.org/solr/SolrConfigXml.

® 6 Sins of solrconfig.xml modifications from solr.pl.

DataDir and DirectoryFactory in SolrConfig

Specifying a Location for Index Data with the dat aDi r Parameter

By default, Solr stores its index data in a directory called / dat a under the Solr home. If you would like to specify a different directory for storing
index data, use the <dat aDi r > parameter in the sol r confi g. xm file. You can specify another directory either with a full pathname or a
pathname relative to the current working directory of the servlet container. For example:

<dat abDi r>/ var/data/sol r/ </ dataDir>

If you are using replication to replicate the Solr index (as described in Legacy Scaling and Distribution), then the <dat aDi r > directory should
correspond to the index directory used in the replication configuration.

Specifying the DirectoryFactory For Your Index

The default sol r. St andar dDi r ect or yFact ory is filesystem based, and tries to pick the best implementation for the current JVM and
platform. You can force a particular implementation by specifying sol r. MvapDi r ect or yFact ory, sol r. Nl OFSDi r ect or yFact ory, or
solr. Si nmpl eFSDi rect oryFactory.

<di rectoryFactory nane="DirectoryFactory"
class="${solr.directoryFactory:solr. StandardDi rectoryFactory}"/>

The sol r. RAMDI r ect or yFact or y is memory based, not persistent, and does not work with replication. Use this DirectoryFactory to store your
index in RAM.

<di rectoryFactory cl ass="org. apache. solr. core. RAMDI rect oryFactory"/>

Lib Directives in SolrConfig

Solr allows loading plugins by defining <l i b/ > directives in sol r confi g. xm .

The plugins are loaded in the order they appear in sol r confi g. xnl . If there are dependencies, list the lowest level dependency jar first.

Apache Solr Reference Guide 4.4 244

http://wiki.apache.org/solr/SolrConfigXml
http://solr.pl/en/2010/09/13/6-sins-of-solrconfig-xml-modifications/

Regular expressions can be used to provide control loading jars with dependencies on other jars in the same directory. All directories are resolved
as relative to the Solri nst anceDi r .

<lib dir="../../../contrib/extraction/lib" regex=".*\.jar" />

<lib dir="../../../dist/" regex="apache-solr-cell-\d.*\.jar" />

<lib dir="../../../contrib/clustering/lib/" regex=".*\.jar" />

<lib dir="../../../dist/" regex="apache-solr-clustering-\d.*\.jar" />

<lib dir="../../../contrib/langid/lib/" regex=".*\.jar" />

<lib dir="../../../dist/" regex="apache-solr-langid-\d.*\.jar" />
<libdir="../../../contrib/velocity/lib" regex=".*\.jar" />
<lib dir="../../../dist/" regex="apache-solr-velocity-\d.*\.jar" />

Managed Schema Definition in SolrConfig

The Schema API enables schema modifications through a REST interface. (Read-only access to all schema elements is also supported.)

There are challenges with allowing programmatic access to a configuration file that is also open to manual edits: system-generated and manual
edits may overlap and the system-generated edits may remove comments or other customizations that are critical for the organization to
understand why fields, field types, etc., are defined the way they are. You may want to version the file with source control, or limit manual edits
altogether.

sol rconfi g. xm allows the Solr schema to be defined as a "managed index schema": schema modification is only possible through the
Schema API.

From the example sol rconfi g. xm :

<I-- To enabl e dynam c schema REST APls, use the follow ng for <schemaFactory>:

<schemaFactory cl ass="Managedl ndexSchemaFact ory" >

<bool nane="nut abl e" >t r ue</ bool >

<str nanme="nanagedSchemaResour ceNane" >managed- schema</str>
</ schemaFact ory>

When Managedl ndexSchemaFactory is specified, Solr will |oad the schema from

the resource naned in ' managedSchemaResour ceNane', rather than from schema. xm .

Note that the nmanaged schema resource CANNOT be named schema.xm. [If the
nanaged

schema does not exist, Solr will create it after reading schenma.xm, then
rename

"schema. xm' to 'schenma. xnl. bak'.

Do NOT hand edit the nmanaged schenma - external nodifications will be ignored

and
overwitten as a result of schema nodification REST APl calls.
When Managedl ndexSchemaFactory is specified with nutable = true, schenma
nmodi fication REST APl calls will be allowed; otherw se, error responses wll be
sent back for these requests.
-->

<schemaFact ory cl ass="d assi cl ndexSchenmaFact ory"/>

In the example above, sol r confi g. xm is actually configured to use the C assi cl ndexSchemaFact or y, which treats the schema. xni file
the same as it always has, which is that it can be edited manually. This setting disallows Schema
API methods that modify the schema.

Apache Solr Reference Guide 4.4 245

In the commented out sample, however, you can see configuration for the managed schema. In order for schema modifications to be possible via
the Schema API, the Managed| ndexSchemaFact or y will need to be used. The parameter mut abl e must also be set to true. The
managedSchemaResour ceNane, which defaults to "managed-schema”, may also be defined, and can be anything other than "schema.xml".
Once Solr is restarted, the existing schenma. xm file is renamed to schema. xn . bak and the contents are written to a file with the name defined
as the managedSchenaResour ceNane. If you look at the resulting file, you'll see this at the top of the page:

<!-- Solr managed schema - automatically generated - DONOT EDIT -->

Note that the Schemaless Mode example at exanpl e/ exanpl e- schenal ess/ uses the Managedl ndexSchenmaFact ory to allow automatic
schema field additions based on document updates' field values.

IndexConfig in SolrConfig

The <i ndexConf i g> section of sol rconf i g. xnl defines low-level behavior of the Lucene index writers. By default, the settings are
commented out in the sample sol r confi g. xm included with Solr, which means the defaults are used. In most cases, the defaults are fine.

<i ndexConfi g>

</ i ndexConfi g>

1, Prior to Solr 4, many of these settings were contained in sections called mai nl ndex and i ndexDef aul t s. In Solr 4, those
sections are deprecated and removed. Any settings that used to be in those sections, now belong in <i ndexConfi g>.

Parameters covered in this section:

Sizing Index Segments
Merging Index Segments
Index Locks

Other Indexing Settings

Sizing Index Segments

ranBuf f er Si zeMB

Once accumulated document updates exceed this much memory space (defined in megabytes), then the pending updates are flushed. This can
also create new segments or trigger a merge. Using this setting is generally preferable to maxBuf f er edDocs. If both maxBuf f er edDocs and
ranBuf f er Si zeMB are setin sol rconfi g. xm , then a flush will occur when either limit is reached. The default is 100Mb (raised from 32Mb for

Solr 4.1).

<r anBuf f er Si zeMB>100</ r anBuf f er Si zeivB>

maxBuf f er edDocs

Sets the number of document updates to buffer in memory before flushed to disk and added to the current index segment. If the segment fills up,
a new one may be created, or a merge may be started. The default Solr configuration leaves this value undefined.

<maxBuf f er edDocs>1000</ maxBuf f er edDocs>

max| ndexi ngThr eads

The maximum number of simultaneous threads used to index documents. Once this threshold is reached, additional threads will wait for the
others to finish. The default is 8. This parameter is new for Solr 4.1.

Apache Solr Reference Guide 4.4 246

<max| ndexi ngThr eads>8</ max| ndexi ngThr eads>

UseConpoundFi | e

Setting <useConpoundFi | e> to true combines the various files of a segment into a single file, although the default is false. On systems where
the number of open files allowed per process is limited, setting this to false may avoid hitting that limit (the open files limit might also be tunable
for your OS with the Linux/Unix ul i m t command, or something similar for other operating systems). In some cases, other internal factors may
set a segment to "compound=false", even if this is setting is explicitly set to true, so the compounding of the files in a segment may not always
happen.

Updating a compound index may incur a minor performance hit for various reasons, depending on the runtime environment. For example,
filesystem buffers are typically associated with open file descriptors, which may limit the total cache space available to each index.

This setting may also affect how much data needs to be transferred during index replication operations.

The default is false.

<useConpoundFi | e>f al se</ useConpoundFi | e>

Merging Index Segments

mer geFact or

The mer geFact or controls how many segments a Lucene index is allowed to have before it is coalesced into one segment. When an update is
made to an index, it is added to the most recently opened segment. When that segment fills up (see maxBuf f er edDocs and
ranBuf f er Si zeMB in the next section), a new segment is created and subsequent updates are placed there.

If creating a new segment would cause the number of lowest-level segments to exceed the mer geFact or value, then all those segments are
merged together to form a single large segment. Thus, if the merge factor is ten, each merge results in the creation of a single segment that is
roughly ten times larger than each of its ten constituents. When there are mer geFact or settings for these larger segments, then they in turn are
merged into an even larger single segment. This process can continue indefinitely.

Choosing the best merge factor is generally a trade-off of indexing speed vs. searching speed. Having fewer segments in the index generally
accelerates searches, because there are fewer places to look. It also can also result in fewer physical files on disk. But to keep the number of
segments low, merges will occur more often, which can add load to the system and slow down updates to the index.

Conversely, keeping more segments can accelerate indexing, because merges happen less often, making an update is less likely to trigger a
merge. But searches become more computationally expensive and will likely be slower, because search terms must be looked up in more index
segments. Faster index updates also means shorter commit turnaround times, which means more timely search results.

The default value in the example sol r confi g. xm is 10, which is a reasonable starting point.

<mer geFact or >10</ ner geFact or >

nmer gePol i cy

Defines how merging segments is done. The default in Solr is the Ti er edMer gePol i cy. This default policy merges segments of approximately
equal size, subject to an allowed number of segments per tier. Other policies available are the LogMer gePol i cy, LogByt eSi zeMer gePol i cy
and LogDocMer gePol i cy. For more information on these policies, please see the Lucene javadocs at
http://lucene.apache.org/core/4_0_O/core/index.html?org/apache/lucene/index/MergePolicy.html.

<mer gePol i cy cl ass="org. apache. | ucene. i ndex. Ti er edMer gePol i cy">
<i nt nane="rmaxMer geAt Once" >10</i nt >
<i nt nanme="segnent sPer Ti er">10</i nt>

</ mergePol i cy>

Apache Solr Reference Guide 4.4 247

http://lucene.apache.org/core/4_0_0/core/index.html?org/apache/lucene/index/MergePolicy.html

r. When using Ti er edMer gePol i cy, the setting maxMer geDocs is not needed. Since this is the default in Solr, the setting is
effectively removed. However, if using another policy, this setting may be useful.
nmer geSchedul er

The merge scheduler controls how merges are performed. The default Concur r ent Mer geSchedul er performs merges in the background using
separate threads. The alternative, Seri al Mer geSchedul er, does not perform merges with separate threads.

<mer geSchedul er cl ass="org. apache. | ucene. i ndex. Concurrent Mer geSchedul er"/ >

nmer gedSegment War ner

When using Solr in for Near Real Time Searching a merged segment warmer can be configured to warm the reader on the newly merged
segment, before the merge commits. This is not required for near real-time search, but will reduce search latency on opening a new near real-time
reader after a merge completes.

<mer gedSegnent War ner cl ass="or g. apache. | ucene. i ndex. Si npl eMer gedSegnent War ner"/ >

Index Locks

| ockType

The LockFactory options specify its implementation.

| ockType=si ngl e uses SinglelnstanceLockFactory, and is for a read-only index or when there is no possibility of another process trying to
modify the index.

| ockType=nat i ve uses NativeFSLockFactory to specify native OS file locking. Do not use when multiple Solr web applications in the same
JVM are attempting to share a single index.

| ockType=si npl e uses SimpleFSLockFactory to specify a plain file for locking.
nat i ve is the default for Solr3.6 and later versions; otherwise si npl e is the default.

For more information on the nuances of each LockFactory, see http://wiki.apache.org/lucene-java/AvailableLockFactories.

<l ockType>nati ve</| ockType>

unl ockOnSt ar t up

If true, any write or commit locks that have been held will be unlocked on system startup. This defeats the locking mechanism that allows multiple
processes to safely access a Lucene index. The default is false, and changing this should only be done with care. This parameter is not used if
the | ockType is "none" or "single".

<unl ockOnSt art up>f al se</ unl ockOnSt art up>

wri t eLockTi neout

The maximum time to wait for a write lock on an IndexWriter. The default is 1000, expressed in milliseconds.

<writ eLockTi nmeout >1000</ wri t eLockTi neout >

Apache Solr Reference Guide 4.4 248

http://wiki.apache.org/lucene-java/AvailableLockFactories

Other Indexing Settings

There are a few other parameters that may be important to configure for your implementation. These settings affect how or when updates are
made to an index.

Setting Description
termindexInterval Controls how often terms are loaded into memory. The default is 128.

reopenReaders Controls if IndexReaders will be re-opened, instead of closed and then opened, which is often less efficient. The default is
true.

deletionPolicy Controls how commits are retained in case of rollback. The default is Sol r Del et i onPol i cy, which has sub-parameters
for the maximum number of commits to keep (maxConmi t sToKeep), the maximum number of optimized commits to keep (
maxQpt i m zedCommi t sToKeep), and the maximum age of any commit to keep (maxConmi t Age), which supports
Dat eMat hPar ser syntax.

infoStream The InfoStream setting instructs the underlying Lucene classes to write detailed debug information from the indexing
process as Solr log messages.

<t er ml ndexl| nt erval >128</t er m ndexI nt erval >

<r eopenReader s>t r ue</ r eopenReader s>

<del etionPolicy class="solr. Sol rDel etionPolicy">
<str name="maxComi t sToKeep" >1</str>
<str name="max0Opti m zedCommit sToKeep">0</str>
<str name="nmaxConmi t Age" >1DAY</ st r>

</ del eti onPol i cy>

<i nf oSt r eanpf al se</i nf oSt reanr

ﬁ The maxFi el dLengt h parameter was removed in Solr 4. If restricting the length of fields is important to you, you can get
similar behavior with the Li m t TokenCount Fact or y, which can be defined for the fields you'd like to limit. For example,
<filter class="solr.LimtTokenCountFilterFactory" maxTokenCount="10000"/> would limit the field to
10,000 characters.

UpdateHandlers in SolrConfig

The settings in this section are configured in the <updat eHandl er > elementin sol r confi g. xm and may affect the performance of index
updates. These settings affect how updates are done internally. <updat eHandl er > configurations do not affect the higher level configuration of
RequestHandlers that process client update requests.

<updat eHandl er cl ass="sol r. Di r ect Updat eHandl er 2" >

</ updat eHandl er >

Topics covered in this section:

® Commits
® Event Listeners
® Transaction Log

Commits

Data sent to Solr is not searchable until it has been committed to the index. The reason for this is that in some cases commits can be slow and
they should be done in isolation from other possible commit requests to avoid overwriting data. So, it's preferable to provide control over when
data is committed. Several options are available to control the timing of commits.

comm t and sof t Commi t

Apache Solr Reference Guide 4.4 249

With Solr 4, conmi t is generally used only as a boolean flag sent with a client update request. The command conmi t =t r ue would perform a
commit as soon as the data as finished loading to Solr.

You can also set the flag sof t Conmi t =t r ue to do a 'soft' commit, meaning that Solr will commit your changes quickly but not guarantee that
documents are in stable storage. This is an implementation of Near Real Time storage, a feature that boosts document visibility, since you don't
have to wait for background merges and storage (to ZooKeeper, if using SolrCloud) to finish before moving on to something else. A full commit
means that, if a server crashes, Solr will know exactly where your data was stored; a soft commit means that the data is stored, but the location
information isn't yet stored. The tradeoff is that a soft commit gives you faster visibility because it's not waiting for background merges to finish.

For more information about Near Real Time operations, see Near Real Time Searching.

aut oConmi t

These settings control how often pending updates will be automatically pushed to the index. An alternative to aut oConmi t is to use
commi t Wt hi n, which can be defined when making the update request to Solr (i.e., when pushing documents), or in an update RequestHandler.

Setting Description
maxDocs The number of updates that have occurred since the last commit.
maxTime The number of milliseconds since the oldest uncommitted update.

openSearcher = Whether to open a new searcher when performing a commit. If this is false, the default, the commit will flush recent index
changes to stable storage, but does not cause a new searcher to be opened to make those changes visible

If either of these maxDocs or maxTi ne limits are reached, Solr automatically performs a commit operation. If the aut oConmi t tag is missing,
then only explicit commits will update the index. The decision whether to use auto-commit or not depends on the needs of your application.

Determining the best auto-commit settings is a tradeoff between performance and accuracy. Settings that cause frequent updates will improve the
accuracy of searches because new content will be searchable more quickly, but performance may suffer because of the frequent updates. Less
frequent updates may improve performance but it will take longer for updates to show up in queries.

<aut oConmi t >

<maxDocs>10000</ maxDocs>

<maxTi ne>1000</ maxTi ne>

<openSear cher >f al se</ openSear cher >
</ aut oConmi t >

You can also specify 'soft' autoCommits in the same way that you can specify 'soft' commits, except that instead of using aut oConmi t you set
the aut oSof t Conmi t tag.

<aut oSof t Commi t >
<maxTi ne>1000</ maxTi ne>
</ aut oSof t Commi t >

comm tWthin

The commi t W t hi n settings allow forcing document commits to happen in a defined time period. This is used most frequently with Near Real
Time Searching, and for that reason the default is to perform a soft commit. This does not, however, replicate new documents to slave servers in
a master/slave environment. If that's a requirement for your implementation, you can force a hard commit by adding a parameter, as in this
example:

<commi t Wt hi n>
<sof t Conmi t >f al se</soft Conmi t >
</ comm t Wt hin>

With this configuration, when you call commi t W t hi n as part of your update message, it will automatically perform a hard commit every time.

maxPendi ngDel et es

Apache Solr Reference Guide 4.4 250

This value sets a limit on the number of deletions that Solr will buffer during document deletion. This can affect how much memory is used during
indexing.

<maxPendi ngDel et es>100000</ naxPendi ngDel et es>

Event Listeners

The UpdateHandler section is also where update-related event listeners can be configured. These can be triggered to occur after a commit or
optimize event, or after only an optimize event.

The listener is called with the RunExecut abl eLi st ener, which runs an external executable with the defined set of instructions. The available
commands are:
Setting Description

event If postCommit, the RunExecut abl eLi st ener will be run after every commit or optimize. If postOptimize, the
RunExecut abl eLi st ener will be run every optimize only.

exe The name of the executable to run. It should include the path to the file, relative to Solr home.
dir The directory to use as the working directory. The default is ".".

wait Forces the calling thread to wait until the executable returns a response. The default is true.
args Any arguments to pass to the program. The default is none.

env Any environment variables to set. The default is none.

Below is the example from sol r conf i g. xnl , which shows an example from script-based replication described at
http://wiki.apache.org/solr/CollectionDistribution:

<l istener event="postComit" class="solr.RunExecutabl eLi st ener">
<str nanme="exe">sol r/ bi n/ snapshoot er</str>
<str name="dir">. </str>
<bool nane="wait">true</bool >
<arr name="args"> <str>argl</str> <str>arg2</str> </arr>
<arr name="env"> <str>MyVAR=val 1</str> </arr>

</listener>

Transaction Log

As described in the section RealTime Get, a transaction log is required for that feature. It is configured in the updat eHandl er section of
sol rconfig.xm .

Realtime Get currently relies on the update log feature, which is enabled by default. It relies on an update log, which is configured in
sol rconfig. xm , in a section like:

<updat eLog>
<str name="dir">${solr.ulog.dir:}</str>
</ updat eLog>

Query Settings in SolrConfig

The settings in this section affect the way that Solr will process and respond to queries. These settings are all configured in child elements of the
<query> elementin sol rconfig. xni .

Apache Solr Reference Guide 4.4 251

http://wiki.apache.org/solr/CollectionDistribution

<query>

</ query>

Topics covered in this section:

® Caches
® Query Sizing and Warming
® Query-Related Listeners

Caches

Solr caches are associated with a specific instance of an Index Searcher, a specific view of an index that doesn't change during the lifetime of that
searcher. As long as that Index Searcher is being used, any items in its cache will be valid and available for reuse. Caching in Solr differs from
caching in many other applications in that cached Solr objects do not expire after a time interval; instead, they remain valid for the lifetime of the
Index Searcher.

When a new searcher is opened, the current searcher continues servicing requests while the new one auto-warms its cache. The new searcher
uses the current searcher's cache to pre-populate its own. When the new searcher is ready, it is registered as the current searcher and begins
handling all new search requests. The old searcher will be closed once it has finished servicing all its requests.

In Salr, there are three cache implementations: sol r. sear ch. LRUCache, sol r. sear ch. Fast LRUCache, and sol r. sear ch. LFUCache .
The acronym LRU stands for Least Recently Used. When an LRU cache fills up, the entry with the oldest last-accessed timestamp is evicted to
make room for the new entry. The net effect is that entries that are accessed frequently tend to stay in the cache, while those that are not
accessed frequently tend to drop out and will be re-fetched from the index if needed again.

The Fast LRUCache, which was introduced in Solr 1.4, is designed to be lock-free, so it is well suited for caches which are hit several times in a
request.

Both LRUCache and Fast LRUCache use an auto-warm count that supports both integers and percentages which get evaluated relative to the
current size of the cache when warming happens.

The LFUCache refers to the Least Frequently Used cache. This works in a way similar to the LRU cache, except that when the cache fills up, the
entry that has been used the least is evicted.

The Statistics page in the Solr Admin Ul will display information about the performance of all the active caches. This information can help you
fine-tune the sizes of the various caches appropriately for your particular application. When a Searcher terminates, a summary of its cache usage
is also written to the log.

Each cache has settings to define it's initial size (i ni ti al Si ze), maximum size (si ze) and number of items to use for during warming (
aut owar mCount). The LRU and FastLRU cache implementations can take a percentage instead of an absolute value for aut owar nCount .

Details of each cache are described below.

filterCache

This cache is used by Sol r | ndexSear cher for filters (DocSets) for unordered sets of all documents that match a query. The numeric attributes
control the number of entries in the cache.

Solr uses the fi | t er Cache to cache results of queries that use the f q search parameter. Subsequent queries using the same parameter setting
result in cache hits and rapid returns of results. See Searching for a detailed discussion of the f g parameter.

Solr also makes this cache for faceting when the configuration parameter f acet . net hod is set to f c. For a discussion of faceting, see
Searching.

<filterCache class="solr.LRUCache"
si ze="512"
initial Size="512"
aut owar mCount ="128"/ >

quer yResul t Cache

Apache Solr Reference Guide 4.4 252

This cache holds the results of previous searches: ordered lists of document IDs (DocList) based on a query, a sort, and the range of documents
requested.

<quer yResul t Cache cl ass="sol r. LRUCache"
si ze="512"
initialSize="512"
aut owar mCount ="128"/ >

docunent Cache

This cache holds Lucene Document objects (the stored fields for each document). Since Lucene internal document IDs are transient, this cache is
not auto-warmed. The size for the docunent Cache should always be greater than max_r esul t s times the max_concur r ent _queri es, to
ensure that Solr does not need to refetch a document during a request. The more fields you store in your documents, the higher the memory

usage of this cache will be.

<docunent Cache cl ass="sol r. LRUCache"
size="512"
initial Si ze="512"
aut owar mCount =" 0"/ >

User Defined Caches

You can also define named caches for your own application code to use. You can locate and use your cache object by name by calling the
Sol r I ndexSear cher methods get Cache(), cacheLookup() and cachel nsert (). If you want auto-warming of your cache, include a
regener at or attribute with the fully qualified name of a class that implements sol r. sear ch. CacheRegener at or.

<cache nane="nyUser Cache" cl ass="sol r. LRUCache"
si ze="4096"
initial Si ze="1024"
aut owar mCount =" 1024"
regener at or =" or g. myconpany. nypackage. MyRegenerator" />

Query Sizing and Warming

maxBool eanCl auses

This sets the maximum number of clauses allowed in a boolean query. This can affect range or prefix queries that expand to a query with a large
number of boolean terms. If this limit is exceeded, an exception is thrown.

<maxBool eanCl auses>1024</ maxBool eanCl auses>

i This option modifies a global property that effects all Solr cores. If multiple sol r confi g. xnl files disagree on this property, the
value at any point in time will be based on the last Solr core that was initialized.

enabl eLazyFi el dLoadi ng

If this parameter is set to true, then fields that are not directly requested will be loaded lazily as needed. This can boost performance if the most
common queries only need a small subset of fields, especially if infrequently accessed fields are large in size.

Apache Solr Reference Guide 4.4 253

<enabl eLazyFi el dLoadi ng>t r ue</ enabl eLazyFi el dLoadi ng>

useFi | t er For Sort edQuery

This parameter configures Solr to use a filter to satisfy a search. If the requested sort does not include "score”, the f i | t er Cache will be checked
for a filter matching the query. For most situations, this is only useful if the same search is requested often with different sort options and none of
them ever use "score".

<useFi | t er For Sort edQuer y>t rue</ useFi | t er For Sort edQuer y>

quer yResul t W ndowSi ze

Used with the quer yResul t Cache, this will cache a superset of the requested number of document IDs. For example, if the a search in
response to a particular query requests documents 10 through 19, and quer yW ndowSi ze is 50, documents O through 49 will be cached.

<quer yResul t W ndowSi ze>20</ quer yResul t W ndowSi ze>

quer yResul t MaxDocsCached

This parameter sets the maximum number of documents to cache for any entry in the quer yResul t Cache.

<quer yResul t MaxDocsCached>200</ quer yResul t MaxDocsCached>

useCol dSear cher

This setting controls whether search requests for which there is not a currently registered searcher should wait for a new searcher to warm up
(false) or proceed immediately (true). When set to “false", requests will block until the searcher has warmed its caches.

<useCol dSear cher >f al se</ useCol dSear cher >

maxWar m ngSear cher s

This parameter sets the maximum number of searchers that may be warming up in the background at any given time. Exceeding this limit will
raise an error. For read-only slaves, a value of two is reasonable. Masters should probably be set a little higher.

<maxWar m ngSear cher s>2</ maxWar m ngSear cher s>

Query-Related Listeners

As described in the section on Caches, new Index Searchers are cached. It's possible to use the triggers for listeners to perform query-related
tasks. The most common use of this is to define queries to further "warm" the Index Searchers while they are starting. One benefit of this
approach is that field caches are pre-populated for faster sorting.

Good query selection is key with this type of listener. It's best to choose your most common and/or heaviest queries and include not just the
keywords used, but any other parameters such as sorting or filtering requests.

There are two types of events that can trigger a listener. A f i r st Sear cher event occurs when a new searcher is being prepared but there is no

current registered searcher to handle requests or to gain auto-warming data from (i.e., on Solr startup). A newSear cher event is fired whenever
a new searcher is being prepared and there is a current searcher handling requests.

Apache Solr Reference Guide 4.4 254

The listener is always instantiated with the class sol r. Quer ySender Li st ener, and followed a NarmedLi st array. These examples are
included with sol rconfi g. xm :

<listener event="newSearcher" class="solr. QuerySenderListener">
<arr name="queries">

<l--
<l st><str nane="q">sol r</str><str name="sort">price asc</str></|st>
<l st><str nane="q">rocks</str><str name="sort">wei ght asc</str></|st>
-->
<larr>

</listener>

<listener event="firstSearcher" class="solr. QuerySenderListener">
<arr name="queries">
<l st><str nane="q">static firstSearcher warm ng in solrconfig.xm</str></|st>
</arr>
</listener>

1, The above code sample is the default in sol r confi g. xm , and a key best practice is to modify these defaults before taking
your application to production. While the sample queries are commented out in the section for the "newSearcher", the example
is not commented out for the “firstSearcher" event. There is no point in auto-warming your Index Searcher with the query string
"static firstSearcher warming in solrconfig.xml" if that is not relevant to your search application.

RequestDispatcher in SolrConfig

The r equest Di spat cher element of sol rconfi g. xm controls the way the Solr servlet's Request Di spat cher implementation responds to
HTTP requests. Included are parameters for defining if it should handle / sel ect urls (for Solr 1.1 compatibility), if it will support remote
streaming, the maximum size of file uploads and how it will respond to HTTP cache headers in requests.

Topics in this section:

® handl eSel ect Element
® request Parsers Element
® httpCachi ng Element

handl eSel ect Element

r, handl eSel ect is for legacy back-compatibility; those new to Solr do not need to change anything about the way this is
configured by default.

The first configurable item is the handl eSel ect attribute on the <r equest Di spat cher > element itself. This attribute can be set to one of two
values, either "true" or "false". It governs how Solr responds to requests such as / sel ect ?qt =XXX. The default value “false" will ignore requests
to {/ sel ect if a requestHandler is not explicitly registered with the name / sel ect . A value of "true" will route query requests to the parser
defined with the gt value.

In recent versions of Solr, a/ sel ect requestHandler is defined by default, so a value of "false" will work fine. See the section RequestHandlers
and SearchComponents in SolrConfig for more information.

<r equest Di spat cher handl eSel ect="true" >

</ request Di spat cher >

request Par ser s Element

The <r equest Par ser s> sub-element controls values related to parsing requests. This is an empty XML element that doesn't have any content,

Apache Solr Reference Guide 4.4 255

only attributes.

The attribute enabl eRenot eSt r eani ng controls whether remote streaming of content is allowed. If set to f al se, streaming will not be allowed.
Setting it to t r ue (the default) lets you specify the location of content to be streamed using stream fi |l e or stream url| parameters.

If you enable remote streaming, be sure that you have authentication enabled. Otherwise, someone could potentially gain access to your content
by accessing arbitrary URLSs. It's also a good idea to place Solr behind a firewall to prevent it being accessed from untrusted clients.

The attribute mul ti part Upl oadLi m t | nKB sets an upper limit in kilobytes on the size of a document that may be submitted in a multi-part
HTTP POST request. The value specified is multiplied by 1024 to determine the size in bytes.

The attribute f or ndat aUpl oadLi mi t | nKB sets a limit in kilobytes on the size of form data (application/x-www-form-urlencoded) submitted in a
HTTP POST request, which can be used to pass request parameters that will not fit in a URL.

The attribute addHt t pRequest ToCont ext can be used to indicate that the original Ht t pSer vl et Request object should be included in the
context map of the Sol r Quer yRequest using the key htt pRequest . This Ht t pSer vl et Request is not be used by any Solr components, but
may be useful when developing custom plugins.

<r equest Par sers enabl eRenot eStr eam ng="true"
mul ti part Upl oadLi mi t | nKB="2048000"
f or rdat aUpl oadLi ni t | nKB="2048"
addHt t pRequest ToCont ext ="f al se”

/>

ht t pCachi ng Element

The <ht t pCachi ng> element controls HTTP cache control headers. Do not confuse these settings with Solr's internal cache configuration. This
element controls caching of HTTP responses as defined by the W3C HTTP specifications.

This element allows for three attributes and one sub-element. The attributes of the <ht t pCachi ng> element control whether a 304 response to a
GET request is allowed, and if so, what sort of response it should be. When an HTTP client application issues a GET, it may optionally specify
that a 304 response is acceptable if the resource has not been modified since the last time it was fetched.

Parameter Description

never304 If present with the value t r ue, then a GET request will never respond with a 304 code, even if the requested resource has not
been modified. When this attribute is set to true, the next two attributes are ignored. Setting this to true is handy for
development, as the 304 response can be confusing when tinkering with Solr responses through a web browser or other client
that supports cache headers.

lastModFrom = This attribute may be set to either openTi e (the default) or di r Last Mod. The value openTi e indicates that last modification
times, as compared to the If-Modified-Since header sent by the client, should be calculated relative to the time the Searcher
started. Use di r Last Mod if you want times to exactly correspond to when the index was last updated on disk.

etagSeed This value of this attribute is sent as the value of the ETag header. Changing this value can be helpful to force clients to re-fetch
content even when the indexes have not changed---for example, when you've made some changes to the configuration.

<ht t pCachi ng never 304="f al se"

| ast ModFr on=" openTi nme"

et agSeed="Sol r" >

<cacheContr ol >max- age=30, public</cacheControl >
</ htt pCachi ng>

cacheControl Element

In addition to these attributes, <ht t pCachi ng> accepts one child element: <cacheCont r ol >. The content of this element will be sent as the
value of the Cache-Control header on HTTP responses. This header is used to modify the default caching behavior of the requesting client. The
possible values for the Cache-Control header are defined by the HTTP 1.1 specification in Section 14.9.

Setting the max-age field controls how long a client may re-use a cached response before requesting it again from the server. This time interval
should be set according to how often you update your index and whether or not it is acceptable for your application to use content that is
somewhat out of date. Setting nust - r eval i dat e will tell the client to validate with the server that its cached copy is still good before re-using it.
This will ensure that the most timely result is used, while avoiding a second fetch of the content if it isn't needed, at the cost of a request to the
server to do the check.

Apache Solr Reference Guide 4.4 256

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

RequestHandlers and SearchComponents in SolrConfig

After the <quer y> section, request handlers and search components are configured.These are often referred to as "requestHandler" and
"searchComponent”, which is how they are defined in sol rconfi g. xni .

A request handler processes requests coming to Solr. These might be query requests or index update requests. You will likely need several of
these defined, depending on how you want Solr to handle the various requests you will make.

A search component is a feature of search, such as highlighting or faceting. The search component is defined in sol r confi g. xm separate
from the request handlers, and then registered with a request handler as needed.

Topics covered in this section:

® Request Handlers
® SearchHandlers
® UpdateRequestHandlers
® ShardHandlers
® Other Request Handlers
® Search Components
® Default Components
® First-Components and Last-Components
® Other Useful Components
® Related Topics

Request Handlers

Every request handler is defined with a name and a class. The name of the request handler is referenced with the request to Solr. For example, a
requestto http:// | ocal host: 8983/ sol r/ col | ecti onl is the default address for Solr, which will likely bring up the Solr Admin Ul.
However, add "/select" to the end, you can make a query:

http://1ocal host:8983/sol r/collectionl/sel ect?g=solr

This query will be processed by the request handler with the name "/select". We've only used the "q" parameter here, which includes our query
term, a simple keyword of "solr". If the request handler has more parameters defined, those will be used with any query we send to this request
handler unless they are over-ridden by the client (or user) in the query itself.

If you have another request handler defined, you would send your request with that name - for example, "/update"” is a request handler that
handles index updates like sending new documents to the index.

SearchHandlers

The primary request handler defined with Solr by default is the "SearchHandler", which handles search queries. The request handler is defined,
and then a list of defaults for the handler are defined with a def aul t s list.

For example, in the default sol r confi g. xm , the first request handler defined looks like this:

<request Handl er nane="/sel ect" cl ass="sol r. SearchHandl er" >
<l st name="defaul ts">
<str nane="echoParans">explicit</str>
<int name="rows">10</int>
<str name="df">text</str>
</lst>
</ request Handl er >

This example defines the r ows parameter, which defines how many search results to return, to "10". The default field to search is the "text" field,
set with the df parameter. The echoPar ans parameter defines that the parameters defined in the query should be returned when debug
information is returned. Note also that the way the defaults are defined in the list varies if the parameter is a string, an integer, or another type.
All of the parameters described in the section on searching can be defined as defaults for any of the SearchHandlers.

Besides def aul t s, there are other options for the SearchHandler, which are:

Apache Solr Reference Guide 4.4 257

http://localhost:8983/solr/collection1

® appends: This allows definition of parameters that are added to the user query. These might be filter queries, or other query rules that
should be added to each query. There is no mechanism in Solr to allow a client to override these additions, so you should be absolutely
sure you always want these parameters applied to queries.

<l st nanme="appends" >
<str name="fqg">i nStock:true</str>
</lst>

In this example, the filter query "inStock:true" will always be added to every query.

® jnvari ants: This allows definition of parameters that cannot be overridden by a client. The values defined in an i nvar i ant s section
will always be used regardless of the values specified by the user, by the client, in def aul t s or in appends.

<l st name="invariants">
<str name="facet.field">cat</str>
<str nanme="facet.fiel d">manu_exact</str>
<str nane="facet.query">price:[* TO 500]</str>
<str nane="facet.query">price:[500 TO *]</str>
</lst>

In this example, facet fields have been defined which limits the facets that will be returned by Solr. If the client requests facets, the facets
defined with a configuration like this are the only facets they will see.

The final section of a request handler definition is conponent s, which defines a list of search components that can be used with a request
handler. They are only registered with the request handler. How to define a search component is discussed further on in the section on Search
Components. The conponent s element can only be used with a request handler that is a SearchHandler.

The sol rconfi g. xm file includes many other examples of SearchHandlers that can be used or modified as needed.
UpdateRequestHandlers

The UpdateRequestHandlers are request handlers which process updates to the index.

In this guide, we've covered these handlers in detail in the section Uploading Data with Index Handlers.

ShardHandlers

It is possible to configure a request handler to search across shards of a cluster, used with distributed search. More information about distributed
search and how to configure the shardHandler is in the section Distributed Search with Index Sharding.

Other Request Handlers
There are other request handlers defined in sol r confi g. xm , covered in other sections of this guide:

® RealTime Get
® Index Replication
®* Ping

Search Components

The search components define the logic that is used by the SearchHandler to perform queries for users.

Default Components

There are several defaults search components that work with all SearchHandlers without any additional configuration. If no components are
defined, these are used by default.

Component Name Class Name More Information

Apache Solr Reference Guide 4.4 258

query solr.QueryComponent Described in the section Query Syntax and Parsing.

facet solr.FacetComponent Described in the section Faceting.

mit solr.MoreLikeThisComponent = Described in the section MoreLikeThis.

highlight solr.HighlightComponent Described in the section Highlighting.

stats solr.StatsComponent Described in the section The Stats Component.

debug solr.DebugComponent Described in the section on Common Query Parameters.

If you register a new search component with one of these default names, the newly defined component will be used instead of the default.

First-Components and Last-Components

It's possible to define some components as being used before (with f i r st - conponent s) or after (with | ast - conponent s) other named
components. This would be useful if custom search components have been configured to process data before the regular components are used.
This is used when registering the components with the request handler.

<arr name="first-conmponents">
<str>nyconponent </ str>
<larr>

<arr name="conponents">
<str>query</str>
<str>facet</str>
<str>mt</str>
<str>hi ghlight</str>
<str>spel | check</str>
<str>stats</str>
<str>debug</str>

<larr>

Other Useful Components
Many of the other useful components are described in sections of this Guide for the features they support. These are:

Spel | CheckConponent , described in the section Spell Checking.

Ter nVect or Conponent , described in the section The Term Vector Component.

Quer yEl evat i onConponent , described in the section The Query Elevation Component.
Ter msConponent , described in the section The Terms Component.

Related Topics

® SolrRequestHandler from the Solr Wiki.
® SearchHandler from the Solr Wiki.
® SearchComponent from the Solr Wiki.

Solr Cores and solr.xml

sol r. xm has evolved from configuring one Solr core to supporting multiple Solr cores and eventually to defining parameters for SolrCloud.
Particularly with the advent of SolrCloud, the ability to cleanly define and maintain high-level configuration parameters in solr.xml Solr cores has
become more difficult so an alternative is being adopted.

Starting in Solr 4.3, Solr will maintain two distinct formats for sol r . xm , the legacy and discovery modes. The former is the format we have
become accustomed to in which all of the cores one wishes to define in a Solr instance are defined in sol r. xm in
<cores><core/ >...<core/ ></ cor es> tags. This format will continue to be supported through the entire 4.x code line.

As of Solr 5.0 this form of sol r. xm will no longer be supported. Instead Solr will support core discovery. In brief, core discovery still defines
some configuration parameters in sol r . xm , but no cores are defined in this file. Instead, the solr home directory is recursively walked until a
core. properti es file is encountered. This file is presumed to be at the root of a core, and many of the options that were placed in the <cor e>
tag in legacy Solr are now defined here as simple properties, i.e. a file with entries, one to a line, like 'name=cor el', 'schena=nyschema. xnl '
and so on.

Apache Solr Reference Guide 4.4 259

http://wiki.apache.org/solr/SolrRequestHandler
http://wiki.apache.org/solr/SearchHandler
http://wiki.apache.org/solr/SearchComponent

In Solr 4.x, the presence of a <sol r ><cor es> node determines whether Solr uses legacy or discovery mode. There are checks at initialization
time. If one tries to mix legacy and discovery tags in solr.xml. Solr will refuse to initialize if "mixed mode" is discovered, and errors will be logged.

! The new "core discovery mode" structure for sol r . xm will become mandatory as of Solr 5.0, see: Format of solr.xml.

i}

The following links are to pages that define these options in more detail, giving the acceptable parameters for the legacy and discovery modes.

® Format of solr.xml: The new discovery mode for sol r. xnl , including the acceptable parameters in both the sol r. xm file and the
corresponding cor e. properti es files.

® Legacy solr.xml Configuration: The legacy mode for sol r. xml and the acceptable parameters.

® Moving to the New solr.xml Format: How to migrate from legacy to discovery sol r. xml configurations.

® CoreAdminHandler Parameters and Usage: Tools and commands for core administration, which is common to both legacy and
discovery modes.

Format of solr.xml

You can find sol r. xm in your Solr Home directory. The default discovery sol r. xm file looks like this:

<sol r>

<sol rcl oud>

<str name="host">${host:}</str>

<int name="hostPort">${jetty. port:8983}</int>

<str name="host Cont ext " >${ host Cont ext:solr}</str>

<int name="zkd i ent Ti meout " >${zkd i ent Ti meout : 15000} </ i nt >

<bool nane="generi cCor eNodeNanmes" >${ generi cCor eNodeNanes: t r ue} </ bool >
</ sol rcl oud>

<shar dHandl er Fact ory nane="shar dHandl| er Fact or y"
cl ass="Ht t pShar dHandl er Fact ory" >
<i nt name="socket Ti neout " >${ socket Ti meout : 0} </ i nt >
<i nt name="connTi meout " >${ connTi meout : 0} </ i nt >

</ shar dHandl er Fact or y>

</solr>

As you can see, the discovery solr configuration is "SolrCloud friendly". However, the presence of the <sol r cl oud> element does not mean that
the Solr instance is running in SolrCloud mode. Unless the - DzkHost or - DzkRun are specified at startup time, this section is ignored.

Using Multiple SolrCores

It is possible to segment Solr into multiple cores, each with its own configuration and indices. Cores may be dedicated to a single application or to
very different ones, but all are administered through a common administration interface. You can create new Solr cores on the fly, shutdown
cores, even replace one running core with another, all without ever stopping or restarting your servlet container.

Solr cores are configured by placing a file named cor e. properti es in a subdirectory under sol r . horre. There are no a-priori limits to the
depth of the tree, nor are there limits to the number of cores that can be defined. Cores may be anywhere in the tree with the exception that cores
may not be defined under an existing core. That is, the following is not allowed:

./ cores/corel/core.properties
./ cores/corel/ corenore/core5/core. properties

The enumeration will stop at corel in the above example.

The following is legal

Apache Solr Reference Guide 4.4 260

./ cores/somecores/corel/ core.properties

./ cores/ somecores/ core2/ core. properties

./ cores/othercores/core3/core.properties

./ cores/extracores/ deepertree/ cored/core. properties

A minimal cor e. properti es file looks like this:

nanme=col | ecti onl

This is very different than the legacy sol r. xm <cor e> tag. In fact, your cor e. properti es file can be empty. Say the cor e. properti es file
is located in (relative to sol r _hon®) . / cor es/ cor el. In that case, the file core name is assumed to be "corel". The instance dir will be the
folder containing cor e. proper ti es (./cores/corel). The dataDir will be . . / cor es/ cor el/ dat a etc.

) You can run Solr without configuring any cores.

Solr.xml Parameters

The <sol r > Element

There are no attributes that you can specify in the <sol r > tag, which is the root element of sol r. xnl . The tables below list the child nodes of
each XML elementin sol r. xmi .

1, The persistent attribute is no longer supported in solr.xml. The properties in solr.xml are immutable, and any changes to
individual cores are persisted in the individual core.properties files.

Node Description

<str nanme="admi nHandl er" > If used, this attribute should be set to the FQN (Fully qualified name) of a class that inherits from
CoreAdminHandler. For example, adminHandler="com.myorg.MyAdminHandler" would configure
the custom admin handler (MyAdminHandler) to handle admin requests. If this attribute isn't set,
Solr uses the default admin handler, org.apache.solr.handler.admin.CoreAdminHandler. For more
information on this parameter, see the Solr Wiki at http://wiki.apache.org/solr/CoreAdmin#cores.

<i nt name="coreLoadThr eads" > Specifies the number of threads that will be assigned to load cores in parallel

<str nanme="coreRoot Di rectory"> | The root of the core discovery tree, defaults to SOLR_HOME

<str nanme="nmanagenent Pat h" > no-op at present.

<str nanme="sharedLi b"> Specifies the path to a common library directory that will be shared across all cores. Any JAR files
in this directory will be added to the search path for Solr plugins. This path is relative to the
top-level container's Solr Home.

<str nanme="shareSchem" > This attribute, when set to true, ensures that the multiple cores pointing to the same schema.xml
will be referring to the same IndexSchema Object. Sharing the IndexSchema Object makes loading
the core faster. If you use this feature, make sure that no core-specific property is used in your
schema.xml.

<int nanme="transi ent CacheSi ze" > | Defines how many cores with transient=true that can be loaded before swapping the least recently
used core for a new core.

The <sol r cl oud> element

This element defines several parameters that relate so SolrCloud. This section is ignored unless the solr instance is started with either - DzkRun
or - DzkHost

Node Description
<i nt name="di stri bUpdat eConnTi neout "> Used to set the underlying “connTimeout" for intra-cluster updates.

<int name="di stri bUpdat eSoTi neout "> Used to set the underlying "socketTimeout" for intra-cluster updates.

Apache Solr Reference Guide 4.4 261

http://wiki.apache.org/solr/CoreAdmin#cores

<str nanme="host"> The hostname Solr uses to access cores.
<str nanme="host Cont ext "> The servlet context path.

<int name="hostPort"> The port Solr uses to access cores. In the default sol r. xm file, this is set to
${j etty. port:}, which will use the Solr port defined in Jetty.

<int nanme="I| eader Vot eVi t " > When SolrCloud is starting up, how long each Solr node will wait for all known replicas for
that share to be found before assuming that any nodes that haven't reported are down.

<int name="zkd i ent Ti neout "> A timeout for connection to a ZooKeeper server. It is used with SolrCloud.

<str name="zkHost"> In SolrCloud mode, the URL of the ZooKeeper host that Solr should use for cluster state
information.

<str nane="generi cCor eNodeNanes" > If TRUE, node names are not based on the address of the node, but on a generic name

that identifies the core. When a different machine takes over serving that core things will be
much easier to understand.

The <l oggi ng> element.

Node Description

<str nanme="cl ass"> The class to use for logging. The corresponding JAR file must be available to solr, perhaps through a <l i b>
directive in solrconfig.xml.

<str nane="enabl ed"> true/false - whether to enable logging or not.

The <l oggi ng><wat cher > element.

Node Description
<int name="size"> The number of log events that are buffered.

<int name="t hreshol d"> The logging level above which your particular logging implementation will record. For example = WARN ' INFO
when using log4j one might specify DEBUG etc.

The <shar dHandl er Fact or y> element.

Custom share handlers can be defined in solr.xml if you wish to create a custom shard handler

<shar dHandl er Fact ory nanme="Shar dHandl er Fact ory" cl ass="qual i fi ed. cl ass. nane" >

However, since this is a custom shard handler, sub-elements are specific to the implementation.

Individual core.properties files.

Core discovery replaces the individual <cor e> tags in sol r . xm with a core.properties file located on disk. The presence of the core.properties
file defines the instanceDir for that core. The cor e. properti es file is a simple Java Properties file where each line is just a key=value pair, e.g.
nanme=cor el. Notice that no quotes are required.

Java properties files allow the hash "#" or bang "!" characters to specify comment-to-end-of-line. This table defines the recognized properties:

key Description

nanme The name of the SolrCore. You'll use this name to reference the SolrCore when running commands with the
CoreAdminHandler.

config The configuration file name for a given core. The default is sol r confi g. xmi .

schema The schema file name for a given core. The default is schema. xm

dataDi r This relative path defines the Solr Home for the core.

properties The name of the properties file for this core. The value can be an absolute pathname or a path relative to the value of
instanceDir.

Apache Solr Reference Guide 4.4 262

transi ent If true, the core can be unloaded if Solr reaches the t r ansi ent CacheSi ze. The default if not specified is false. Cores
are unloaded in order of least recently used first.

| oadOnSt art up | If true, the default if it is not specified, the core will loaded when Solr starts.

coreNodeNane Added in Solr 4.2, this attributes allows naming a core. The name can then be used later if you need to replace a machine
with a new one. By assigning the new machine the same coreNodeName as the old core, it will take over for the old

SolrCore.
ul ogDi r The absolute or relative directory for the update log for this core (SolrCloud)
shard The shard to assign this core to (SolrCloud)
col l ection The name of the collection this core is part of (SolrCloud)
rol es Future param for SolrCloud or a way for users to mark nodes for their own use.

The minimal core.properties file is an empty file, in which case all of the properties are defaulted appropriately.

Implicit properties

There are several properties that Solr defines automatically for each core. These properties are described in the table below:

Property Description
solr.core.dataDir The core's data directory, ${sol r. core. i nst ancebDi r}/ dat a by default.
sol r. core. confi gName The name of the core's configuration file, sol r conf i g. xm by default.

sol r. core. schemaNanme @ The name of the core's schema file, scherma. xm by default.

Any of the above properties can be referenced by name in schema. xml or sol rconfi g. xni .

When defining properties, you can assign a property a default value that will be used if another value isn't specified. For example:

<I-- Blank unl ess conpany. name variable is defined -->
<str name="foo0">${conpany. nane}</str>
<l-- "SearchCo Megal ndex" if conpany.nanme variable is not defined -->

<str nane="bar">${sone. vari abl e. nane: Sear chCo Megal ndex} </ str>

Legacy solr.xml Configuration

Use sol r. xm to configure your Solr core (a logical index and associated configuration files), or to configure multiple cores. You can find
sol r. xm inyour Solr Home directory. The default sol r. xm file looks like this:

<solr persistent="true">
<cores adm nPat h="/adm n/ cores" defaul t CoreNane="col | ecti onl" host="${host:}"
host Port="${jetty.port:}" host Cont ext="%${host Context:}"
zkd i ent Ti neout =" ${zkC i ent Ti meout : 15000} " >
<core nanme="col |l ectionl" instanceDir="collectionl" />
</ cores>
</solr>

For more information about core configuration and sol r . xm , see http://wiki.apache.org/solr/CoreAdmin.

Using Multiple SolrCores

It is possible to segment Solr into multiple cores, each with its own configuration and indices. Cores may be dedicated to a single application or to
very different ones, but all are administered through a common administration interface. You can create new Solr cores on the fly, shutdown
cores, even replace one running core with another, all without ever stopping or restarting your servlet container.

Solr cores are configured by placing a file named sol r. xm in your sol r . hone directory. A typical sol r. xm looks like this:

Apache Solr Reference Guide 4.4 263

http://wiki.apache.org/solr/CoreAdmin

<solr persistent="fal se">
<cores adm nPat h="/adm n/ cores" host="${host:}" hostPort="%${jetty.port:}">
<core nanme="core0" instanceDir="core0" />
<core name="corel" instanceDir="corel" />
</ cor es>
</solr>

This sets up two Solr cores, named "core0" and "corel", and names the directories (relative to the Solr installation path) which will store the
configuration and data sub-directories.

) You can run Solr without configuring any cores.

Solr.xml Parameters

The <sol r > Element

There are several attributes that you can specify on <sol r >, which is the root element of sol r. xm .

Attribute Description
coreLoadThr eads @ Specifies the number of threads that will be assigned to load cores in parallel

persi st ent Indicates that changes made through the API or admin Ul should be saved back to this sol r. xm . If not t r ue, any
runtime changes will be lost on the next Solr restart. The servlet container running Solr must have sufficient permissions
to replace sol r. xm (file delete and create), or errors will result. Any comments in sol r. xm are not preserved when
the file is updated. The default is true.

sharedLi b Specifies the path to a common library directory that will be shared across all cores. Any JAR files in this directory will be
added to the search path for Solr plugins. This path is relative to the top-level container's Solr Home.

zkHost In SolrCloud mode, the URL of the ZooKeeper host that Solr should use for cluster state information.

r. If you set the persistent attribute to true, be sure that the Web server has permission to replace the file. If the permissions are
set incorrectly, the server will generate 500 errors and throw IOExceptions. Also, note that any comments in the sol r. xm file
will be lost when the file is overwritten.

The <cor es> Element

The <cor es> element, which contains definitions for each Solr core, is a child of <sol r > and accepts several attributes of its own.

Attribute Description

adm nPat h This is the relative URL path to access the SolrCore administration pages. For example, a value of
[adm n/ cor es means that you can access the CoreAdminHandler with a URL that looks like this:
http://localhost:8983/solr/admin/cores. If this attribute is not present, then SolrCore administration will not be

possible.
host The hostname Solr uses to access cores.
host Por t The port Solr uses to access cores. In the default sol r. xmi file, this is setto ${j et ty. port : }, which will

use the Solr port defined in Jetty.
host Cont ext The servlet context path.
zkC i ent Ti meout A timeout for connection to a ZooKeeper server. It is used with SolrCloud.
di stri bUpdat eConnTi meout | Used to set the underlying "connTimeout" for intra-cluster updates.
di stri bUpdat eSoTi neout Used to set the underlying "socketTimeout" for intra-cluster updates

| eader Vot eWi t When SolrCloud is starting up, how long each Solr node will wait for all known replicas for that share to be
found before assuming that any nodes that haven't reported are down.

Apache Solr Reference Guide 4.4 264

http://localhost:8983/solr/admin/cores

generi cCor eNodeNanes If TRUE, node names are not based on the address of the node, but on a generic name that identifies the
core. When a different machine takes over serving that core things will be much easier to understand.

managenent Pat h no-op at present.
def aul t Cor eNane The name of a core that will be used for requests that do not specify a core.
transi ent CacheSi ze Defines how many cores with t r ansi ent =t r ue that can be loaded before swapping the least recently used

core for a new core.

shar eSchena This attribute, when set to t r ue, ensures that the multiple cores pointing to the same schema. xnl will be
referring to the same IndexSchema Object. Sharing the IndexSchema Object makes loading the core faster.
If you use this feature, make sure that no core-specific property is used in your schena. xm .

adm nHandl er If used, this attribute should be set to the FON (Fully qualified name) of a class that inherits from
Cor eAdni nHandl er . For example, admi nHandl er =" com myor g. MyAdm nHandl er" would configure
the custom admin handler (MyAdnmi nHandl er) to handle admin requests. If this attribute isn't set, Solr uses
the default admin handler, or g. apache. sol r. handl er . admi n. Cor eAdni nHandl er . For more
information on this parameter, see the Solr Wiki at http://wiki.apache.org/solr/CoreAdmin#cores.

The <l oggi hg> Element

There is at most one <I oggi ng> element for a Solr installation that defines various attributes for logging.

Attribute Description

cl ass The class to use for logging. The corresponding JAR file must be available to solr, perhaps through a <lib> directive in
solrconfig.xml.

enabl ed truelfalse - whether to enable logging or not.
In addition, the <l oggi ng> element may have a child element <wat cher > which may have the following attributes

si ze The number of log events that are buffered.
t hreshol d The logging level above which your particular logging implementation will record. For example when using log4j one might
specify DEBUG or WARN or INFO etc.

The <core> Element

There is one <cor e> element for each SolrCore you define. They are children of the <cor es> element and each one accepts the following
attributes.

Attribute Description

nanme The name of the SolrCore. You'll use this name to reference the SolrCore when running commands with the
CoreAdminHandler.

instanceDr This relative path defines the Solr Home for the core.

config The configuration file name for a given core. The default is sol rconfi g. xm .

schema The schema file name for a given core. The default is schema. xmi

dat aDi r This relative path defines the Solr Home for the core.

properties The name of the properties file for this core. The value can be an absolute pathname or a path relative to the value of
instanceDir.

transi ent If true, the core can be unloaded if Solr reaches the t r ansi ent CacheSi ze. The default if not specified is false. Cores

are unloaded in order of least recently used first.
| oadOnSt art up | If true, the default if it is not specified, the core will loaded when Solr starts.

coreNodeNane Added in Solr 4.2, this attributes allows naming a core. The name can then be used later if you need to replace a machine
with a new one. By assigning the new machine the same coreNodeName as the old core, it will take over for the old

SolrCore.
ul ogDi r The absolute or relative directory for the update log for this core (SolrCloud)
shard The shard to assign this core to (SolrCloud)

Apache Solr Reference Guide 4.4 265

http://wiki.apache.org/solr/CoreAdmin#cores

col l ection The name of the collection this core is part of (SolrCloud)

rol es Future param for SolrCloud or a way for users to mark nodes for their own use.

Properties in sol r. xm

You can define properties in sol r. xm that you may then reference in sol r confi g. xml and schema. xml . Properties are name/value pairs.
The scope of a property depends on which element it occurs within.

If a property is declared under <sol r > but outside a <cor e> element, then it will have container scope and will be visible to all cores. In the
example above, pr oduct nane is such a property.

If a property declaration occurs within a <cor e> element, then its scope is limited to that core and it will not be visible to other cores. A property at
core scope will override one of the same name declared at container scope.

<solr persistent="true" sharedLi b="1ib">
<property nane="product nane" val ue="Acne Online"/>
<cores adm nPat h="/adm n/cores">
<core nanme="core0" instanceDir="core0">
<property nane="dataDir" val ue="/data/core0"/></core>
<core name="corel" instanceDir="corel"/>
</ cor es>

</solr>

In addition to any properties you declare at the core level, there are several properties that Solr defines automatically for each core. These
properties are described in the table below:

Property Description
sol r. core. nane The core's name, as defined by the "name" attribute.

The core's instance directory under which that its conf / and dat a/ directories are located, derived from the
core'si nstanceDi r attribute.

solr.core.instanceDr

solr.core.dataDi r The core's data directory, ${ sol r. core. i nst anceDi r}/ dat a by default.
solr.core.configName The name of the core's configuration file, sol r confi g. xm by default.

solr. core. schemaNanme | The name of the core's schema file, schenma. xm by default.

Any of the above properties can be referenced by name in schema. xml or sol rconfi g. xni .

When defining properties, you can assign a property a default value that will be used if another value isn't specified. For example:

<l-- Blank unl ess conpany. name variable is defined -->
<str nanme="fo00">${conmpany. nane}</str>
<l-- "SearchCo Megal ndex" if conpany.nanme variable is not defined -->

<str name="bar">%${sone. vari abl e. nane: Sear chCo Megal ndex}</str>

Moving to the New solr.xml Format
Migration from old-style sol r. ximi to core discovery is very straightforward. First, modify the sol r. xni file from the legacy format to the
discovery format.

In general there is a direct analog from the legacy format to the new format except there is no <cor es> element nor are there any <cor e>
elements in discovery-based Solr.
Startup

In Solr 4.4 and on, the presence of a <cor es> child element of the <sol r > element in the sol r. xm file signals a legacy version of sol r . xmi ,
and cores are expected to be defined as they have been historically. Depending on whether a <cor es> element is discovered, sol r. xni is

Apache Solr Reference Guide 4.4 266

parsed as either a legacy or discovery file and errors are thrown in the log if legacy and discovery modes are mixed in sol r. xmi .

Moving <cor e> definitions.

To migrate to discovery-based sol r. xm , remove all of the <cor e> elements and the enclosing <cor es> element from sol r. xrm . See the
pages linked above for examples of migrating other attributes. Then, in the instanceDir for each core create a cor e. proper ti es file. This file
can be empty if all defaults are acceptable. In particular, the i nst anceDi r is assumed to be the directory in which the cor e. properti es file is
discovered. The data directory will be in a directory called "data" directly below. If the file is completely empty, the name of the core is assumed to
be the name of the folder in which the cor e. pr operti es file was discovered.

As mentioned elsewhere, the tree structure that the cores are in is arbitrary, with the exception that the directories containing the

core. properti es files must share a common root, but that root may be many levels up the tree. Note that supporting a root for the cores that is
not a child of SOLR_HOVE is supported through properties in sol r. xml . However, only one root is possible, there is no provision presently for
specifying multiple roots.

The only restriction on the tree structure is that cores may not be children of other cores; enumeration stops descending down the tree when the

first cor e. properti es file is discovered. Siblings of the directory in which the cor e. properti es file is discovered are still walked, only
stopping recursing down the sibling when a cor e. properti es file is found.

Example

Here's an example of what a legacy sol r. xni file might look like and the equivalent discovery-based sol r. xm and cor e. properti es files:

<solr persistent="%{solr.xml .persist:false}">
<cores adm nPat h="/adm n/ cores" defaul t CoreNane="col | ectionl" host="127.0.0.1"
host Port =" ${ host Port: 8983}"
host Cont ext =" ${ host Cont ext : sol r}"
zkd i ent Ti meout =" ${sol r. zkcl i ent ti neout : 30000} " shar eSchema="${shar eSchena: f al se}"
gener i cCor eNodeNanes="${gener i cCor eNodeNanes: true}" >
<core name="corel" instanceDi r="corel" shard="${shard:}"
col l ection="%{col |l ection:corel}" config="${solrconfig:solrconfig.xm}"
schema="${schema: schema. xm }" cor eNodeNane="${ cor eNodeNan®e: }"/ >
<core nane="core2" instanceDir="core2" />
<shar dHandl er Fact ory nane="shar dHandl er Fact ory" cl ass="Htt pShar dHandl er Fact ory" >
<i nt nanme="socket Ti meout " >${ socket Ti meout : 120000} </ i nt >
<i nt nanme="connTi meout " >${ connTi neout : 15000} </ i nt >
</ shar dHandl er Fact ory>
</ cores>
</solr>

The new-style sol r. xm might look like what is below. Note that adminPath, defaultCoreName are not supported in discovery-based solr.xml.

<sol r>
<sol rcl oud>
<str name="host">127.0.0. 1</str>
<int nanme="host Port">${host Port: 8983} </int>
<str name="host Cont ext " >${ host Cont ext: solr}</str>
<int name="zkd i ent Ti meout">${sol r. zkclienttimeout: 30000} </str>
<str name="shareSchema" >${shareSchenma: f al se} </str>
<str nane="generi cCor eNodeNanes" >${ generi cCor eNodeNanes: true}</str>
</ sol rcl oud>

<shar dHandl er Fact ory nane="shar dHandl er Fact ory" cl ass="Htt pShar dHandl er Fact ory" >
<i nt nanme="socket Ti meout " >${ socket Ti meout : 120000} </ i nt >
<i nt nanme="connTi meout " >${ connTi neout : 15000} </ i nt >

</ shar dHandl er Fact ory>

In each of "corel" and "core2" directories, there would be a cor e. properti es file that might look like these. Note that note that instanceDir is

Apache Solr Reference Guide 4.4 267

not supported, it is assumed to be the directory in which core.properties is found.

corel:

name=cor el

shar d=${shard:}

col l ecti on=${col | ection: corel}
config=${sol rconfig:solrconfig.xn}
schema=${schema: schema. xni }

cor eNodeNanme=${ cor eNodeNare: }

core2:

name=cor e2

In fact, the core2 cor e. properti es file could even be empty and the name would default to the directory in which the cor e. properti es file
was found.

CoreAdminHandler Parameters and Usage

The CoreAdminHandler is a special SolrRequestHandler that is used to manage Solr cores. Unlike normal SolrRequestHandlers, the
CoreAdminHandler is not attached to a single core. Instead, it manages all the cores running in a single Solr instance. Only one
CoreAdminHandler exists for each top-level Solr instance.

To use the CoreAdminHandler, make sure that the adni nPat h attribute is defined on the <cores> element; otherwise you will not be able to
make HTTP requests to perform Solr core administration.

The CoreAdminHandler supports seven different actions that may be invoked on the admi nPat h URL. The action to perform is named by the
HTTP request parameter "action”, with arguments for a specific action being provided as additional parameters.

All action names are uppercase. The action names are:

STATUS
CREATE
RELOAD
RENAME

SWAP

UNLOAD
MERGEINDEXES
SPLIT

These actions are described in detail in the sections below.

STATUS

The STATUS action returns the status of all running Solr cores, or status for only the named core.
http://1 ocal host: 8983/ sol r/ adm n/ cores?acti on=STATUS
http://1ocal host: 8983/ sol r/ adm n/ cores?acti on=STATUS&cor e=cor e0

The STATUS action accepts one optional parameter:

Parameter Description
core (Optional) The name of a core, as listed in the "name" attribute of a <cor e> elementin sol r. xni .

indexInfo If false, information about the index will not be returned with a core STATUS request. In Solr implementations with a large number
of cores (i.e., more than hundreds), retrieving the index information for each core can take a lot of time and isn't always required.

CREATE

The CREATE action creates a new core and registers it. If persistence is enabled (per si st ent ="t rue" on the <sol r > element), the updated
configuration for this new core will be saved in sol r. xnl . If a Solr core with the given name already exists, it will continue to handle requests

Apache Solr Reference Guide 4.4 268

http://localhost:8983/solr/admin/cores?action=STATUS
http://localhost:8983/solr/admin/cores?action=STATUS&core=core0

while the new core is initializing. When the new core is ready, it will take new requests and the old core will be unloaded.

http://1ocal host: 8983/ sol r/ adm n/ cor es?act i on=CREATE&nane=cor eX& nst anceDi r=path/to/ dir &

The CREATE accepts the two mandatory parameters, as well as five optional parameters.

Parameter Description
name The name of the new core. Same as "name" on the <cor e> element.

instanceDir = The directory where files for this SolrCore should be stored. Same as i nst anceDi r on the <cor e> element.

config (Optional) Name of the config file (solrconfig.xml) relative to i nst anceDi r.
schema (Optional) Name of the schema file (schema.xml) relative to i nst anceDi r.
datadir (Optional) Name of the data directory relative to i nst anceDi r.

collection (Optional) The name of the collection to which this core belongs. The default is the name of the core.
col | ecti on. <par anp=<val ue> causes a property of <par anP=<val ue> to be set if a new collection is being created. Use
col | ection. confi gName=<confi gnanme> to point to the configuration for a new collection.

shard (Optional) The shard id this core represents. Normally you want to be auto-assigned a shard id.

Use col | ecti on. confi gName=<confi gname> to point to the config for a new collection.

For example: cur |
"http://1ocal host: 8983/ sol r/adm n/ cor es?acti on=CREATE&nane=nycor e&col | ecti on=col | ecti onl&shar d=shar d2’

RELOAD

The RELQAD action loads a new core from the configuration of an existing, registered Solr core. While the new core is initializing, the existing one
will continue to handle requests. When the new Solr core is ready, it takes over and the old core is unloaded.

This is useful when you've made changes to a Solr core's configuration on disk, such as adding new field definitions. Calling the RELOAD action
lets you apply the new configuration without having to restart the Web container. However the Core Container does not persist the SolrCloud
sol r. xm parameters, such as sol r/ @kHost and sol r/ cor es/ @ost Por t , which are ignored.

http://1 ocal host: 8983/ sol r/ adm n/ cor es?act i on=RELOAD&cor e=cor e0

The RELOAD action accepts a single parameter, cor e, which is the name of the core to be reloaded.

As of Solr 4.0, REALOAD performs "live" reloads of SolrCore, reusing some existing objects. Some configuration options, such as the Dat aDi r
location and | ndexW i t er related settings in sol r confi g. xml can not be changed and made active with a simple RELOAD action.

RENAME

The RENAME action changes the name of a Solr core.

http://1ocal host: 8983/ sol r/ adm n/ cor es?act i on=RENAME&cor e=cor e0&ot her =cor e5

The RENAME action requires the following two parameter:

Parameter Description
core The name of the Solr core to be renamed.

other The new name for the Solr core. If the persistent attribute of <sol r > ist r ue, the new name will be written to sol r. xm as the
nane attribute of the <cor e> attribute.

SWAP

SWAP atomically swaps the names used to access two existing Solr cores. This can be used to swap new content into production. The prior core
remains available and can be swapped back, if necessary. Each core will be known by the name of the other, after the swap.

Apache Solr Reference Guide 4.4 269

http://localhost:8983/solr/admin/cores?action=RELOAD&core=core0

http://1 ocal host: 8983/ sol r/ adm n/ cor es?acti on=SWAP&cor e=cor el&ot her =cor e0

The SWAP action requires two parameters, which are described in the table below.

Parameter Description

core The name of one of the cores to be swapped.
other The name of one of the cores to be swapped.
UNLOAD

The UNLQAD action removes a core from Solr. Active requests will continue to be processed, but no new requests will be sent to the named core.
If a core is registered under more than one name, only the given name is removed.

http://1 ocal host: 8983/ sol r/ adm n/ cor es?act i on=UNLOAD&cor e=cor e0

The UNLQAD action requires a parameter (cor e) identifying the core to be removed. If the persistent attribute of <sol r > is setto t r ue, the
<cor e> element with this nane attribute will be removed from sol r. xni .

g Unloading all cores in a SolrCloud collection causes the removal of that collection's metadata from ZooKeeper.

i}

There are three parameters that can be used with the UNLOAD action:

® del et el ndex: if true, will remove the index when unloading the core.

® del et eDat aDi r: if true, removes the dat a directory and all sub-directories.

® del et el nst anceDi r: if true, removes everything related to the core, including the index directory, configuration files, and other related
files.

MERGEI NDEXES

The MERCGEI NDEXES action merges one or more indexes to another index. The indexes must have completed commits, and should be locked
against writes until the merge is complete or the resulting merged index may become corrupted. The target core index must already exist and
have a compatible schema with the one or more indexes that will be merged to it. Another commit on the target core should also be performed
after the merge is complete.

http://1ocal host: 8983/ sol r/ adm n/ cores?act i on=MERGEI NDEXES&cor e=cor e0& ndexDi r =/ opt/sol r/ corel/ dat a/ i ndex& r

In this example, we use the i ndexDi r parameter to define the index locations of the source cores. The cor e parameter defines the target index.
A benefit of this approach is that we can merge any Lucene-based index that may not be associated with a Solr core.

Alternatively, we can instead use a sr cCor e parameter, as in this example:
http://1 ocal host: 8983/ sol r/ adm n/ cores?acti on=ner gei ndexes&cor e=cor e0&sr cCor e=cor el&sr cCor e=cor e2
This approach allows us to define cores that may not have an index path that is on the same physical server as the target core. However, we can

only use Solr cores as the source indexes. Another benefit of this approach is that we don't have as high a risk for corruption if writes occur in
parallel with the source index.

SPLIT

The SPLI T action splits an index into two or more indexes. The index being split can continue to handle requests. The split pieces can be placed
into a specified directory on the server's filesystem or it can be merged into running Solr cores.

The SPLI T action supports three parameters, which are described in the table below.

Parameter Description Multi-valued
core The name of the core to be split. false
path The directory path in which a piece of the index will be written. true

targetCore = The target Solr core to which a piece of the index will be merged | true

', Either pat h ort ar get Cor e parameter must be specified but not both.

The cor e index will be split into as many pieces as the number of pat h or t ar get Cor e parameters.

Apache Solr Reference Guide 4.4 270

http://localhost:8983/solr/admin/cores?action=SWAP&core=core1&other=core0
http://localhost:8983/solr/admin/cores?action=UNLOAD&core=core0
http://localhost:8983/solr/admin/cores?action=MERGEINDEXES&core=core0&indexDir=/opt/solr/core1/data/index&indexDir=/opt/solr/core2/data/index
http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&srcCore=core1&srcCore=core2

http://1ocal host: 8983/ sol r/ adm n/ cores?acti on=SPLI| T&cor e=cor e0&t ar get Cor e=cor el&t ar get Cor e=cor e2

This example shows the usage of this action with two t ar get Cor e parameters. Here the cor e index will be split into two pieces and merged into
the two t ar get Cor e indexes.

http://1ocal host: 8983/ sol r/ adm n/ cores?acti on=SPLI| T&cor e=cor e0&pat h=/ pat h/ t o/ i ndex/ 1&pat h=/ pat h/ t o/ i ndex/ 2

This example shows the usage of this action with two pat h parameters. The cor e index will be split into two pieces and written into the two
directory paths specified.

The t ar get Cor e must already exist and must have a compatible schema with the cor e index. A commit is automatically called on the cor e
index before it is split.

This command is used as part of the SPLITSHARD command but it can be used for non-cloud Solr cores as well. When used against a non-cloud
core, this action will split the source index and distribute its documents alternately so that each split piece contains an equal number of
documents.

Solr Plugins

Solr allows you to load custom code to perform a variety of tasks within Solr, from custom Request Handlers to process your searches, to custom
Analyzers and Token Filters for your text field. You can even load custom Field Types. These pieces of custom code are called plugins.

Not everyone will need to create plugins for their Solr instances - what's provided is usually enough for most applications. However, if there's
something that you need, you may want to review the Solr Wiki documentation on plugins at SolrPlugins.

JVM Settings

Configuring your JVM can be a complex topic. A full discussion is beyond the scope of this document. Luckily, most modern JVMs are quite good
at making the best use of available resources with default settings. The following sections contain a few tips that may be helpful when the defaults
are not optimal for your situation.

For more general information about improving Solr performance, see https://wiki.apache.org/solr/SolrPerformanceFactors.

Choosing Memory Heap Settings

The most important JVM configuration settings are those that determine the amount of memory it is allowed to allocate. There are two primary
command-line options that set memory limits for the JVM. These are - Xirs, which sets the initial size of the JVM's memory heap, and - Xnx,
which sets the maximum size to which the heap is allowed to grow.

If your Solr application requires more heap space than you specify with the - Xs option, the heap will grow automatically. It's quite reasonable to
not specify an initial size and let the heap grow as needed. The only downside is a somewhat slower startup time since the application will take
longer to initialize. Setting the initial heap size higher than the default may avoid a series of heap expansions, which often results in objects being
shuffled around within the heap, as the application spins up.

The maximum heap size, set with - Xnx, is more critical. If the memory heap grows to this size, object creation may begin to fail and throw
Qut OF Menor yExcept i on. Setting this limit too low can cause spurious errors in your application, but setting it too high can be detrimental as
well.

It doesn't always cause an error when the heap reaches the maximum size. Before an error is raised, the JVM will first try to reclaim any available
space that already exists in the heap. Only if all garbage collection attempts fail will your application see an exception. As long as the maximum is
big enough, your app will run without error, but it may run more slowly if forced garbage collection kicks in frequently.

The larger the heap the longer it takes to do garbage collection. This can mean minor, random pauses or, in extreme cases, "freeze the world"
pauses of a minute or more. As a practical matter, this can become a serious problem for heap sizes that exceed about two gigabytes, even if far
more physical memory is available. On robust hardware, you may get better results running multiple JVMs, rather than just one with a large
memory heap. Some specialized JVM implementations may have customized garbage collection algorithms that do better with large heaps. Also,
Java 7 is expected to have a redesigned GC that should handle very large heaps efficiently. Consult your JVM vendor's documentation.

When setting the maximum heap size, be careful not to let the JVM consume all available physical memory. If the JVM process space grows too
large, the operating system will start swapping it, which will severely impact performance. In addition, the operating system uses memory space
not allocated to processes for file system cache and other purposes. This is especially important for I/O-intensive applications, like Lucene/Solr.
The larger your indexes, the more you will benefit from filesystem caching by the OS. It may require some experimentation to determine the
optimal tradeoff between heap space for the JVM and memory space for the OS to use.

On systems with many CPUs/cores, it can also be beneficial to tune the layout of the heap and/or the behavior of the garbage collector. Adjusting
the relative sizes of the generational pools in the heap can affect how often GC sweeps occur and whether they run concurrently. Configuring the
various settings of how the garbage collector should behave can greatly reduce the overall performance impact when it does run. There is a lot of
good information on this topic available on Sun's website. A good place to start is here: http://java.sun.com/javase/technologies/hotspot/gc/.

Apache Solr Reference Guide 4.4 271

http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&targetCore=core1&targetCore=core2
http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&path=/path/to/index/1&path=/path/to/index/2
http://wiki.apache.org/solr/SolrPlugins
https://wiki.apache.org/solr/SolrPerformanceFactors
http://java.sun.com/javase/technologies/hotspot/gc/

Use the Server HotSpot VM
If you are using Sun's JVM, add the - ser ver command-line option when you start Solr. This tells the JVM that it should optimize for a long
running, server process. If the Java runtime on your system is a JRE, rather than a full JDK distribution (including j avac and other development

tools), then it is possible that it may not support the - ser ver JVM option. Test this by running j ava - hel p and look for - ser ver as an
available option in the displayed usage message.

Checking JVM Settings

A great way to see what JVM settings your server is using, along with other useful information, is to use the admin RequestHandler,
sol r/ adm n/ syst em This request handler will display a wealth of server statistics and settings.

You can also use any of the tools that are compatible with the Java Management Extensions (JMX). See the section Using JMX with Solr in
Managing Solr for more information.

Apache Solr Reference Guide 4.4 272

Managing Solr

This section describes how to run Solr and how to look at Solr when it is running. It contains the following sections:

Running Solr on Jetty: Describes how to run Solr in the Jetty web application container. The Solr example included in this distribution runs in a
Jetty web application container.

Running Solr on Tomcat: Describes how to run Solr in the Tomcat web application container.
Configuring Logging: Describes how to configure logging for Solr.

Backing Up: Describes backup strategies for your Solr indexes.

Using JMX with Solr: Describes how to use Java Management Extensions with Solr.
Running Solr on HDFS: How to use HDFS to store your Solr indexes and transaction logs.

For information on running Solr in a variety of Java application containers, see the basic installation instructions on the Solr wiki.

Running Solr on Tomcat

Solr comes with an example schema and scripts for running on Jetty. The next section describes some of the details of how things work "under
the hood," and covers running multiple Solr instances and deploying Solr using the Tomcat application manager.

For more information about running Solr on Tomcat, see the basic installation instructions and the Solr Tomcat page on the Solr wiki.

How Solr Works with Tomcat

The two basic steps for running Solr in any Web application container are as follows:

1. Make the Solr classes available to the container. In many cases, the Solr Web application archive (WAR) file can be placed into a special
directory of the application container. In the case of Tomcat, you need to place the Solr WAR file in Tomcat's webapps directory. If you
installed Tomcat with Solr, take a look in t ontat / webapps:you'll see the sol r. war file is already there.

2. Point Solr to the Solr home directory that contains conf / sol r confi g. xm and conf/ schena. xm . There are a few ways to get this
done. One of the best is to define the sol r. sol r. home Java system property. With Tomcat, the best way to do this is via a shell
environment variable, JAVA_OPTS. Tomcat puts the value of this variable on the command line upon startup. Here is an example:

export JAVA OPTS="-Dsolr.sol r. home=/ Users/j onat han/ Deskt op/ sol r"

Port 8983 is the default Solr listening port. If you are using Tomcat and wish to change this port, edit the file t ontat / conf/ server. xnl in the
Solr distribution. You'll find the port in this part of the file:

<Connect or port="8983" protocol ="HTTP/ 1. 1" connecti onTi neout ="20000"
redirect Port ="8443" />

Modify the port number as desired and restart Tomcat if it is already running.

1, Modifying the port number will leave some of the samples and help file links pointing to the default port. It is out of the scope of
this reference guide to provide full details of how to change all of the examples and other resources to the new port.

Running Multiple Solr Instances

The standard way to deploy multiple Solr index instances in a single Web application is to use the multicore API described in Using Multiple
SolrCores.

An alternative approach, which provides more code isolation, uses Tomcat context fragments. A context fragment is a file that contains a single
<cont ext > element and any subelements required for your application. The file omits all other XML elements.

Each context fragment specifies where to find the Solr WAR and the path to the solr home directory. The name of the context fragment file

determines the URL used to access that instance of Solr. For example, a context fragment named har vey. xm would deploy Solr to be
accessed athtt p: / /1 ocal host: 8983/ har vey.

Apache Solr Reference Guide 4.4 273

http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrTomcat
http://localhost:8983/harvey

In Tomcat's conf/ Cat al i na/ | ocal host directory, store one context fragment per instance of Solr. If the conf/ Cat al i na/ | ocal host
directory doesn't exist, go ahead and create it.

Using Tomcat context fragments, you could run multiple instances of Solr on the same server, each with its own schema and configuration. For
full details and examples of context fragments, take a look at the Solr Wiki: http://wiki.apache.org/solr/SolrTomcat.

Here are examples of context fragments which would set up two Solr instances, each with its own sol r. home:

<Cont ext docBase="/sone/path/sol r.war" debug="0" crossContext="true" >

<Envi ronment name="sol r/ home" type="java.lang. String" val ue="/sone/ pat h/sol r1lhomne"
override="true" />
</ Cont ext >
<Cont ext docBase="/sone/path/solr.war" debug="0" crossContext="true" >

<Envi ronment name="sol r/ home" type="java.lang. String"

val ue="/sone/ pat h/ sol r2hone" override="true" />

</ Cont ext >

Deploying Solr with the Tomcat Manager

If your instance of Tomcat is running the Tomcat Web Application Manager, you can use its browser interface to deploy Solr.

Just as before, you have to tell Solr where to find the solr home directory. You can do this by setting JAVA_OPTS before starting Tomcat.
Once Tomcat is running, navigate to the Web application manager, probably available at a URL like this:

http://1 ocal host: 8983/ nanager/ ht m

You will see the main screen of the manager.

. -
AaA Imanagar —
o] 2 (.3 £ pmp fbecal bk B0 i na e R ity Tparte | apace <50k 14 -div i = jed ea aloosol]

8" Apache %)

Software Foundation

http://www.apache.org/

Tomcat Web Application Manager

ok - mndeployed application st context path Sspache-solr-1.4-der

[|
List Appcations HTML Manager Help Manager Halp Sarver Stalus
Path Disslay M Forming & o
Etarl Blop Peiced Lindepiry
i trus g [Expr neaniaes) with idle = 50 miruks
B Eipy Beload Undapios
L] Tormest Documantation e @ [(Erpre deismes | with il 50 miruies .
Bl Siop Baload Undapiow
LR Sl aredl JEP Eniasrin i @ [Expre sessaes | with idle & 30 minines
Sta 3ng Bebag Undepirs
LR oozt Managis Appbration s =] Evpire 4espaes | with idle z 30 mirurian
Sinrl Sinp Pelonc Undepioy
T O Tomaost Manages Appkoaso true |-} { G snssins) with e 3 30 micuten

anl

To add Solr, scroll down to the Deploy section, specifically WAR file to deploy. Click Browse... and find the Solr WAR file, usually something
like di st/ apache-sol r-3. x. 0. war within your Solr installation. Click Deploy. Tomcat will load the WAR file and start running it. Click the link
in the application path column of the manager to see Solr. You won't see much, just a welcome screen, but it contains a link for the Admin

Apache Solr Reference Guide 4.4 274

http://wiki.apache.org/solr/SolrTomcat
http://localhost:8983/manager/html

Console.

Tomcat's manager screen, in its application list, has links so you can stop, start, reload, or undeploy the Solr application.

Running Solr on Jetty

Solr comes with an example schema and scripts for running on Jetty, along with a working installation, in the / exanpl e directory. The included
version of Jetty works well for small installations, but for more heavy-duty use, we recommend that you download the full Jetty package, which
includes additional modules ("JettyPlus").

For more information about the Jetty example installation, see the Solr Tutorial and the basic installation instructions on the Solr wiki.

For detailed information about running Solr on Jetty or JettyPlus, see http://wiki.apache.org/solr/SolrJetty.

Changing the Solr Listening Port

Port 8983 is the default port for Solr. If you are using Jetty and wish to change the port number, edit the file j etty/ etc/jetty. xm in the Solr
distribution. You'll find the port in this part of the file:

<New cl ass="org. nortbay.jetty. bi 0. Socket Connect or" >
<Set name="port">
<SystenProperty name="jetty.port" default="8983"/>
</ Set >
<Set name="nmexl| dl eTi ne" >50000</ Set >
<Set name="| owResour ceMax!| dl eTi ne" >1500</ Set >
</ New>

Modify the port number as desired and restart Jetty if it is already running.

. Modifying the port number will leave some of the samples and help file links pointing to the wrong port. It is out of the scope of
this reference guide to provide full details of how to change all of the examples and other resources to the new port.

Configuring Logging
Prior to version 4.3, Solr used the SLF4J Logging API (http://www.slf4j.org). To improve flexibility in logging with containers other than Jetty, in
Solr 4.3 the default behavior has changed and the SLF4J jars were removed from Solr's . war file. This allows changing or upgrading the logging

mechanism as needed.

For further information about Solr logging, see SolrLogging.

Temporary Logging Settings
You can control the amount of logging output in Solr by using the Admin Web interface. Select the LOGGING link. Note that this page only lets

you change settings in the running system and is not saved for the next run. (For more information about the Admin Web interface, see Using the
Solr Administration User Interface.)

Apache Solr Reference Guide 4.4 275

http://jetty.mortbay.org/jetty/
http://docs.codehaus.org/display/JETTY/Downloading+Jetty
http://lucene.apache.org/solr/tutorial.html
http://wiki.apache.org/solr/SolrInstall
http://wiki.apache.org/solr/SolrJetty
http://www.slf4j.org
http://wiki.apache.org/solr/SolrLogging

N
\)

Apache

Solr

& Dashboard

] JUL (org.sif4].impl.JDK14LoggerFactory)

[} Logging
Time Level Logger Message
£

15:58:19 WARNING SolrCore New index directory detected: old=null new=solr/collectionl/data/index/

=f Core Admin
¥

~| Java Properties

= Thread Dump

o collectionl

The Logging screen.

This part of the Admin Web interface allows you to set the logging level for many different log categories. Fortunately, any categories that are
unset will have the logging level of its parent. This makes it possible to change many categories at once by adjusting the logging level of their
parent.

When you select Level, you see the following menu:

3
\)

Apache

Solr

@ Dashboard

-] JUL (org.sIf4j.impl.J]DK14LoggerFactory)
[Logging

root _ FINEST
global _ FINER
Jjavax _ FINE

a3 Level

& Core Admin management - CONFIG
© Java Properties L mbeanserver - INFO
» _ WARNING
= Thread Dump Orgapa(he . SEVERE
hitp _ OFF
& collectionl impl UNSET
& client null
- DefaultHttpClient INFO
conn null
- DefaultClientConnectionOperator INFO
- IdleConnectionHandler INFO
- tscem nulf
i ConnPoolByRoute INFO
ThreadSafeClientConnManager INFO

The Log Level Menu.

Directories are shown with their current logging levels. The Log Level Menu floats over these. To set a log level for a particular directory, select it
and click the appropriate log level button.

Log levels settings are as follows:

Level Result

FINEST Reports everything.

FINE Reports everything but the least important messages.
CONFIG Reports configuration errors.

INFO Reports everything but normal status.

WARNING | Reports all warnings.

SEVERE Reports only the most severe warnings.

Apache Solr Reference Guide 4.4 276

OFF Turns off logging.

UNSET Removes the previous log setting.

Multiple settings at one time are allowed.

Permanent Logging Settings

Making permanent changes to the JDK Logging API configuration is a matter of creating or editing a properties file.

Tomcat Logging Settings

Tomcat offers a choice between settings for all applications or settings specifically for the Solr application.

With Solr 4.3, you will need to copy the SLF4J . j ar files from the exanpl e/ ext/ | i b directory to the main | i b directory of Tomcat (this may be
as simple as t ontat /| i b). Then you can copy the | og4j . properti es file from exanpl e/ r esour ces to a location on the classpath - the
same location as the . j ar files is probably OK in most cases. Then you can edit the properties as needed to set the log destination.

See the documentation for the SLF4J Logging API for more information:

http://slf4j.org/docs.html

http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html
Jetty Logging Settings
To change settings for the SLF4J Logging API in Jetty, you need to create a settings file and tell Jetty where to find it.

Begin by creating afile j et t y/ | oggi ng. pr oper ti es or modifying the one found in exanpl e/ et c.

To tell Jetty how to find the file, editj et t y. xm and add the following property information:

<Configure id="Server" class="org.nortbay.jetty. Server">
<Cal |l class="java.lang. Systenl nanme="set Property">
<Arg>j ava.util.logging.config.file</Arg>
<Ar g>l oggi ng. properties</ Arg>
</ Call >
</ Confi gur e>

The next time you launch Jetty, it will use the settings in the file.

Backing Up

If you are worried about data loss, and of course you should be, you need a way to back up your Solr indexes so that you can recover quickly in
case of catastrophic failure.

Making Backups with the Solr Replication Handler

The easiest way to make back-ups in Solr is to take advantage of the Replication Handler, which is described in detail in Index Replication. The
Replication Handler's primary purpose is to replicate an index on slave servers for load-balancing, but the Replication Handler can be used to
make a back-up copy of a server's index, even if no slave servers are in operation.

Once you have configured the Replication Handler in sol r conf i g. xmi , you can trigger a back-up with an HTTP command like this:

http:// master_host/sol r/replicati on?command=backup

For details on configuring the Replication Handler, see Legacy Scaling and Distribution.

Backup Scripts from Earlier Solr Releases

Solr also provides shell scripts in the bin directory that make copies of the indexes. However, these scripts only work with a Linux-style shell, and
not everybody in the world runs Linux.

The scripts themselves are relatively simple. Look in the bin directory of your Solr home directory, for example exanpl e/ sol r/ bi n. In particular,

Apache Solr Reference Guide 4.4 277

http://slf4j.org/docs.html
http://java.sun.com/javase/6/docs/technotes/guides/logging/index.html

backup.sh makes a copy of Solr's index directory and gives it a name based on the current date.

This scripts include the following:

Script Name Description

abc Atomic Backup post-Commit tells the Solr server to perform a commit. A snapshot of the index directory is made after the
commit if the Solr server is configured to do so (by enabling the postCommit event listener in
sol r/ conf/sol rconfi g. xnl). A backup of the most recent snapshot directory is then made if the commit is successful.
Backup directories are named backup. yyyymddHHMWVSS where yyyynmddHHMVESS is the timestamp of when the snapshot
was taken.

abo Atomic Backup post-Optimize tells the Solr server to perform an optimize. A snapshot of the index directory is made after the
optimize if the Solr server is configured to do so (by enabling the postCommit or postOptimize event listener in
sol r/ conf/sol rconfi g. xnl). A backup of the most recent snapshot directory is then made if the optimize is successful.
Backup directories are named backup. yyyymddHHMWVSS where yyyy nmddHHMVSS is the timestamp of when the snapshot
was taken.

backup Backs up the index directory using hard links. Backup directories are named backup. yyyymddHHWVSS where
yyyymddHHMVSS is the timestamp of when the backup was taken.

backupcleaner = Runs as a cron job to remove backups more than a configurable number of days old or all backups except for the most recent
n number of backups. Also can be run manually.

For more details about backup scripts, see the Solr Wiki page http://wiki.apache.org/solr/SolrOperationsTools.

Using JMX with Solr

Java Management Extensions (JMX) is a technology that makes it possible for complex systems to be controlled by tools without the systems and
tools having any previous knowledge of each other. In essence, it is a standard interface by which complex systems can be viewed and
manipulated.

Solr, like any other good citizen of the Java universe, can be controlled via a JMX interface. You can enable JMX support by adding lines to

sol rconfi g. xm . You can use a JMX client, like jconsole, to connect with Solr. Check out the Wiki page http://wiki.apache.org/solr/SolrJmx for

more information. You may also find the following overview of JMX to be useful:
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html.

Configuring JMX

JMX configuration is provided in sol r conf i g. xm . Please see the JMX Technology Home Page for more details.

A r oot Nanre attribute can be used when configuring <j nx / >insol rconfi g. xm . If this attribute is set, Solr uses it as the root name for all
the MBeans that Solr exposes via JMX. The default name is "solr" followed by the core name.

. Enabling/disabling JMX and securing access to MBeanServers is left up to the user by specifying appropriate JVM parameters
and configuration. Please explore the JMX Technology Home Page for more details.

Configuring an Existing MBeanServer

The command:

<jnx />

enables JMX support in Solr if and only if an existing MBeanServer is found. Use this if you want to configure JIMX with JVM parameters. Remove
this to disable exposing Solr configuration and statistics to JMX. If this is specified, Solr will try to list all available MBeanServers and use the first
one to register MBeans.

Configuring an Existing MBeanServer with agentid

The command:

<j nx agent | d="nmyMBeanServer" />

Apache Solr Reference Guide 4.4 278

http://wiki.apache.org/solr/SolrOperationsTools
http://jmsbrdy.com/monitoring-java-applications-running-on-ec2-i
http://wiki.apache.org/solr/SolrJmx
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

enables JMX support in Solr if and only if an existing MBeanServer is found matching the given agentld. If multiple servers are found, the first one
is used. If none is found, an exception is raised and depending on the configuration, Solr may refuse to start.

Configuring a New MBeanServer

The command:

<jnx serviceUrl="service:jmx:rm:///jndi/rm://]ocal host:9999/sol rjnx" />

creates a new MBeanServer exposed for remote monitoring at the specific service URL. If the JMXConnectorServer can't be started (probably
because the serviceUrl is bad), an exception is thrown.

Example
Using the example jetty setup provided with Solr installation, the IMX support works like this in j consol e. png.

1. Run "ant example" to build the example war file.
2. Go to the example folder in the Solr installation and run the following command:

java -Dcom sun. managenent.jnxrenote -jar start.jar

3. Startj consol e (provided with the Sun JDK in the bin directory).
4. Connect to the "start.jar" shown in the list of local processes.
5. Switch to the "MBeans" tab. You should be able to see "solr" listed there.

Configuring a Remote Connection to Solr IMX

If you want to connect to Solr remotely, you need to pass in some extra parameters, documented here:
http://docs.oracle.com/javase/1.5.0/docs/guide/management/agent.html

If you are not able to connect from a remote machine, you may also need to specify the hostname of the Solr host by adding the following

property as well:

1, Making JMX connections into machines running behind NATs (e.g. Amazon's EC2 service) is not a simple task. The
java.rm . server. host name system property may help, but running j consol e on the server itself and using a remote
desktop is often the simplest solution. See http://jmsbrdy.com/monitoring-java-applications-running-on-ec2-i.

Running Solr on HDFS

Solr has support for writing and reading its index and transaction log files to the HDFS distributed filesystem. This does not use Hadoop
Map-Reduce to process Solr data, rather it only uses the HDFS filesystem for index and transaction log file storage.

Basic Configuration

To use HDFS rather than a local filesystem, you must be using Hadoop 2.0.x and configure sol r conf i g. xm properly.
® You need to use an HdfsDirectoryFactory and a data dir of the form hdf s: / / host : port/ path
® You need to specify an UpdatelLog location of the form hdf s: // host : port/ path

® You should specify a lock factory type of 'hdf s' or none.

With the default configuration files, you can start Solr on HDFS with the following command:

java -Dsol r. directoryFactory=Hdf sDi rect oryFactory
-Dsol r. |1 ock. type=hdfs
-Dsol r. dat a. di r=hdfs://host: port/path
-Dsol r. updat el og=hdfs://host:port/path -jar start.jar

Apache Solr Reference Guide 4.4 279

http://docs.oracle.com/javase/1.5.0/docs/guide/management/agent.html
http://jmsbrdy.com/monitoring-java-applications-running-on-ec2-i

The Block Cache

For performance, the HdfsDirectoryFactory uses a Directory that will cache HDFS blocks. This caching mechanism is meant to replace the
standard file system cache that Solr utilizes so much. By default, this cache is allocated off heap. This cache will often need to be quite large and
you may need to raise the off heap memory limit for the specific JVM you are running Solr in. For the Oracle/OpenJDK JVMs, the follow is an
example command line parameter that you can use to raise the limit when starting Solr:

- XX: MaxDi r ect Menor ySi ze=20g

Settings
The HdfsDirectoryFactory has a number of settings.

Block Cache Settings

Param Default Description

sol r. hdf s. bl ockcache. enabl ed true Enable the blockcache

sol r. hdf s. bl ockcache. r ead. enabl ed true Enable the read cache

sol r. hdf s. bl ockcache. wri te. enabl ed true Enable the write cache

sol r. hdf s. bl ockcache. direct. menory. al | ocati on | true Enable direct memory allocation. If this is false, heap is used

sol r. hdf s. bl ockcache. sl ab. count 1 Number of memory slabs to allocate. Each slab is 128 MB in size.

NRTCachingDirectory Settings

Param Default Description

sol r. hdf s. nrtcachi ngdi rectory. enabl e true Enable the use of NRTCachingDirectory

sol r. hdf s. nrt cachi ngdi rect ory. maxner gesi zenb 16 NRTCachingDirectory max segment size for merges
sol r. hdf s. nrt cachi ngdi rect ory. maxcachednb 192 NRTCachingDirectory max cache size

HDFS Client Configuration Settings

solr.hdfs.confdir pass the location of HDFS client configuration files - needed for HDFS HA for example.

Param Default Description
solr. hdfs.confdir N/A Pass the location of HDFS client configuration files - needed for HDFS HA for example.
Example

Apache Solr Reference Guide 4.4 280

<directoryFactory nane="DirectoryFactory" class="sol r. Hdf sDi rectoryFactory">
<bool nane="sol r. hdfs. bl ockcache. enabl ed" >t r ue</ bool >
<int name="sol r. hdf s. bl ockcache. sl ab. count">1</int>
<bool nanme="sol r. hdfs. bl ockcache. direct. nenory. al | ocati on" >t rue</ bool >
<int name="sol r. hdf s. bl ockcache. bl ocksper bank" >16384</i nt >
<bool name="sol r. hdfs. bl ockcache. r ead. enabl ed" >t r ue</ bool >
<bool name="sol r. hdfs. bl ockcache. write. enabl ed" >t rue</ bool >
<bool name="sol r. hdfs. nrtcachi ngdirectory. enabl e">true</ bool >
<int name="sol r. hdfs. nrtcachi ngdi rect ory. maxmer gesi zenb" >16</i nt >
<int name="sol r. hdfs. nrtcachi ngdi rect ory. maxcachednb" >192</i nt >
</ directoryFactory>

Limitations

You must use an 'append-only' Lucene index codec because HDFS is an append only filesystem. The currently default codec used by Solr is
‘append-only' and supported with HDFS.

Apache Solr Reference Guide 4.4 281

SolrCloud

Apache Solr includes the ability to set up a cluster of Solr servers that combines fault tolerance and high availability. Called SolrCloud, these
capabilities provide distributed indexing and search capabilities, supporting the following features:

® Central configuration for the entire cluster
® Automatic load balancing and fail-over for queries
® ZooKeeper integration for cluster coordination and configuration.

SolrCloud is flexible distributed search and indexing, without a master node to allocate nodes, shards and replicas. Instead, Solr uses ZooKeeper
to manage these locations, depending on configuration files and schemas. Documents can be sent to any server and ZooKeeper will figure it out.

In this section, we'll cover everything you need to know about using Solr in SolrCloud mode. We've split up the details into the following topics:

® (Getting Started with SolrCloud
® How SolrCloud Works
® Shards and Indexing Data in SolrCloud
® Distributed Requests
® Read and Write Side Fault Tolerance
® NRT, Replication, and Disaster Recovery with SolrCloud
® SolrCloud Configuration and Parameters
Using ZooKeeper to Manage Configuration Files
Collections API
Parameter Reference
Command Line Utilities
SolrCloud with Legacy Configuration Files
® SolrCloud Glossary

You can also find more information on the Solr wiki page on SolrCloud.

' If upgrading an existing Solr 4.1 instance running with SolrCloud, be aware that the way the name_node parameter is defined
has changed. This may cause a situation where the nane_node uses the IP address of the machine instead of the server
name, and thus SolrCloud is not aware of the existing node. If this happens, you can manually edit the host parameter in

sol r. xm to refer to the server name, or set the host in your system environment variables (since by default sol r. xn is
configured to inherit the host name from the environment variables). See also the section solr:Core Admin and Configuring
solr.xml for more information about the host parameter.

Getting Started with SolrCloud

SolrCloud is designed to provide a highly available, fault tolerant environment that can index your data for searching. It's a system in which data is
organized into multiple pieces, or shards, that can be housed on multiple machines, with replicas providing redundancy for both scalability and
fault tolerance, and a ZooKeeper server that helps manage the overall structure so that both indexing and search requests can be routed

properly.

This section explains SolrCloud and its inner workings in detail, but before you dive in, it's best to have an idea of what it is you're trying to
accomplish. This page provides a simple tutorial that explains how SolrCloud works on a practical level, and how to take advantage of its
capabilities. We'll use simple examples of configuring SolrCloud on a single machine, which is obviously not a real production environment, which
would include several servers or virtual machines. In a real production environment, you'll also use the real machine names instead of "localhost",
which we've used here.

In this section you will learn:
® How to distribute data over multiple instances by using ZooKeeper and creating shards.

® How to create redundancy for shards by using replicas.
® How to create redundancy for the overall cluster by running multiple ZooKeeper instances.

Tutorials in this section:

® Simple Two-Shard Cluster on the Same Machine
® Two-Shard Cluster with Replicas
® Using Multiple ZooKeepers in an Ensemble

Apache Solr Reference Guide 4.4 282

http://wiki.apache.org/solr/SolrCloud

F

This tutorial assumes that you're already familiar with the basics of using Solr. If you need a refresher, please visit the Getting
Started section to get a grounding in Solr concepts. If you load documents as part of that exercise, you should start over with a
fresh Solr installation for these SolrCloud tutorials.

Simple Two-Shard Cluster on the Same Machine

Creating a cluster with multiple shards involves two steps:

1. Start the "overseer" node, which includes an embedded ZooKeeper server to keep track of your cluster.
2. Start any remaining shard nodes and point them to the running ZooKeeper.

e

Make sure to run Solr from the example directory in non-SolrCloud mode at least once before beginning; this process unpacks
the jar files necessary to run SolrCloud. However, do not load documents yet, just start it once and shut it down.

In this example, you'll create two separate Solr instances on the same machine. This is not a production-ready installation, but just a quick
exercise to get you familiar with SolrCloud.

For this exercise, we'll start by creating two copies of the exanpl e directory that is part of the Solr distribution:

cd <SOLR DI ST_HOVE>
cp -r exanpl e nodel
cp -r exanpl e node2

These copies of the exanpl e directory can really be called anything. All we're trying to do is copy Solr's example app to the side so we can play
with it and still have a stand-alone Solr example to work with later if we want.

Next, start the first Solr instance, including the - DzkRun parameter, which also starts a local ZooKeeper instance:

cd nodel
java - DzkRun -Dnunthards=2 -Dbootstrap_confdir=./solr/collectionl/conf
-Dcol | ecti on. confi gName=nyconf -jar start.jar

Let's look at each of these parameters:

- DzkRun Starts up a ZooKeeper server embedded within Solr. This server will manage the cluster configuration. Note that we're doing this
example all on one machine; when you start working with a production system, you'll likely use multiple ZooKeepers in an ensemble (or at least a
stand-alone ZooKeeper instance). In that case, you'll replace this parameter with zkHost =<ZooKeeper Host : Por t >, which is the
hostname:port of the stand-alone ZooKeeper.

- Dnunthar ds Determines how many pieces you're going to break your index into. In this case we're going to break the index into two pieces, or
shards, so we're setting this value to 2. Note that once you start up a cluster, you cannot change this value. So if you expect to need more
shards later on, build them into your configuration now (you can do this by starting all of your shards on the same server, then migrating them to
different servers later).

- Dboot st rap_conf di r ZooKeeper needs to get a copy of the cluster configuration, so this parameter tells it where to find that information.

- Dcol | ecti on. confi gName This parameter determines the name under which that configuration information is stored by ZooKeeper. We've
used "myconf* as an example, it can be anything you'd like.

r

The - Dnunthar ds, - Dboot strap_confdir, and - Dcol | ecti on. conf i gNane parameters need only be specified once,
the first time you start Solr in SolrCloud mode. They load your configurations into ZooKeeper; if you run them again at a later
time, they will re-load your configurations and may wipe out changes you have made.

At this point you have one sever running, but it represents only half the shards, so you will need to start the second one before you have a fully
functional cluster. To do that, start the second instance in another window as follows:

Apache Solr Reference Guide 4.4 283

cd node2
java -Djetty. port=7574 -DzkHost =l ocal host:9983 -jar start.jar

Because this node isn't the overseer, the parameters are a bit less complex:

-Djetty. port The only reason we even have to set this parameter is because we're running both servers on the same machine, so they can't
both use Jetty's default port. In this case we're choosing an arbitrary number that's different from the default. When you start on different
machines, you can use the same Jetty ports if you'd like.

- DzkHost This parameter tells Solr where to find the ZooKeeper server so that it can "report for duty”. By default, the ZooKeeper server operates
on the Solr port plus 1000. (Note that if you were running an external ZooKeeper server, you'd simply point to that.)

At this point you should have two Solr windows running, both being managed by ZooKeeper. To verify that, open the Solr Admin Ul in your
browser and go to the Cloud screen:

http://localhost:8983/solr/#/~cloud
Use the port of the first Solr you started; this is your overseer. You can go to the

You should see both nodel and node2, as in:

shard

J
N\

Apache

Solr

& Dashboard

collectionl

shard2

) Logging

=

= Cloud

Now it's time to see the cluster in action. Start by indexing some data to one or both shards. You can do this any way you like, but the easiest way
is to use the exanpl edocs, along with curl so that you can control which port (and thereby which server) gets the updates:

curl http://1ocal host: 8983/ sol r/update?comit=true -H "Content-Type: text/xm" -d

"@em xm "
curl http://1ocal host: 7574/ sol r/ updat e?comit=true -H "Content-Type: text/xm" -d
"@monitor2. xm"

At this point each shard contains a subset of the data, but a search directed at either server should span both shards. For example, the following
searches should both return the identical set of all results:

http://1ocal host: 8983/ solr/collectionl/sel ect?q=*: *
http://1ocal host: 7574/ solr/ col | ecti onl/ sel ect ?2q=*: *

The reason that this works is that each shard knows about the other shards, so the search is carried out on all cores, then the results are
combined and returned by the called server.

In this way you can have two cores or two hundred, with each containing a separate portion of the data.

r

If you want to check the number of documents on each shard, you could add di st ri b=f al se to each query and your search
would not span all shards.

But what about providing high availability, even if one of these servers goes down? To do that, you'll need to look at replicas.

Two-Shard Cluster with Replicas

In order to provide high availability, you can create replicas, or copies of each shard that run in parallel with the main core for that shard. The
architecture consists of the original shards, which are called the leaders, and their replicas, which contain the same data but let the leader handle

Apache Solr Reference Guide 4.4 284

http://localhost:8983/solr/#/~cloud
http://localhost:8983/solr/collection1/select?q=*:*
http://localhost:7574/solr/collection1/select?q=*:*

all of the administrative tasks such as making sure data goes to all of the places it should go. This way, if one copy of the shard goes down, the
data is still available and the cluster can continue to function.

Start by creating two more fresh copies of the example directory:

cd <SOLR DI ST_HOVE>
cp -r exanpl e node3
cp -r exanpl e node4

Just as when we created the first two shards, you can name these copied directories whatever you want.

If you don't already have the two instances you created in the previous section up and running, go ahead and restart them. From there, it's simply
a matter of adding additional instances. Start by adding node3:

cd node3
java -Djetty. port=8900 -DzkHost =l ocal host:9983 -jar start.jar

Notice that the parameters are exactly the same as they were for starting the second node; you're simply pointing a new instance at the original
ZooKeeper. But if you look at the SolrCloud admin page, you'll see that it was added not as a third shard, but as a replica for the first:

N
“

Apache shardl
collectionl

SOI r shard2

& Dacshboard

) Logging

= Cloud

This is because the cluster already knew that there were only two shards and they were already accounted for, so new nodes are added as
replicas. Similarly, when you add the fourth instance, it's added as a replica for the second shard:

cd node4
java -Djetty. port=7500 - DzkHost =l ocal host: 9983 -jar start.jar

.
N\

Apache

Solr

& Dashboard

shardl

collectionl
shard2

If you were to add additional instances, the cluster would continue this round-robin, adding replicas as necessary. Replicas are attached to
leaders in the order in which they are started, unless they are assigned to a specific shard with an additional parameter of shar dl d (as a system
property, as in - Dshar dl d=1, the value of which is the ID number of the shard the new node should be attached to). Upon restarts, the node will
still be attached to the same leader even if the shar dl d is not defined again (it will always be attached to that machine).

So where are we now? You now have four servers to handle your data. If you were to send data to a replica, as in:

Apache Solr Reference Guide 4.4 285

curl http://Iocal host: 7500/ sol r/ update?commit=true -H "Content-Type: text/xm" -d
" @money. xm "

the course of events goes like this:

1. Replica (in this case the server on port 7500) gets the request.

2. Replica forwards request to its leader (in this case the server on port 7574).

3. The leader processes the request, and makes sure that all of its replicas process the request as well.
In this way, the data is available via a request to any of the running instances, as you can see by requests to:
http://1ocal host: 8983/ solr/collectionl/sel ect?q=*: *,;
http://1ocal host: 7574/ sol r/ col | ecti onl/ sel ect ?2q=*: *
http://1ocal host: 8900/ solr/coll ectionl/sel ect ?2q=*: *

http://1ocal host: 7500/ sol r/ col | ecti onl/ sel ect ?2q=*: *

But how does this help provide high availability? Simply put, a cluster must have at least one server running for each shard in order to function. To
test this, shut down the server on port 7574, and then check the other servers:

http://1ocal host: 8983/ solr/collectionl/sel ect?q=*: *

http://1ocal host: 8900/ solr/col | ecti onl/sel ect ?2q=*: *,

http://1ocal host: 7500/ sol r/ col | ecti onl/ sel ect ?q=*: *

You should continue to see the full set of data, even though one of the servers is missing. In fact, you can have multiple servers down, and as
long as at least one instance for each shard is running, the cluster will continue to function. If the leader goes down — as in this example — a new
leader will be "elected" from among the remaining replicas.

Note that when we talk about servers going down, in this example it's crucial that one particular server stays up, and that's the one running on port
8983. That's because it's our overseer — the instance running ZooKeeper. If that goes down, the cluster can continue to function under some

circumstances, but it won't be able to adapt to any servers that come up or go down.

That kind of single point of failure is obviously unacceptable. Fortunately, there is a solution for this problem: multiple ZooKeepers.

Using Multiple ZooKeepers in an Ensemble

1, To simplify setup for this example we're using the internal ZooKeeper server that comes with Solr, but in a production
environment, you will likely be using an external ZooKeeper. The concepts are the same, however. You can find instructions on
setting up an external ZooKeeper server here: http://zookeeper.apache.org/doc/r3.3.4/zookeeperStarted.html

To truly provide high availability, we need to make sure that not only do we also have at least one shard server running at all times, but also that
the cluster also has a ZooKeeper running to manage it. To do that, you can set up a cluster to use multiple ZooKeepers. This is called using a
ZooKeeper ensemble.

A ZooKeeper ensemble can keep running as long as more than half of its servers are up and running, so at least two servers in a three
ZooKeeper ensemble, 3 servers in a 5 server ensemble, and so on, must be running at any given time. These required servers are called a
quorum.

In this example, you're going to set up the same two-shard cluster you were using before, but instead of a single ZooKeeper, you'll run a
ZooKeeper server on three of the instances. Start by cleaning up any ZooKeeper data from the previous example:

cd <SOLR DI ST_DI R>
rm-r shard*/solr/zoo_data

Next you're going to restart the Solr servers, but this time, rather than having them all point to a single ZooKeeper instance, each will run
ZooKeeper and listen to the rest of the ensemble for instructions.

You're using the same ports as before — 8983, 7574, 8900 and 7500 — so any ZooKeeper instances would run on ports 9983, 8574, 9900 and

8500. You don't actually need to run ZooKeeper on every single instance, however, so assuming you run ZooKeeper on 9983, 8574, and 9900,
the ensemble would have an address of:

Apache Solr Reference Guide 4.4 286

http://localhost:8983/solr/collection1/select?q=*:*
http://localhost:7574/solr/collection1/select?q=*:*
http://localhost:8900/solr/collection1/select?q=*:*
http://localhost:7500/solr/collection1/select?q=*:*
http://localhost:8983/solr/collection1/select?q=*:*
http://localhost:8900/solr/collection1/select?q=*:*
http://localhost:7500/solr/collection1/select?q=*:*
http://zookeeper.apache.org/doc/r3.3.4/zookeeperStarted.html

| ocal host: 9983, | ocal host : 8574, | ocal host : 9900

This means that when you start the first instance, you'll do it like this:

cd nodel

java - DzkRun -Dnunthards=2 -Dbootstrap_confdir=./solr/collectionl/conf \
- Dcol | ecti on. confi gName=myconf

- DzkHost =l ocal host : 9983, | ocal host : 8574, | ocal host : 9900 \
-jar start.jar

e

Note that the order of the parameters matters. Make sure to specify the -DzkHost parameter after the other ZooKeeper-related
parameters.
You'll notice a lot of error messages scrolling past; this is because the ensemble doesn't yet have a quorum of ZooKeepers running.

Notice also, that this step takes care of uploading the cluster's configuration information to ZooKeeper, so starting the next server is more
straightforward:

cd node2
java -Djetty. port=7574 -DzkRun - DnuntBhards=2 \
- DzkHost =l ocal host: 9983, | ocal host: 8574, | ocal host: 9900 -jar start.jar

Once you start this instance, you should see the errors begin to disappear on both instances, as the ZooKeepers begin to update each other,
even though you only have two of the three ZooKeepers in the ensemble running.

Next start the last ZooKeeper:

cd node3
java -Djetty. port=8900 - DzkRun - DnuntShards=2 \
- DzkHost =l ocal host: 9983, | ocal host: 8574, | ocal host: 9900 -jar start.jar

Finally, start the last replica, which doesn't itself run ZooKeeper, but references the ensemble:

cd node4
java -Djetty. port=7500 - DzkHost =l ocal host: 9983, | ocal host: 8574, | ocal host: 9900 \
-jar start.jar

Just to make sure everything's working properly, run a query:
http://localhost:8983/solr/collectionl/select?q=*:*

and check the SolrCloud admin page:

Apache Solr Reference Guide 4.4 287

http://localhost:8983/solr/collection1/select?q=*:*

rr
Apache * shardT -

Solr o cellectionl !

shardZ

& Dashboard
) Logging

- Cloud

Now you can go ahead and kill the server on 8983, but ZooKeeper will still work, because you have more than half of the original servers still
running. To verify, open the SolrCloud admin page on another server, such as:

http://localhost:8900/solr/#/~cloud

.
5]
o
o
=
[=1
=

Apache

Solr - eollectionl

& Dzczhboard

How SolrCloud Works

In this section, we'll discuss generally how SolrCloud works, covering these topics:

Nodes, Cores, Clusters and Leaders

Shards and Indexing Data in SolrCloud

Distributed Requests

Read and Write Side Fault Tolerance

NRT, Replication, and Disaster Recovery with SolrCloud

If you are already familiar with SolrCloud concepts and functionality, you can skip to the section covering SolrCloud Configuration and Parameters

Basic SolrCloud Concepts

On a single node, Solr has a core that is essentially a single index. If you want multiple indexes, you create multiple cores. With SolrCloud, a
single index can span multiple Solr instances. This means that a single index can be made up of multiple cores on different machines.

The cores that make up one logical index are called a collection. A collection is a essentially a single index that can span many cores, both for
index scaling as well as redundancy. If, for instance, you wanted to move your two-core Solr setup to SolrCloud, you would have 2 collections,
each made up of multiple individual cores.

In SolrCloud you can have multiple collections. Collections can be divided into slices. Each slice can exist in multiple copies; these copies of the
same slice are called shards. One of the shards within a slice is the leader, designated by a leader-election process. Each shard is a physical
index, so one shard corresponds to one core.

It is important to understand the distinction between a core and a collection. In classic single node Solr, a core is basically equivalent to a
collection in that it presents one logical index. In SolrCloud, the cores on multiple nodes form a collection. This is still just one logical index, but
multiple cores host different shards of the full collection. So a core encapsulates a single physical index on an instance. A collection is a
combination of all of the cores that together provide a logical index that is distributed across many nodes.

Differences Between Solr 3.x-style Scaling and SolrCloud

In Solr 3.x, Solr included following features:

The index and all changes to it are replicated to another Solr instance.

In distributed searches, queries are sent to multiple Solr instances and the results are combined into a single output.

Documents are available only after committing, which may be expensive and not very timely.

Sharding must be done manually, usually through SolrJ or a similar utility, and there is no distributed indexing: your index code must

understand your sharding schema.

® Replication must be manually configured and can slow down access to recent content because the system needs to wait for a commit
and the replication to be triggered and to complete.

® Failure recovery may result in the loss of your ability to index, and make recovering your indexing process difficult.

Apache Solr Reference Guide 4.4 288

http://localhost:8900/solr/#/~cloud

With SolrCloud, some capabilities are distributed:

® SolrCloud automatically distributes index updates to the appropriate shard, distributes searches across multiple shards, and assigns
replicas to shards when replicas are available.

Near Real Time searching is supported, and if configured, documents are available after a "soft" commit.

Indexing accesses your sharding schema automatically.

Replication is automatic for backup purposes.

Recovery is robust and automatic.

ZooKeeper serves as a repository for cluster state.

Nodes, Cores, Clusters and Leaders

Nodes and Cores

In SolrCloud, a node is Java Virtual Machine instance running Solr, commonly called a server. Each Solr core can also be considered a node. Any
node can contain both an instance of Solr and various kinds of data.

A Solr core is basically an index of the text and fields found in documents. A single Solr instance can contain multiple "cores", which are separate
from each other based on local criteria. It might be that they are going to provide different search interfaces to users (customers in the US and
customers in Canada, for example), or they have security concerns (some users cannot have access to some documents), or the documents are
really different and just won't mix well in the same index (a shoe database and a dvd database).

When you start a new core in SolrCloud mode, it registers itself with ZooKeeper. This involves creating an Ephemeral node that will go away if the
Solr instance goes down, as well as registering information about the core and how to contact it (such as the base Solr URL, core name, etc).
Smart clients and nodes in the cluster can use this information to determine who they need to talk to in order to fulfill a request.

New Solr cores may also be created and associated with a collection via CoreAdmin. Additional cloud-related parameters are discussed in the
Parameter Reference page. Terms used for the CREATE action are:

® collection: the name of the collection to which this core belongs. Default is the name of the core.

® shard: the shard id this core represents. (Optional: normally you want to be auto assigned a shard id.)

® collection.<param>=<value>: causes a property of <par an>=<val ue> to be set if a new collection is being created. For example, use
col I ecti on. confi gName=<confi gnane> to point to the config for a new collection.

For example:
curl "http://1ocal host:8983/sol r/adm n/ cores?
act i on=CREATE&nane=nycor e&col | ecti on=col | ecti onl&shar d=shar d2’
Clusters

A cluster is set of Solr nodes managed by ZooKeeper as a single unit. When you have a cluster, you can always make requests to the cluster and
if the request is acknowledged, you can be sure that it will be managed as a unit and be durable, i.e., you won't lose data. Updates can be seen
right after they are made and the cluster can be expanded or contracted.

Creating a Cluster

A cluster is created as soon as you have more than one Solr instance registered with ZooKeeper. The section Getting Started with SolrCloud
reviews how to set up a simple cluster.

Resizing a Cluster

Clusters contain a settable number of shards. You set the number of shards for a new cluster by passing a system property, nunShar ds, when
you start up Solr. The nunShar ds parameter must be passed on the first startup of any Solr node, and is used to auto-assign which shard each
instance should be part of. Once you have started up more Solr nodes than nunthar ds, the nodes will create replicas for each shard, distributing
them evenly across the node, as long as they all belong to the same collection.

To add more cores to your collection, simply start the new core. You can do this at any time and the new core will sync its data with the current
replicas in the shard before becoming active.

You can also avoid nunShar ds and manually assign a core a shard ID if you choose.

The number of shards determines how the data in your index is broken up, so you cannot change the number of shards of the index after initially
setting up the cluster.

However, you do have the option of breaking your index into multiple shards to start with, even if you are only using a single machine. You can
then expand to multiple machines later. To do that, follow these steps:

Apache Solr Reference Guide 4.4 289

http://wiki.apache.org/solr/CoreAdmin

1. Set up your collection by hosting multiple cores on a single physical machine (or group of machines). Each of these shards will be a
leader for that shard.

2. When you're ready, you can migrate shards onto new machines by starting up a new replica for a given shard on each new machine.

3. Remove the shard from the original machine. ZooKeeper will promote the replica to the leader for that shard.

Leaders and Replicas

The concept of a leader is similar to that of master when thinking of traditional Solr replication. The leader is responsible for making sure the
replicas are up to date with the same information stored in the leader.

However, with SolrCloud, you don't simply have one master and one or more "slaves", instead you likely have distributed your search and index
traffic to multiple machines. If you have bootstrapped Solr with nunShar ds=2, for example, your indexes are split across both shards. In this
case, both shards are considered leaders. If you start more Solr nodes after the initial two, these will be automatically assigned as replicas for the
leaders.

Replicas are assigned to shards in the order they are started the first time they join the cluster. This is done in a round-robin manner, unless the
new node is manually assigned to a shard with the shar dI d parameter during startup. This parameter is used as a system property, as in

- Dshar dl d=1, the value of which is the ID number of the shard the new node should be attached to.

On subsequent restarts, each node joins the same shard that it was assigned to the first time the node was started (whether that assignment
happened manually or automatically). A node that was previously a replica, however, may become the leader if the previously assigned leader is
not available.

Consider this example:

®* Node A is started with the bootstrap parameters, pointing to a stand-alone ZooKeeper, with the nunShar ds parameter set to 2.
®* Node B is started and pointed to the stand-alone ZooKeeper.

Nodes A and B are both shards, and have fulfilled the 2 shard slots we defined when we started Node A. If we look in the Solr Admin Ul, we'll see
that both nodes are considered leaders (indicated with a solid blank circle).

®* Node C is started and pointed to the stand-alone ZooKeeper.

Node C will automatically become a replica of Node A because we didn't specify any other shard for it to belong to, and it cannot become a new
shard because we only defined two shards and those have both been taken.

®* Node D is started and pointed to the stand-alone ZooKeeper.
Node D will automatically become a replica of Node B, for the same reasons why Node C is a replica of Node A.
Upon restart, suppose that Node C starts before Node A. What happens? Node C will become the leader, while Node A becomes a replica of

Node C.

Shards and Indexing Data in SolrCloud

When your data is too large for one node, you can break it up and store it in sections by creating one or more shards. Each is a portion of the
logical index, or core, and it's the set of all nodes containing that section of the index.

A shard is a way of splitting a core over a number of "servers", or nodes. For example, you might have a shard for data that represents each
state, or different categories that are likely to be searched independently, but are often combined.

Before SolrCloud, Solr supported Distributed Search, which allowed one query to be executed across multiple shards, so the query was executed
against the entire Solr index and no documents would be missed from the search results. So splitting the core across shards is not exclusively a
SolrCloud concept. There were, however, several problems with the distributed approach that necessitated improvement with SolrCloud:

1. Splitting of the core into shards was somewhat manual.

2. There was no support for distributed indexing, which meant that you needed to explicitly send documents to a specific shard; Solr couldn't
figure out on its own what shards to send documents to.

3. There was no load balancing or failover, so if you got a high number of queries, you needed to figure out where to send them and if one
shard died it was just gone.

SolrCloud fixes all those problems. There is support for distributing both the index process and the queries automatically, and ZooKeeper
provides failover and load balancing. Additionally, every shard can also have multiple replicas for additional robustness.

Unlike Solr 3.x, in SolrCloud there are no masters or slaves. Instead, there are leaders and replicas. Leaders are automatically elected, initially on
a first-come-first-served basis, and then based on the Zookeeper process described at
http://zookeeper.apache.org/doc/trunk/recipes.html#sc_leaderElection..

If a leader goes down, one of its replicas is automatically elected as the new leader. As each node is started, it's assigned to the shard with the
fewest replicas. When there's a tie, it's assigned to the shard with the lowest shard ID.

When a document is sent to a machine for indexing, the system first determines if the machine is a replica or a leader.

Apache Solr Reference Guide 4.4 290

http://zookeeper.apache.org/doc/trunk/recipes.html#sc_leaderElection

® |f the machine is a replica, the document is forwarded to the leader for processing.
® |f the machine is a leader, SolrCloud determines which shard the document should go to, forwards the document the leader for that
shard, indexes the document for this shard, an d forwards the index notation to itself and any replicas.

Document Routing

Solr 4.1 added the ability to co-locate documents to improve query performance.

First, if you specify nunShar ds when you create a collection, you will use the "compositeld" router by default, which will then allow you to send
documents with a prefix in the document ID. The prefix will be used to calculate the hash Solr uses to determine the shard a document is sent to
for indexing. The prefix can be anything you'd like it to be (it doesn't have to be the shard name, for example), but it must be consistent so Solr
behaves consistently. For example, if you wanted to co-locate documents for a customer, you could use the customer name or ID as the prefix. If
your customer is "IBM", for example, with a document with the ID "12345", you would insert the prefix into the document id field: "IBM!12345". The
exclamation mark ('!") is critical here, as it defines the shard to direct the document to.

Then at query time, you include the prefix(es) into your query with the shar d. keys parameter (i.e., g=sol r &har d. keys=I BM). In some
situations, this may improve query performance because it overcomes network latency when querying all the shards.

If you do not want to influence how documents are stored, you don't need to specify a prefix in your document ID.

If you did not create the collection with the nunShar ds parameter, you will be using the "implicit" router by default. In this case, you could use the
shar d parameter or a field to name a specific shard.

Shard Splitting

Until Solr 4.3, when you created a collection in SolrCloud, you had to decide on your number of shards when you created the collection and you
could not change it later. It can be difficult to know in advance the number of shards that you need, particularly when organizational requirements
can change at a moment's notice, and the cost of finding out later that you chose wrong can be high, involving creating new cores and re-indexing
all of your data.

The ability to split shards is in the Collections API. It currently allows splitting a shard into two pieces. The existing shard is left as-is, so the split
action effectively makes two copies of the data as new shards. You can delete the old shard at a later time when you're ready.

More details on how to use shard splitting is in the section solr:Managing Collections via the Collections API.

Distributed Requests

One of the advantages of using SolrCloud is the ability to distribute requests among various shards that may or may not contain the data that
you're looking for. You have the option of searching over all of your data or just parts of it.

Querying all shards for a collection should look familiar; it's as though SolrCloud didn't even come into play:

http://1ocal host:8983/solr/coll ectionl/sel ect?q=*:*

If, on the other hand, you wanted to search just one shard, you can specify that shard, as in:

http://1ocal host: 8983/ solr/col |l ecti onl/sel ect ?q=*: *&shar ds=I ocal host: 7574/ sol r

If you want to search a group of shards, you can specify them together:

http://1ocal host: 8983/ solr/coll ectionl/sel ect 2q=*: *&shar ds=l ocal host: 7574/ sol r, | ocal host

Or you can specify a list of servers to choose from for load balancing purposes by using the pipe symbol (|):

http://1ocal host:8983/sol r/coll ectionl/sel ect ?2q=*: *&har ds=I ocal host: 7574/ sol r| | ocal host

(If you have explicitly created your shards using ZooKeeper and have shard IDs, you can use those IDs rather than server addresses.)

You also have the option of searching multiple collections. For example:

http://1ocal host: 8983/ solr/coll ectionl/sel ect?collection=collectionl,collection2,collect

Apache Solr Reference Guide 4.4 291

Read and Write Side Fault Tolerance

Read Side Fault Tolerance

With earlier versions of Solr, you had to set up your own load balancer. Now each individual node load balances requests across the replicas in a
cluster. You still need a load balancer on the 'outside’ that talks to the cluster, or you need a smart client. (Solr provides a smart Java Solrj client
called CloudSolrServer.)

A smart client understands how to read and interact with ZooKeeper and only requests the ZooKeeper ensembles' address to start discovering to
which nodes it should send requests.

Write Side Fault Tolerance

SolrCloud supports near real-time actions, elasticity, high availability, and fault tolerance. What this means, basically, is that when you have a
large cluster, you can always make requests to the cluster, and if a request is acknowledged you are sure it will be durable; i.e., you won't lose
data. Updates can be seen right after they are made and the cluster can be expanded or contracted.

Recovery

A Transaction Log is created for each node so that every change to content or organization is noted. The log is used to determine which content
in the node should be included in a replica. When a new replica is created, it refers to the Leader and the Transaction Log to know which content
to include. If it fails, it retries.

Since the Transaction Log consists of a record of updates, it allows for more robust indexing because it includes redoing the uncommitted
updates if indexing is interrupted.

If a leader goes down, it may have sent requests to some replicas and not others. So when a new potential leader is identified, it runs a synch
process against the other replicas. If this is successful, everything should be consistent, the leader registers as active, and normal actions
proceed. If the a replica is too far out of synch, the system asks for a full replication/replay-based recovery.

If an update fails because cores are reloading schemas and some have finished but others have not, the leader tells the nodes that the update
failed and starts the recovery procedure.

NRT, Replication, and Disaster Recovery with SolrCloud

SolrCloud and Replication

Replication ensures redundancy for your data, and enables you to send an update request to any node in the shard. If that node is a replica, it
will forward the request to the leader, which then forwards it to all existing replicas, using versioning to make sure every replica has the most
up-to-date version. This architecture enables you to be certain that your data can be recovered in the event of a disaster, even if you are using
Near Real Time searching.

Near Real Time Searching

If you want to use the NearRealtimeSearch support, enable auto soft commits in your sol rconfi g. xm file before storing it into Zookeeper.
Otherwise you can send explicit soft commits to the cluster as you need.

SolrCloud doesn't work very well with separated data clusters connected by an expensive pipe. The root problem is that SolrCloud's architecture
sends documents to all the nodes in the cluster (on a per-shard basis), and that architecture is really dictated by the NRT functionality.

Imagine that you have a set of servers in China and one in the US that are aware of each other. Assuming 5 replicas, a single update to a shard
may make multiple trips over the expensive pipe before it's all done, probably slowing indexing speed unacceptably.

So the SolrCloud recommendation for this situation is to maintain these clusters separately; nodes in China don't even know that nodes exist in
the US and vice-versa. When indexing, you send the update request to one node in the US and one in China and all the node-routing after that is
local to the separate clusters. Requests can go to any node in either country and maintain a consistent view of the data.

However, if your US cluster goes down, you have to re-synchronize the down cluster with up-to-date information from China. The process
requires you to replicate the index from China to the repaired US installation and then get everything back up and working.

Disaster Recovery for an NRT system

Use of Near Real Time (NRT) searching affects the way that systems using SolrCloud behave during disaster recovery.

The procedure outlined below assumes that you are maintaining separate clusters, as described above. Consider, for example, an event in
which the US cluster goes down (say, because of a hurricane), but the China cluster is intact. Disaster recovery consists of creating the new
system and letting the intact cluster create a replicate for each shard on it, then promoting those replicas to be leaders of the newly created US
cluster.

Here are the steps to take:

Apache Solr Reference Guide 4.4 292

http://wiki.apache.org/solr/NearRealtimeSearch

. Take the downed system offline to all end users.

. Take the indexing process offline.

. Repair the system.

. Bring up one machine per shard in the repaired system as part of the ZooKeeper cluster on the good system, and wait for replication to
happen, creating a replica on that machine. (SoftCommits will not be repeated, but data will be pulled from the transaction logs if
necessary.)

A WNBE

r

SolrCloud will automatically use old-style replication for the bulk load. By temporarily having only one replica, you'll
minimize data transfer across a slow connection.

5. Bring the machines of the repaired cluster down, and reconfigure them to be a separate Zookeeper cluster again, optionally adding more
replicas for each shard.

6. Make the repaired system visible to end users again.

7. Start the indexing program again, delivering updates to both systems.

SolrCloud Configuration and Parameters

In this section, we'll cover the various configuration options for SolrCloud.

In general, with a new Solr 4 instance, the required configuration is in the sample schenma. xnl and sol rconfi g. xni files. However, there may
be reasons to change default settings or configure the cloud elements manually.

The following topics are covered in these pages:
® Setting Up an External ZooKeeper Ensemble
® Using ZooKeeper to Manage Configuration Files
® Collections API
® Parameter Reference

® Command Line Utilities
¢ SolrCloud with Legacy Configuration Files

Setting Up an External ZooKeeper Ensemble

Although Solr comes bundled with Apache ZooKeeper, you should consider yourself discouraged from using this internal ZooKeeper in
production, because shutting down a redundant Solr instance will also shut down its ZooKeeper server, which might not be quite so redundant.
Because a ZooKeeper ensemble must have a quorum of more than half its servers running at any given time, this can be a problem.

The solution to this problem is to set up an external ZooKeeper ensemble. Fortunately, while this process can seem intimidating due to the
number of powerful options, setting up a simple ensemble is actually quite straightforward. The basic steps are as follows:

Download Apache ZooKeeper

The first step in setting up Apache ZooKeeper is, of course, to download the software. It's available from
http://zookeeper.apache.org/releases.html.

1. When using stand-alone ZooKeeper, you need to take care to keep your version of ZooKeeper updated with the latest version
distributed with Solr. Since you are using it as a stand-alone application, it does not get upgraded when you upgrade Solr.

Solr 4.0 uses Apache ZooKeeper v3.3.6.

Solr 4.1 uses Apache ZooKeeper v3.4.5.

Create the instance

Creating the instance is a simple matter of extracting the files into a specific target directory. The actual directory itself doesn't matter, as long as
you know where it is, and where you'd like to have ZooKeeper store its internal data.

Configure the instance

The next step is to configure your ZooKeeper instance. To do that, create the following file:

Apache Solr Reference Guide 4.4 293

http://zookeeper.apache.org/releases.html

<ZOOKEEPER_HOVE>/ conf/ zoo. cf g

and add the following information:

ti ckTi me=2000
databir=/var/|i b/ zookeeper
clientPort=2181

The parameters are as follows:

tickTime: Part of what ZooKeeper does is to determine which servers are up and running at any given time, and the minimum session time out is
defined as two "ticks". The ti ckTi me parameter specifies, in miliseconds, how long each tick should be.

dataDir: This is the directory in which ZooKeeper will store data about the cluster. This directory should start out empty.
clientPort: This is the port on which Solr will access ZooKeeper.

Once this file is in place, you're ready to start the ZooKeeper instance.

Run the instance

To run the instance, you can simply use the script provided:

bi n/ zkServer.sh start

Again, ZooKeeper provides a great deal of power through additional configurations, but delving into them is beyond the scope of this tutorial. For
more information, see the ZooKeeper Getting Started page. For this example, however, the defaults are fine.

Point Solr at the instance

Pointing Solr at the ZooKeeper instance you've created is a simple matter of using the - DzkHost parameter. For example, in the Getting Started
example you learned how to point to the internal ZooKeeper. In this example, you would point to the ZooKeeper you've started on port 2181:

cd shardl
java - Dnunthards=2 - Dbootstrap_confdir=./solr/collectionl/conf \
-Dcol | ecti on. confi gNanme=nyconf -DzkHost =l ocal host: 2181 -jar start.jar
cd shard2j ava
java -Djetty. port=7574 -DzkHost =l ocal host: 2181 -jar start.jar

As before, you must first upload the configuration information, and then you can connect a second instance.

Shut down ZooKeeper

To shut down ZooKeeper, use the zkServer script:

bi n/ zkServer. sh stop

Setting up a ZooKeeper ensemble

In the Getting Started example, using a ZooKeeper ensemble was a simple matter of starting multiple instances and pointing to them. With an
external ZooKeeper ensemble, you need to set things up just a little more carefully.

The difference is that rather than simply starting up the servers, you need to configure them to know about and talk to each other first. So your
original zoo. cf g file might look like this:

Apache Solr Reference Guide 4.4 294

http://zookeeper.apache.org/doc/r3.4.5/zookeeperStarted.html

dat abDi r=/var/li b/ zookeeperdata/ 1
clientPort=2181

initLimt=5

syncLim t=2

server. 1=l ocal host : 2888: 3888
server. 2=l ocal host : 2889: 3889
server. 3=l ocal host : 2890: 3890

Here you see three new parameters:

initLimit: The time, in ticks, the server allows for connecting to the leader. In this case, you have 5 ticks, each of which is 2000 milliseconds long,
so the server will wait as long as 10 seconds to connect.

syncLimit: The time, in ticks, the server will wait before updating itself from the leader.
server.X: These are the locations of all servers in the ensemble, and the ports on which they communicate with each other. The server id, stored

in the <dat aDi r >/ nyi d file, identifies each server, so in the case of this first instance, you would create the file
/var/libl/ zookeeper dat a/ 1/ nyi d with the content

Now, whereas with Solr you need to create entirely new directories to run multiple instances, all you need for a new ZooKeeper instance, even if
it's on the same machine for testing purposes, is a new configuration file. To complete the example you'll create two more configuration files.

The <ZOOKEEPER_HOVE>/ conf / zoo2. cf g file should have the content:

tickTi me=2000

dat abi r =c: / sw zookeeper dat a/ 2
clientPort=2182

initLimt=5

syncLi m t=2

server. 1=l ocal host : 2888: 3888
server. 2=l ocal host: 2889: 3889
server. 3=l ocal host: 2890: 3890

You'll also need to create <ZOOKEEPER_HOVE>/ conf/ z003. cf g:

tickTi mre=2000

dat abi r =c: / sw zookeeper dat a/ 3
clientPort=2183

initLimt=5

syncLi m t=2

server. 1=l ocal host : 2888: 3888
server. 2=l ocal host : 2889: 3889
server. 3=l ocal host: 2890: 3890

Finally, create your nyi d files in each of the dat aDi r directories so that each server knows which instance it is.

To start the servers, you can simply explicitly reference the configuration files:

cd <ZOOKEEPER_ HOVE>

bi n/ zkServer.sh start zoo.cfg
bi n/ zkServer.sh start zoo2.cfg
bi n/ zkServer.sh start zoo03.cfg

Apache Solr Reference Guide 4.4 295

Once these servers are running, you can reference them from Solr just as you did before:

java - Dnunthar ds=2 - Dbootstrap_confdir=./solr/collectionl/conf \
-Dcol | ecti on. confi gName=myconf
- DzkHost =l ocal host: 2181, | ocal host: 2182, | ocal host: 2183 -jar start.jar

For more information on getting the most power from your ZooKeeper installation, check out the ZooKeeper Administrator's Guide.

Using ZooKeeper to Manage Configuration Files

With SolrCloud your configuration files (particularly sol r confi g. xm and schema. xml) are kept in ZooKeeper. These files are uploaded when
you first start Solr in SolrCloud mode.

Startup Bootstrap Parameters

There are two different ways you can use system properties to upload your initial configuration files to ZooKeeper the first time you start Solr.
Remember that these are meant to be used only on first startup or when overwriting configuration files. Every time you start Solr with these
system properties, any current configuration files in ZooKeeper may be overwritten when conf . set names match.

The first way is to look at sol r. xm and upload the conf for each core found. The confi g set name will be the collection name for that core,
and collections will use the confi g set that has a matching name. One parameter is used with this approach, boot st r ap_conf . If you pass
- Dboot st rap_conf =t r ue on startup, each core you have configured will have its configuration files automatically uploaded and linked to the

collection containing the core.

An alternate approach is to upload the given directory as a confi g set with the given name. No linking of collection to confi g set is done.
However, if only one conf . set exists, a collection will autolink to it. Two parameters are used with this approach:
Parameter Default value Description

bootstrap_confdir No default If you pass - boot st rap_conf di r =<di r ect or y> on startup, that specific directory of
configuration files will be uploaded to ZooKeeper with a conf . set name defined by the
system property below, col | ecti on. confi gNane.

col | ection. confi gNane Defaults to Determines the name of the conf . set pointed to by boot strap_confdir.
configurationl

Using the ZooKeeper Command Line Interface (zkCLI), you can download and re-upload these configuration files.

g It's important to keep these files under version control.

i}

Managing Your SolrCloud Configuration Files

To update or change your SolrCloud configuration files:

. Download the latest configuration files from ZooKeeper, using the source control checkout process.
Make your changes.

Commit your changed file to source control.

. Push the changes back to ZooKeeper.

. Reload the collection so that the changes will be in effect.

GAWNPE

There are some scripts available with the ZooKeeper Command Line Utility to help manage changes to configuration files, discussed in the
section on Command Line Utilities.

Collections API

The Collections API is used to enable you to create, remove, or reload collections, but in the context of SolrCloud you can also use it to create
collections with a specific number of shards and replicas.

The base URL for all API calls below is ht t p: / / <host name>: <port >/ sol r.
® API Entry Points

® Create a Collection
® Reload a Collection

Apache Solr Reference Guide 4.4 296

http://zookeeper.apache.org/doc/r3.4.5/zookeeperAdmin.html

Split a Shard

Delete a Shard

Create an Alias for a Collection
Delete a Collection Alias
Delete a Collection

API Entry Points

/adm n/ col | ecti ons?act i on=CREATE: create a collection

/admi n/ col | ecti ons?act i on=RELOAD: reload a collection

/admi n/col | ecti ons?acti on=SPLI TSHARD: split a shard into two new shards
/adm n/ col | ecti ons?act i on=DELETESHARD: delete an inactive shard

/adm n/ col | ecti ons?act i on=CREATEALI AS: create an alias for a collection
/adm n/ col | ecti ons?act i on=DELETEALI AS: delete an alias for a collection
/admi n/ col | ecti ons?act i on=DELETE: delete a collection

Create a Collection

/adm n/ col | ecti ons?act i on=CREATE&nane=nane&nunthar ds=nunber & epl i cati onFact or =nunber &raxShar dsPer Node=
nunber &cr eat eNodeSet =nodel i st &col | ecti on. confi gName=confi gnanme

Input

Query Parameters

Key Type Required Default Description

name string Yes The name of the collection to be created.

numShards integer = Yes null The number of shards to be created as part of the collection.

replicationFactor integer = Yes null The number of replicas to be created for each shard.

maxShardsPerNode integer No 1 When creating collections, the shards and/or replicas are spread across all available

(i.e., live) nodes, and two replicas of the same shard will never be on the same node.
If a node is not live when the CREATE operation is called, it will not get any parts of
the new collection, which could lead to too many replicas being created on a single
live node. Defining max Shar dsPer Node sets a limit on the number of replicas
CREATE will spread to each node. If the entire collection can not be fit into the live
nodes, no collection will be created at all.

createNodeSet string No null Allows defining the nodes to spread the new collection across. If not provided, the
CREATE operation will create shard-replica spread across all live Solr nodes. The
format is a comma-separated list of node_names, such as
| ocal host: 8983_sol r, | ocal host: 8984 _sol r, | ocal host: 8985_sol r.

collection.configName ' string | No the Defines the name of the configurations (which must already be stored in ZooKeeper)
collection ' to use for this collection. If not provided, Solr will default to the collection name as the
name configuration name.

Output

Output Content

The response will include the status of the request and the new core names. If the status is anything other than "success", an error message will
explain why the request failed.

Examples

Input

http://1ocal host: 8983/ sol r/adm n/ col | ecti ons?acti on=CREATE&nane=newCol | ecti on&unthar ds=

Output

Apache Solr Reference Guide 4.4 297

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st nanme="responseHeader" >
<int name="status">0</int>
<int name="Qrli me">3764</i nt >
</lst>
<l st name="success">
<l st>
<l st name="responseHeader" >
<int name="status">0</int>
<int nanme="Qrli ne">3450</i nt >
</lst>
<str name="core">newCol | ecti on_shardl_replical</str>
<str name="saved">/ Applications/solr-4.3.0/exanple/solr/solr.xm</str>
</[lst>
<l st>
<l st name="responseHeader" >
<int name="status">0</int>
<int nanme="Qrli me">3597</i nt >
</lst>
<str name="core">newCol | ecti on_shard2_replical</str>
<str name="saved">/ Applications/solr-4.3.0/exanmple/solr/solr.xm</str>
</[lst>
</lst>
</ response>

Reload a Collection

/adm n/ col | ecti ons?act i on=RELOAD&nane=nane

The RELOAD action is used when you have changed a configuration in ZooKeeper.
Input

Query Parameters

Key Type Required Description

name string | Yes The name of the collection to reload.

Output

Output Content

The response will include the status of the request and the cores that were reloaded. If the status is anything other than "success", an error

message will explain why the request failed.
Examples

Input

http://1ocal host: 8983/ sol r/adm n/col | ecti ons?acti on=RELOAD&anme=newCol | ecti on

Output

Apache Solr Reference Guide 4.4

298

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st nanme="responseHeader" >
<int name="status">0</int>
<int name="Qri me">1551</i nt >
</lst>
<l st name="success">
<l st name="10.0.1.6:8983_solr">
<l st name="responseHeader" >
<i nt name="status">0</int>
<int nanme="Qrli ne">761</int>
</lst>
</lst>
<l st name="10.0.1.4:8983 solr">
<l st nanme="responseHeader" >
<int name="status">0</int>
<int name="Qri me">1527</i nt >
</lst>
</lst>
</lst>
</ response>

Split a Shard

Splitting a shard will take an existing shard and break it into two pieces. The original shard will continue to contain the same data as-is but it will
start re-routing requests to the new shards. The new shards will have as many replicas as the original shard. After splitting a shard, you should
issue a commit to make the documents visible, and then you can remove the original shard (with the Core API or Solr Admin Ul) when ready.

This command allows for seamless splitting and requires no downtime. A shard being split will continue to accept query and indexing requests
and will automatically start routing them to the new shards once this operation is complete. This command can only be used for SolrCloud
collections created with "numShards" parameter i.e. collections which rely on Solr's hash based routing mechanism. The split is performed by

dividing the original shard's hash range into two equal partitions and dividing up the documents in the original shard according to the new
sub-ranges.

Note that this is a synchronous operation and it can take some time to split a large shard. Therefore, a read timeout does not necessarily imply
failure and a retry should be made after verifying the state of the cluster.

/adm n/ col | ecti ons?acti on=SHARDSPLI T&col | ecti on=nanme&shar d=shar dl D

Input

Query Parameters

Key Type Required Description

collection | string Yes The name of the collection that includes the shard to be split.
shard string | Yes The name of the shard to be split.

Output

Output Content
The output will include the status of the request and the new shard names, which will use the original shard as their basis, adding an underscore

and a number. For example, "shard1" will become "shard1l_0" and "shardl_1". If the status is anything other than "success", an error message
will explain why the request failed.

Examples

Input
Split shard1 of the "anotherCollection” collection.

Apache Solr Reference Guide 4.4 299

http://10.0.1.6:8983/sol r/adnin/collections?acti on=SPLI TSHARD&col | ect i on=anot her Col | ect

Output

<?xm version="1.0" encodi ng="UTF- 8" ?>
<r esponse>
<l st nanme="responseHeader" >
<int name="status">0</int>
<int name="Qrli me" >6120</int >
</lst>
<l st name="success">
<l st>
<l st name="responseHeader" >
<int name="status">0</int>
<int name="Qri me">3673</int>
</lst>
<str name="core">anot herCol | ection_shardl_1 replical</str>
<str name="saved">/ Applications/solr-4.3.0/exanple/solr/solr.xm</str>
</lst>
<l st>
<l st name="responseHeader" >
<int name="status">0</int>
<int nanme="Qrli ne">3681</i nt >
</lst>
<str name="core">anot herCol | ecti on_shardl_0 replical</str>
<str name="saved">/ Applications/solr-4.3.0/exanple/solr/solr.xm</str>
</lst>
<l st>
<l st name="responseHeader" >
<int name="status">0</int>
<int nanme="Qrli ne">6008</i nt >
</lst>
</lst>
<l st>
<l st nanme="responseHeader" >
<int name="status">0</int>
<int name="Qrli ne" >6007</int>
</lst>
</lst>
<l st>
<l st name="responseHeader" >
<int name="status">0</int>
<int name="Qli me">71</int>
</lst>
</lst>
<l st>
<l st nanme="responseHeader" >
<int name="status">0</int>
<i nt name="Qri me">0</i nt>
</lst>
<str nanme="core">anot herCol | ection_shardl_1 replical</str>
<str nanme="stat us">EMPTY_BUFFER</ st r >
</lst>
<l st>

Apache Solr Reference Guide 4.4

300

<l st name="responseHeader" >
<int name="status">0</int>
<int name="Qrli me">0</int>
</|st>
<str name="core" >anot her Col | ecti on_shardl_0_replical</str>
<str name="st at us" >EMPTY_BUFFER</ st r >
</lst>

Apache Solr Reference Guide 4.4 301

</lst>
</ response>

Delete a Shard
Deleting a shard will unload all replicas of the shard and remove them from cl ust er st at e. j son. It will only remove shards that are inactive, or

which have no range given for custom sharding.

/adm n/ col | ecti ons?act i on=DELETESHARD&shar d=shar dl D&col | ecti on=nane

Input
Query Parameters

Key Type Required Description

collection ' string Yes The name of the collection that includes the shard to be split.

shard string = Yes The name of the shard to be split.

Output

Output Content
The output will include the status of the request. If the status is anything other than "success", an error message will explain why the request

failed.
Examples

Input
Delete 'shardl' of the "anotherCollection" collection.

http://10.0.1.6:8983/sol r/adni n/col | ecti ons?acti on=DELETESHARD&col | ecti on=anot her Col | ect

Output

<r esponse>
<l st nane="responseHeader" >
<int name="status">0</int>
<int name="Qri me">558</int >
</|st>
<l st name="success">
<l st name="10.0.1.4:8983_solr">
<l st name="r esponseHeader" >
<i nt name="status">0</int>
<int name="Qli me">27</int>
</lst>
</lst>
</|st>
</ response>

Create an Alias for a Collection

/ adm n/ col | ecti ons?act i on=CREATEALI| AS&ane=naneé&col | ecti ons=col | ectionli st

Input

Apache Solr Reference Guide 4.4 302

Query Parameters

Key Type Required Description

name string | Yes The alias name to be created.

collections ' string | Yes The list of collections to be aliased, separated by commas.
Output

Output Content

The output will simply be a responseHeader with details of the time it took to process the request. To confirm the creation of the alias, you can
look in the Solr Admin Ul, under the Cloud section and find the al i ases. j son file.

Examples

Input
Create an alias named "testalias" and link it to the collections named "anotherCollection" and "testCollection”.

http://10.0.1.6:8983/sol r/adm n/col | ecti ons?acti on=CREATEALI AS&nane=t est al i as&col | ecti on

Output

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st name="responseHeader" >
<i nt name="status">0</int>
<int nanme="Qrli ne">122</int >
</lst>
</ response>

Delete a Collection Alias

/admi n/col | ecti ons?acti on=DELETEALI AS&anme=nane
Input

Query Parameters

Key | Type Required Description

name string | Yes The name of the alias to delete.

Output

Output Content

The output will simply be a responseHeader with details of the time it took to process the request. To confirm the removal of the alias, you can
look in the Solr Admin Ul, under the Cloud section, and find the al i ases. j son file.

Examples

Input
Remove the alias named "testalias".

http://10.0.1.6:8983/sol r/adnin/coll ecti ons?acti on=DELETEALI AS&nane=t estal i as

Apache Solr Reference Guide 4.4 303

Output

<?xm version="1.0" encodi ng="UTF- 8" ?>
<response>
<l st nanme="responseHeader" >
<int name="status">0</int>
<int name="Qrli me">117</i nt >
</lst>
</ response>

Delete a Collection

/admi n/col | ecti ons?acti on=DELETE&nane=col | ecti on
Input

Query Parameters

Key Type Required Description

name string | Yes The name of the collection to delete.

Output
Output Content

The response will include the status of the request and the cores that were deleted. If the status is anything other than "success", an error
message will explain why the request failed.

Examples

Input
Delete the collection named "newCollection".

http://10.0. 1. 6:8983/sol r/adm n/ col | ecti ons?acti on=DELETE&nanme=newCol | ecti on

Output

Apache Solr Reference Guide 4.4 304

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st nanme="responseHeader" >
<int name="status">0</int>
<int name="Qri ne">603</int >
</lst>
<l st name="success">
<l st name="10.0.1.6:8983_solr">
<l st name="responseHeader" >
<i nt name="status">0</int>
<int name="Qli me">19</int >
</lst>
<str name="saved">/ Applications/solr-4.3.0/exanple/solr/solr.xm</str>
</lst>
<l st nanme="10.0.1.4:8983 solr">
<l st nanme="responseHeader" >
<int name="status">0</int>
<int name="Qrli me">67</int>
</lst>
<str nanme="saved">/ Applications/solr-4.3.0/exanple/solr/solr.xm</str>
</lst>
</lst>
</ response>

Parameter Reference

Cluster Parameters

nunBhar ds Defaultsto = The number of shards to hash documents to. There must be one leader per shard and each leader can have N
1 replicas.

SolrCloud Instance Parameters

These are setin sol r. xni1 , but by default they are set up to also work with system properties.

host Defaults to the first local host If the wrong host address is found automatically, you can override the host address
address found with this parameter.

host Port Defaults to the jetty.port system The port that Solr is running on. By default this is found by looking at the
property jetty. port system property.

host Cont ext = Defaults to solr The context path for the Solr web application.

SolrCloud Instance ZooKeeper Parameters

zkRun Defaults to Causes Solr to run an embedded version of ZooKeeper. Set to the address of
| ocal host: <sol r Port +1001> | ZooKeeper on this node; this allows us to know who you are in the list of addresses
in the zkHost connect string. Use -DzkRun to get the default value.

zkHost No default The host address for ZooKeeper. Usually this is a comma-separated list of
addresses to each node in your ZooKeeper ensemble.

zkd i ent Ti meout & Defaults to 15000 The time a client is allowed to not talk to ZooKeeper before its session expires.

zkRun and zkHost are set up using system properties. zkd i ent Ti neout is setup in sol r. xm by default, but can also be set using a
system property.

SolrCloud Core Parameters

Apache Solr Reference Guide 4.4 305

shardl d Defaults to being automatically assigned based on numShards = Allows you to specify the id used to group cores into shards.

shar dl d can be configured in sol r. xim for each core element as an attribute.

Additional cloud related parameters are discussed in Solr Cores and solr.xml.

Command Line Utilities

Solr's Administration page (found by default at http://hostname:8983/solr/admin), provides a section with menu items for monitoring indexing and
performance statistics, information about index distribution and replication, and information on all threads running in the JVM at the time. There is
also a section where you can run queries, and an assistance area.

In addition, SolrCloud provides its own administration page (found by default at http://localhost:8983/solr/#/~cloud), as well as a few tools
available via ZooKeeper's Command Line Utility (CLI). The CLI lets you upload configuration information to ZooKeeper, in the same two ways that

were shown in the examples in Parameter Reference. It also provides a few other commands that let you link collection sets to collections, make
ZooKeeper paths or clear them, and download configurations from ZooKeeper to the local filesystem.

Using The ZooKeeper CLI

ZooKeeper has a utility that lets you pass command line parameters: zkcl i . bat (for Windows environments) and zkcl i . sh (for Unix
environments).

zkcl i Parameters

The zkcl i command takes the form - cnd <ar g> where the command to run can be boot st r ap, upconfi g, downconfi g, | i nkconfi g,
makepat h, put orcl ear.

Parameter Usage Meaning

-C -collection <arg> | For | i nkconf i g: name of the collection.

-d --confdir <arg For upconf i g: a directory of configuration files.

-h --help Bring up the help page.

-n --confname <arg> For upconfi g, | i nkconf i g: name of the configuration set.

-r --runzk <arg> Run ZooKeeper internally by passing the Solr run port; only for clusters on one machine.
-s --solrhome <arg> For bootstrap, r unzk: sol r hone <location>.

-z --zkhost <arg> ZooKeeper host address. This parameter is mandatory for all CLI commands.

ZooKeeper CLI Examples

Below are some examples of using the zkcl i CLI:

Uploading a Configuration Directory

java -cl asspath exanpl e/ sol r-webapp/ VEB- | NF/ | i b/ *
org. apache. sol r. cl oud. ZKCLI -cnd upconfig -zkhost 127.0.0. 1: 9983
-confdir exanple/solr/collectionl/conf -confnane confl -solrhone exanplel/solr

Put arbitrary data into a new file

java -cl asspath exanpl e/ sol r-webapp/ VEB- | NF/ | i b/ *
org. apache. sol r. cl oud. ZkCLI -zkhost 127.0.0.1:9983 -put /data.txt 'sone data'

Linking a Collection to a Configuration Set

Apache Solr Reference Guide 4.4 306

http://hostname:8983/solr/admin
http://localhost:8983/solr/#/~cloud

java -cl asspath exanpl e/ sol r-webapp/ webapp/ VEEB- | NF/ | i b/ *
org. apache. sol r. cl oud. ZkCLI -cnd |inkconfig -zkhost 127.0.0.1:9983
-collection collectionl -confname confl -sol rhone exanple/solr

Bootstrapping All the Configuration Directories in sol r. xm

java -cl asspat h exanpl e/ sol r-webapp/ webapp/ VEB- | NF/ | i b/ *
org. apache. sol r. cl oud. ZKCLI -cnd bootstrap -zkhost 127.0.0.1: 9983

-sol rhonme exanpl e/ sol r

Scripts
There are scripts in exanpl e/ cl oud- scri pt s that handle the classpath and class name for you if you are using Solr out of the box with Jetty.

Commands then become:

sh zkcli.sh -cmd linkconfig -zkhost 127.0.0.1:9983
-collection collectionl -confname confl -sol rhone exanpl e/ solr

SolrCloud with Legacy Configuration Files

All of the required configuration is already set up in the sample configurations shipped with Solr. You only need to add the following if you are
migrating old configuration files. Do not remove these files and parameters from a new Solr instance if you intend to use Solr in SolrCloud mode.

These properties exist in 3 files: schema. xml , sol rconfi g. xm ,and sol r. xm .

1. In schena. xm , you must have a _ver si on_ field defined:

<field nane="_version_" type="long" indexed="true" stored="true" rmultiVal ued="fal se"/>

2.Insol rconfi g. xnl , you must have an Updat eLog defined. This should be defined in the updat eHandl er section.

n

<updat eHandl| er >
<updat eLog>
<str name="dir">%${solr.data.dir:}</str>
</ updat eLog>

</ updat eHandl er >

3. You must have a replication handler called / r epl i cat i on defined:

<request Handl er nanme="/replication" startup="lazy" />

There are several parameters available for this handler, discussed in the section Index Replication.

4. You must have a Realtime Get handler called "/get" defined:

Apache Solr Reference Guide 4.4 307

<r equest Handl er nanme="/get">
<l st nanme="defaul ts">
<str name="onitHeader">true</str>
</lst>
</ request Handl er >

The parameters for this handler are discussed in the section RealTime Get.

5. You must have the admin handlers defined:

<request Handl er name="/admi n/" cl ass="sol r. adm n. Adni nHandl ers" />

6. And you must leave the admin path in sol r. xnl as the default:

<cores adm nPat h="/admi n/cores" />

7. The DistributedUpdateProcessor is part of the default update chain and is automatically injected into any of your custom update chains, so you
don't actually need to make any changes for this capability. However, should you wish to add it explicitly, you can still add it to the
sol rconfig. xm file as part of an updat eRequest Pr ocessor Chai n. For example:

<updat eRequest Pr ocessor Chai n nane="sanpl e" >
<processor class="sol r.LogUpdat eProcessor Factory" />
<processor class="solr.DistributedUpdat eProcessorFactory"/>
<processor cl ass="ny. package. Updat eFactory"/>
<processor cl ass="sol r. RunUpdat eProcessor Factory" />

</ updat eRequest Pr ocessor Chai n>

If you do not want the DistributedUpdateProcessFactory auto-injected into your chain (for example, if you want to use SolrCloud functionality, but
you want to distribute updates yourself) then specify the NoOpDi st ri but i ngUpdat ePr ocessor Fact or y update processor factory in your
chain:

<updat eRequest Pr ocessor Chai n nane="sanpl e" >
<processor class="sol r.LogUpdat eProcessor Factory" />
<processor class="sol r. NoQpDi stri buti ngUpdat eProcessor Factory"/>
<processor class="ny. package. MyDi stri but edUpdat eFactory"/>
<processor class="sol r. RunUpdat eProcessor Factory" />

</ updat eRequest Pr ocessor Chai n>

In the update process, Solr skips updating processors that have already been run on other nodes.

SolrCloud Glossary

SolrCloud Glossary
* Node : A JVM instance running Solr; a server.
® Cluster : A cluster is a set of Solr nodes managed as a single unit.
® Core : Anindividual Solr instance (represents a logical index). Multiple cores can run on a single node.

® Shard : In Solr, a logical section of a single collection. This may be spread across multiple nodes of the cluster. Each shard can have as

Apache Solr Reference Guide 4.4 308

http://wiki.apache.org/solr/UpdateRequestProcessor?#Distributed_Updates

many replicas as needed.

® Leader : Each shard has one node identified as its leader. All the writes for documents belonging to a shard are routed through the
leader.

® Collection (Solr) : Multiple documents that make up one logical index. A collection must have a single schema, but can be spread over
multiple cores. A cluster can have multiple collections. When you create a collection, you specify its number of shards. You may have
many collections in the same set of servers, each with a different number of shards.

® ZooKeeper : Apache ZooKeeper keeps track of configuration and naming, among other things, for a cluster of Solr nodes. A ZooKeeper
cluster is used as (1) the central configuration store for the cluster, (2) a coordinator for operations requiring distributed synchronization,
and (3) the system of record for cluster topology.

® Ensemble : Multiple ZooKeeper instances running simultaneously.

® Collection (ZooKeeper) : A group of cores managed together as part of a SolrCloud installation.

® Overseer : The Overseer coordinates the clusters. It keeps track of the existing nodes and shards and assigns shards to nodes.

® Transaction Log : An append-only log of write operations maintained by each node.

®* Document : A group of fields and their values. Documents are the basic unit of storage, and their specific locations are found using an

index. Documents are assigned to shards using standard hashing, or by specifically assigning a shard within the document ID.
Documents are versioned after each write operation.

Related Pages

® Solr Glossary

Apache Solr Reference Guide 4.4 309

Legacy Scaling and Distribution

This section describes how to set up distribution and replication in Solr. It is considered "legacy" behavior, since while it is still supported in Solr,
the SolrCloud functionality described in the previous chapter is where the current development is headed. However, if you don't need all that
SolrCloud delivers, search distribution and index replication may be sufficient.

This section covers the following topics:

Introduction to Scaling and Distribution: Conceptual information about distribution and replication in Solr.

Distributed Search with Index Sharding: Detailed information about implementing distributed searching in Solr.

Index Replication: Detailed information about replicating your Solr indexes.

Combining Distribution and Replication: Detailed information about replicating shards in a distributed index.

Merging Indexes: Information about combining separate indexes in Solr.

Introduction to Scaling and Distribution

Both Lucene and Solr were designed to scale to support large implementations with minimal custom coding. This section covers:
® distributing an index across multiple servers
® replicating an index on multiple servers
® merging indexes

If you need full scale distribution of indexes and queries, as well as replication, load balancing and failover, you may want to use SolrCloud. Full
details on configuring and using SolrCloud is available in the section SolrCloud.

What Problem Does Distribution Solve?

If searches are taking too long or the index is approaching the physical limitations of its machine, you should consider distributing the index across
two or more Solr servers.

To distribute an index, you divide the index into partitions called shards, each of which runs on a separate machine. Solr then partitions searches

into sub-searches, which run on the individual shards, reporting results collectively. The architectural details underlying index sharding are
invisible to end users, who simply experience faster performance on queries against very large indexes.

What Problem Does Replication Solve?

Replicating an index is useful when:

® You have a large search volume which one machine cannot handle, so you need to distribute searches across multiple read-only copies
of the index.

® There is a high volume/high rate of indexing which consumes machine resources and reduces search performance on the indexing
machine, so you need to separate indexing and searching.

® You want to make a backup of the index (see Backing Up).

Distributed Search with Index Sharding

When an index becomes too large to fit on a single system, or when a query takes too long to execute, an index can be split into multiple shards,
and Solr can query and merge results across those shards. A single shard receives the query, distributes the query to other shards, and
integrates the results. You can find additional information about distributed search on the Solr wiki: http://wiki.apache.org/solr/DistributedSearch.

The figure below compares a single server to a distributed configuration with two shards.

Apache Solr Reference Guide 4.4 310

http://wiki.apache.org/solr/DistributedSearch

Single Server Distributed

Shard1 Shard 2

ﬂ If single queries are currently fast enough and if one simply wants to expand the capacity (queries/sec) of the search system,
then standard index replication (replicating the entire index on multiple servers) should be used instead of index sharding.

Update commands may be sent to any server with distributed indexing configured correctly. Document adds and deletes are forwarded to the
appropriate server/shard based on a hash of the unique document id. commit commands and deleteByQuery commands are sent to every
server in shar ds.

Update reorders (i.e., replica A may see update X then Y, and replica B may see update Y then X). deleteByQuery also handles reorders the

same way, to ensure replicas are consistent. All replicas of a shard are consistent, even if the updates arrive in a different order on different
replicas.

Distributed Support for Date and Numeric Range Faceting

You can now use range faceting for anything that uses date math (both date and numeric ranges). In addition, you can now use NOW by
including Facet Par ans. FACET_DATE_NOWin the original request to sync remote shard requests to a common 'now' time. For example, using
range faceting is a convenient way to keep the rest of your request the same, but check how the current date affects your date boosting
strategies.

Facet Par ans. FACET_DATE_NOWtakes as a parameter a (stringified) long that is the number of milliseconds from 1 Jan 1970 00:00, i.e., the
returned value from a Syst em current Ti neM | | i s() call. This delineates it from a 'searchable’ time and avoids superfluous date parsing.

' NOTE: This parameter affects date facet timing only. If there are other areas of a query that rely on 'NOW', these will not
interpret this value.

For distributed f acet _dat es, Solr steps through each date facet, adding and merging results from the current shard.

Any time and/or time zone differences are NOT taken into account here. The issue of time zone/skew on distributed shards is currently handled
by passing a f acet . dat e. now=<epocht i ne> parameter in the search query. This is then used by the participating shards to use as 'now'".

If you use the first encountered shard's f acet _dat es as the basis for subsequent shards' data to be merged in, if subsequent shards'
f acet _dat es are skewed in relation to the first by a >1 'gap’, these 'earlier' or 'later' facets will not be merged in.

There are two reasons for this:
1. Performance: It is of course faster to check f acet _dat e lists against a single map's data, rather than against each other.

2. If'earlier' and/or 'later' f acet _dat es are added in, this makes the time range larger than that which was requested (e.g. a request for
one hour's worth of facets could bring back 2, 3, or more hours of data).

Distributing Documents across Shards

It is up to you to get all your documents indexed on each shard of your server farm. Solr does not include out-of-the-box support for distributed
indexing, but your method can be as simple as a round robin technique. Just index each document to the next server in the circle. (For more
information about indexing, see Indexing and Basic Data Operations.)

A simple hashing system would also work. The following should serve as an adequate hashing function.

uni quel d. hashCode() % nunServers

One advantage of this approach is that it is easy to know where a document is if you need to update it or delete. In contrast, if you are moving
documents around in a round-robin fashion, you may not know where a document actually is.

Solr does not calculate universal term/doc frequencies. For most large-scale implementations, it is not likely to matter that Solr calculates TD/IDF
at the shard level. However, if your collection is heavily skewed in its distribution across servers, you may find misleading relevancy results in your

Apache Solr Reference Guide 4.4 311

searches. In general, it is probably best to randomly distribute documents to your shards.

You can directly configure aspects of the concurrency and thread-pooling used within distributed search in Solr. This allows for finer grained
control and you can tune it to target your own specific requirements. The default configuration favors throughput over latency.

To configure the standard handler, provide a configuration like this:

<r equest Handl er nane="standard" cl ass="sol r. SearchHandl er" default="true">
<l-- other paranms go here -->
<shar dHandl er Fact ory cl ass="Ht t pShar dHandl er Fact ory" >
<i nt name="socket Ti meQut " >1000</i nt >
<int name="connTi meCut " >5000</i nt >
</ shar dHandl er >
</ request Handl er >

The parameters that can be specified are as follows:

Parameter Default Explanation

socket Ti meout 0 (use OS default) The amount of time in ms that a socket is allowed to wait.

connTi neout 0 (use OS default) The amount of time in ms that is accepted for binding / connecting a socket
maxConnect i onsPer Host = 20 The maximum number of connections that is made to each individual shard in a

distributed search.

cor ePool Si ze 0 The retained lowest limit on the number of threads used in coordinating distributed
search.

maxi munPool Si ze Integer. MAX_VALUE The maximum number of threads used for coordinating distributed search.

maxThr eadl dl eTi e 5 seconds The amount of time to wait for before threads are scaled back in response to a reduction
in load.

si zeOf Queue -1 If specified, the thread pool will use a backing queue instead of a direct handoff buffer.

High throughput systems will want to configure this to be a direct hand off (with -1).
Systems that desire better latency will want to configure a reasonable size of queue to
handle variations in requests.

fairnessPolicy false Chooses the JVM specifics dealing with fair policy queuing, if enabled distributed

searches will be handled in a First in First out fashion at a cost to throughput. If disabled
throughput will be favored over latency.

Executing Distributed Searches with the shar ds Parameter

If a query request includes the shar ds parameter, the Solr server distributes the request across all the shards listed as arguments to the
parameter. The shar ds parameter uses this syntax:

host: port/base_url [, host:port/base url]*

For example, the shar ds parameter below causes the search to be distributed across two Solr servers: solrl and solr2, both of which are
running on port 8983:

http://1ocal host: 8983/ solr/sel ect?
shards=sol r 1: 8983/ sol r, sol r 2: 8983/ sol r & ndent =t r ue&q=i pod+sol r

Rather than require users to include the shards parameter explicitly, it is usually preferred to configure this parameter as a default in the
RequestHandler section of sol r confi g. xm .

' Do not add the shar ds parameter to the standard requestHandler; otherwise, search queries may enter an infinite loop.
Instead, define a new requestHandler that uses the shar ds parameter, and pass distributed search requests to that handler.

Currently, only query requests are distributed. This includes requests to the standard request handler (and subclasses such as the DisMax
RequestHandler), and any other handler (or g. apache. sol r. handl er. conponent . sear chHandl er) using standard components that
support distributed search.

Apache Solr Reference Guide 4.4 312

http://localhost:8983/solr/select?

Where shar ds. i nf o=t r ue, distributed responses will include information about the shard (where each shard represents a logically different
index or physical location), such as the following:

<l st name="shards.info">
<l st name="local host: 7777/ sol r">
<l ong name="nuntound">1333</I| ong>
<fl oat name="naxScore">1.0</fl oat >
<l ong nanme="ti nme">686</1| ong>
</lst>
<l st name="I| ocal host: 8888/ sol r">
<l ong nane="nunfound">342</| ong>
<fl oat name="naxScore">1.0</fl oat >
<l ong nanme="ti me">602</1 ong>
</lst>
</|st>

The following components support distributed search:

The Query component, which returns documents matching a query

The Facet component, which processes facet.query and facet.field requests where facets are sorted by count (the default).
The Highlighting component, which enables Solr to include "highlighted" matches in field values.

The Stats component, which returns simple statistics for numeric fields within the DocSet.

The Debug component, which helps with debugging.

Limitations to Distributed Search

Distributed searching in Solr has the following limitations:

Each document indexed must have a unique key.

If Solr discovers duplicate document IDs, Solr selects the first document and discards subsequent ones.

Inverse-document frequency (IDF) calculations cannot be distributed.

The index for distributed searching may become momentarily out of sync if a commit happens between the first and second phase of the

distributed search. This might cause a situation where a document that once matched a query and was subsequently changed may no

longer match the query but will still be retrieved. This situation is expected to be quite rare, however, and is only possible for a single

query request.

® Distributed searching supports only sorted-field faceting, not date faceting

® The number of shards is limited by number of characters allowed for GET method's URI; most Web servers generally support at least
4000 characters, but many servers limit URI length to reduce their vulnerability to Denial of Service (DoS) attacks.

® TF/IDF computations are per shard. This may not matter if content is well (randomly) distributed.

® Shard information can be returned with each document in a distributed search by including f | =i d, [shard] in the search request. This
returns the shard URL.

® |n adistributed search, the data directory from the core descriptor overrides any data directory in sol rconfi g. xm .

® Update commands may be sent to any server with distributed indexing configured correctly. Document adds and deletes are forwarded to

the appropriate server/shard based on a hash of the unique document id. commit commands and deleteByQuery commands are sent to

every server in shar ds.

Avoiding Distributed Deadlock

Each shard may also serve top-level query requests and then make sub-requests to all of the other shards. In this configuration, care should be
taken to ensure that the max number of threads serving HTTP requests in the servlet container is greater than the possible number of requests
from both top-level clients and other shards. If this is not the case, the configuration may result in a distributed deadlock.

For example,a deadlock might occur in the case of two shards, each with just a single thread to service HTTP requests. Both threads could
receive a top-level request concurrently, and make sub-requests to each other. Because there are no more remaining threads to service requests,
the servlet containers will block the incoming requests until the other pending requests are finished, but they will not finish since they are waiting

for the sub-requests. By ensuring that the servlets are configured to handle a sufficient number of threads, you can avoid deadlock situations like
this.

Testing Index Sharding on Two Local Servers

For simple functionality testing, it's easiest to just set up two local Solr servers on different ports. (In a production environment, of course, these
servers would be deployed on separate machines.)

1. Make a copy of the solr example directory:

Apache Solr Reference Guide 4.4 313

cd solr
cp -r exanpl e exanpl e7574

2. Change the port number:

perl -pi -e s/8983/7574/ g exanpl e7574/etc/jetty. xm
exanpl e7574/ exanpl edocs/ post . sh

3. In the first window, start up the server on port 8983:

cd exanpl e
java -server -jar start.jar

4. In the second window, start up the server on port 7574:

cd exanpl e7574
java -server -jar start.jar

5. In the third window, index some example documents to each server:

cd exanpl e/ exanpl edocs

./post.sh [a-m*.xm

cd ../../exanpl e7574/ exanpl edocs
./ post.sh [n-z]*.xnl

6. Now do a distributed search across both servers with your browser or cur | :

curl
"http://1ocal host: 8983/ sol r/sel ect ?shar ds=I ocal host: 8983/ sol r, | ocal host: 7574/ sol r &

Index Replication

‘1, The Lucene index format has changed with Solr 4. As a result, once you upgrade, previous versions of Solr will no longer be
able to read the rest of your indices. In a master/slave configuration, all searchers/slaves should be upgraded before the master.
If the master is updated first, the older searchers will not be able to read the new index format.

Index Replication distributes complete copies of a master index to one or more slave servers. The master server continues to manage updates to
the index. All querying is handled by the slaves. This division of labor enables Solr to scale to provide adequate responsiveness to queries against
large search volumes.

Apache Solr Reference Guide 4.4 314

The figure below shows a Solr configuration using index replication. The master server's index is replicated on the slaves.

Replication
Master

slavel slave2 slave3

A Solr index can be replicated across multiple slave servers, which then process requests.

Topics covered in this section:

Index Replication in Solr

Replication Terminology

Configuring the Replication RequestHandler on a Master Server
Configuring the Replication RequestHandler on a Slave Server
Setting Up a Repeater with the ReplicationHandler

Commit and Optimize Operations

Slave Replication

Index Replication using ssh and rsync

The Snapshot and Distribution Process

Commit and Optimization

Distribution and Optimization

Index Replication in Solr

Solr includes a Java implementation of index replication that works over HTTP.
For information on the ssh/r sync based replication, see Index Replication using ssh and rsync.
The Java-based implementation of index replication offers these benefits:

® Replication without requiring external scripts

® The configuration affecting replication is controlled by a single file, sol r confi g. xmi

® Supports the replication of configuration files as well as index files

® Works across platforms with same configuration

® No reliance on OS-dependent hard links

® Tightly integrated with Solr; an admin page offers fine-grained control of each aspect of replication

® The Java-based replication feature is implemented as a RequestHandler. Configuring replication is therefore similar to any normal
RequestHandler.

Replication Terminology

The table below defines the key terms associated with Solr replication.

Term Definition
Collection A Lucene collection is a directory of files. These files make up the indexed and returnable data of a Solr search repository.

Distribution = The copying of a collection from the master server to all slaves. The distribution process takes advantage of Lucene's index file
structure.

Inserts and = As inserts and deletes occur in the collection, the directory remains unchanged. Documents are always inserted into newly
Deletes created files. Documents that are deleted are not removed from the files. They are flagged in the file, deletable, and are not
removed from the files until the collection is optimized.

Apache Solr Reference Guide 4.4 315

Master and = The Solr distribution model uses the master/slave model. The master is the service which receives all updates initially and keeps

Slave everything organized. Solr uses a single update master server coupled with multiple query slave servers. All changes (such as
inserts, updates, deletes, etc.) are made against the single master server. Changes made on the master are distributed to all the
slave servers which service all query requests from the clients.

Update An update is a single change request against a single Solr instance. It may be a request to delete a document, add a new
document, change a document, delete all documents matching a query, etc. Updates are handled synchronously within an
individual Solr instance.

Optimization = A process that compacts the index and merges segments in order to improve query performance. New secondary segment(s)
are created to contain documents inserted into the collection after it has been optimized. A Lucene collection must be optimized
periodically to maintain satisfactory query performance. Optimization is run on the master server only. An optimized index will
give you a performance gain at query time of at least 10%. This gain may be more on an index that has become fragmented
over a period of time with many updates and no optimizations. Optimizations require a much longer time than does the
distribution of an optimized collection to all slaves.

Segments The number of files in a collection.

mergeFactor = A parameter that controls the number of files (segments) in a collection. For example, when mergeFactor is set to 3, Solr will fill
one segment with documents until the limit maxBufferedDocs is met, then it will start a new segment. When the number of
segments specified by mergeFactor is reached--ir-this-example—3--then Solr will merge all the segments into a single index file,
then begin writing new documents to a new segment.

Snapshot A directory containing hard links to the data files. Snapshots are distributed from the master server when the slaves pull them,
"smartcopying" the snapshot directory that contains the hard links to the most recent collection data files.

Configuring the Replication RequestHandler on a Master Server

Before running a replication, you should set the following parameters on initialization of the handler:

Name Description

replicateAfter String specifying action after which replication should occur. Valid values are commit, optimize, or startup. There can
be multiple values for this parameter. If you use "startup", you need to have a "commit" and/or "optimize" entry also if
you want to trigger replication on future commits or optimizes.

backupAfter String specifying action after which a backup should occur. Valid values are commit, optimize, or startup. There can
be multiple values for this parameter. It is not required for replication, it just makes a backup.

maxNumberOfBackups ' Integer specifying how many backups to keep. This can be used to delete all but the most recent N backups.
confFiles The configuration files to replicate, separated by a comma.

commitReserveDuration = If your commits are very frequent and your network is slow, you can tweak this parameter to increase the amount of
time taken to download 5Mb from the master to a slave. The default is 10 seconds.

The example below shows how to configure the Replication RequestHandler on a master server.

<request Handl er nanme="/replication" class="solr.ReplicationHandl er" >
<l st name="naster">
<str name="replicateAfter">optim ze</str>
<str nanme="backupAfter">optimn ze</str>
<str nanme="confFil es">schema. xn , st opwor ds. t xt, el evate. xm </ str>
<str name="conmi t ReserveDuration">00: 00: 10</str>
</lst>
<i nt name="nmaxNunber O Backups" >2</i nt >
</ request Handl er >

Replicating sol rconfi g. xm

In the configuration file on the master server, include a line like the following:

<str name="confFi | es">sol rconfig_slave.xn :solrconfig.xm,h x.xm,y.xm</str>

Apache Solr Reference Guide 4.4 316

This ensures that the local configuration sol r confi g_sl ave. xm will be saved as sol r confi g. xm on the slave. All other files will be saved
with their original names.

On the master server, the file name of the slave configuration file can be anything, as long as the name is correctly identified in the conf Fi | es
string; then it will be saved as whatever file name appears after the colon ":".

Configuring the Replication RequestHandler on a Slave Server

The code below shows how to configure a ReplicationHandler on a slave.

Apache Solr Reference Guide 4.4 317

<request Handl er name="/replication" class="solr.ReplicationHandl er" >
<l st nanme="sl ave">

<!--fully qualified url for the replication handler of naster. It is possible
to pass on this as
a request param for the fetchi ndex conmand-->

<str name="masterUrl">http://renote_host: port/solr/corename/replication</str>

<I--Interval in which the slave should poll master .Format is HH.mMmss . If
this is absent slave does not
pol | automatically.

But a fetchindex can be triggered fromthe adnmin or the http APl -->
<str name="pol | | nterval ">00: 00: 20</ str >
<l-- THE FOLLOW NG PARAMETERS ARE USUALLY NOT REQUI RED- - >

<l--to use conpression while transferring the index files. The possible val ues
are internal | external
if the value is '"external' make sure that your master Solr has the settings
to honor the
accept - encodi ng header.
See here for details: http://w ki.apache. org/solr/SolrHttpConpression
If it is '"internal' everything will be taken care of automatically.
USE THIS ONLY | F YOUR BANDW DTH IS LOW. THI S CAN ACTUALLY SLOADOWN
REPLI CATION IN A LAN-->

<str name="conpression">internal </str>

<!--The follow ng values are used when the slave connects to the master to
downl oad the index files.

Default values inplicitly set as 5000ms and 10000ms respectively. The user
DOES NOT need to specify

these unless the bandwidth is extrenely lowor if there is an extrenely high
| at ency-->

<str nanme="htt pConnTi meout " >5000</ st r >
<str name="htt pReadTi meout">10000</str >

<!l-- |f HITP Basic authentication is enabled on the master, then the sl ave can
be
configured with the following -->

<str name="htt pBasi cAut hUser " >user nanme</str>
<str nanme="htt pBasi cAut hPasswor d" >passwor d</ str >
</lst>
</ request Handl er >

1, Ifyou are not using cores, then you simply omit the cor enanme parameter above in the mast er Ur | . To ensure that the URL is
correct, just hit the URL with a browser. You must get a status OK response.

Setting Up a Repeater with the ReplicationHandler

Apache Solr Reference Guide 4.4 318

A master may be able to serve only so many slaves without affecting performance. Some organizations have deployed slave servers across
multiple data centers. If each slave downloads the index from a remote data center, the resulting download may consume too much network
bandwidth. To avoid performance degradation in cases like this, you can configure one or more slaves as repeaters. A repeater is simply a node
that acts as both a master and a slave.

® To configure a server as a repeater, the definition of the Replication r equest Handl er in the sol rconfi g. xm file must include file
lists of use for both masters and slaves.

® Be sure to setthe repl i cat eAft er parameter to commit, even if r epl i cat eAf t er is set to optimize on the main master. This is
because on a repeater (or any slave), a commit is called only after the index is downloaded. The optimize command is never called on
slaves.

® Optionally, one can configure the repeater to fetch compressed files from the master through the compression parameter to reduce the
index download time.

Here is an example of a ReplicationHandler configuration for a repeater:

<request Handl er nanme="/replication" class="solr.ReplicationHandl er">

<l st name="nmaster">
<str name="replicateAfter">commit</str>
<str name="confFil es">schema. xm , st opwords. t xt, synonyns. t xt </ str>

</lst>

<l st name="sl ave">
<str name="nasterUrl">http:// master.sol r.conpany.com 8983/ sol r/replication</str>
<str nanme="pol |l nterval ">00:00: 60</str>

</lst>

</ request Handl er >

Commit and Optimize Operations

When a commit or optimize operation is performed on the master, the RequestHandler reads the list of file names which are associated with each
commit point. This relies on the r epl i cat eAf t er parameter in the configuration to decide which types of events should trigger replication.

Setting on the Master Description

commit Triggers replication whenever a commit is performed on the master index.
optimize Triggers replication whenever the master index is optimized.
startup Triggers replication whenever the master index starts up.

The replicateAfter parameter can accept multiple arguments. For example:

<str name="replicateAfter">startup</str>
<str name="replicateAfter">commt</str>
<str name="replicateAfter">optim ze</str>

Slave Replication

The master is totally unaware of the slaves. The slave continuously keeps polling the master (depending on the pol | | nt er val parameter) to
check the current index version of the master. If the slave finds out that the master has a newer version of the index it initiates a replication
process. The steps are as follows:

® Theslaveissuesafil el i st command to get the list of the files. This command returns the names of the files as well as some
metadata (for example, size, a lastmodified timestamp, an alias if any).

® The slave checks with its own index if it has any of those files in the local index. It then runs the filecontent command to download the
missing files. This uses a custom format (akin to the HTTP chunked encoding) to download the full content or a part of each file. If the
connection breaks in between , the download resumes from the point it failed. At any point, the slave tries 5 times before giving up a
replication altogether.

® The files are downloaded into a temp directory, so that if either the slave or the master crashes during the download process, no files will
be corrupted. Instead, the current replication will simply abort.

® After the download completes, all the new files are moved to the live index directory and the file's timestamp is same as its counterpart on
the master.

® A commit command is issued on the slave by the Slave's ReplicationHandler and the new index is loaded.

Apache Solr Reference Guide 4.4 319

Replicating Configuration Files

To replicate configuration files, list them using using the conf Fi | es parameter. Only files found in the conf directory of the master's Solr
instance will be replicated.

Solr replicates configuration files only when the index itself is replicated. That means even if a configuration file is changed on the master, that file
will be replicated only after there is a new commit/optimize on master's index.

Unlike the index files, where the timestamp is good enough to figure out if they are identical, configuration files are compared against their
checksum. The schena. xnl files (on master and slave) are judged to be identical if their checksums are identical.

As a precaution when replicating configuration files, Solr copies configuration files to a temporary directory before moving them into their ultimate
location in the conf directory. The old configuration files are then renamed and kept in the same conf/ directory. The ReplicationHandler does
not automatically clean up these old files.

If a replication involved downloading of at least one configuration file, the ReplicationHandler issues a core-reload command instead of a commit
command.

Resolving Corruption Issues on Slave Servers

If documents are added to the slave, then the slave is no longer in sync with its master. However, the slave will not undertake any action to put
itself in sync, until the master has new index data. When a commit operation takes place on the master, the index version of the master becomes
different from that of the slave. The slave then fetches the list of files and finds that some of the files present on the master are also present in the
local index but with different sizes and timestamps. This means that the master and slave have incompatible indexes. To correct this problem, the
slave then copies all the index files from master to a new index directory and asks the core to load the fresh index from the new directory.

HTTP API Commands for the ReplicationHandler

You can use the HTTP commands below to control the ReplicationHandler's operations.

Command Description
http://_master_host_:_port_/solr/replication?command=enablereplication = Enables replication on the master for all its slaves.
http://_master_host_:_port_/solr/replication?command=disablereplication = Disables replication on the master for all its slaves.

http://_host_:_port_/solr/replication?command=indexversion Returns the version of the latest replicatable index on the specified
master or slave.

http://_slave_host_:_port_/solr/replication?command=fetchindex Forces the specified slave to fetch a copy of the index from its
master.

If you like, you can pass an extra attribute such as masterUrl or
compression (or any other parameter which is specified in the <I st
nane="sl| ave" > tag) to do a one time replication from a master.
This obviates the need for hard-coding the master in the slave.

http://_slave_host_:_port_/solr/replication?command=abortfetch Aborts copying an index from a master to the specified slave.
http://_slave_host_:_port_/solr/replication?command=enablepoll Enables the specified slave to poll for changes on the master.
http://_slave_host_:_port_/solr/replication?command=disablepoll Disables the specified slave from polling for changes on the master.
http://_slave_host_:_port_/solr/replication?command=details Retrieves configuration details and current status.
http://host:port/solr/replication?command=filelist&indexversion=< Retrieves a list of Lucene files present in the specified host's index.
index-version-number> You can discover the version number of the index by running the

i ndexver si on command.

http://_master_host_:_port_/solr/replication?command=backup Creates a backup on master if there are committed index data in the
server; otherwise, does nothing. This command is useful for making
periodic backups. The nunber ToKeep request parameter can be
used with the backup command unless the maxNunber Of Backups
initialization parameter has been specified on the handler — in which
case maxNunber O Backups is always used and attempts to use
the nunber ToKeep request parameter will cause an error.

Index Replication using ssh and rsync

Solr supports ssh/r sync-based replication. This mechanism only works on systems that support removing open hard links.

Solr distribution is similar in concept to database replication. All collection changes come to one master Solr server. All production queries are
done against query slaves. Query slaves receive all their collection changes indirectly — as new versions of a collection which they pull from the

Apache Solr Reference Guide 4.4 320

http://_master_host_:_port_/solr/replication?command=enablereplication
http://_master_host_:_port_/solr/replication?command=disablereplication
http://_host_:_port_/solr/replication?command=indexversion
http://_slave_host_:_port_/solr/replication?command=fetchindex
http://_slave_host_:_port_/solr/replication?command=abortfetch
http://_slave_host_:_port_/solr/replication?command=enablepoll
http://_slave_host_:_port_/solr/replication?command=disablepoll
http://_slave_host_:_port_/solr/replication?command=details
http://host:port/solr/replication?command=filelist&indexversion=
http://_master_host_:_port_/solr/replication?command=backup

master. These collection downloads are polled for on a cron'd basis.

A collection is a directory of many files. Collections are distributed to the slaves as snapshots of these files. Each snapshot is made up of hard
links to the files so copying of the actual files is not necessary when snapshots are created. Lucene only significantly rewrites files following an
optimization command. Generally, once a file is written, it will change very little, if at all. This makes the underlying transport of rsync very useful.
Files that have already been transferred and have not changed do not need to be re-transferred with the new edition of a collection.

The Snapshot and Distribution Process

Here are the steps that Solr follows when replicating an index:

1. The snapshooter command takes snapshots of the collection on the master. It runs when invoked by Solr after it has done a commit or
an optimize.

2. The snappuller command runs on the query slaves to pull the newest snapshot from the master. This is done via rsync in daemon mode
running on the master for better performance and lower CPU utilization over rsync using a remote shell program as the transport.

3. The snapinstaller runs on the slave after a snapshot has been pulled from the master. This signals the local Solr server to open a new
index reader, then auto-warming of the cache(s) begins (in the new reader), while other requests continue to be served by the original
index reader. Once auto-warming is complete, Solr retires the old reader and directs all new queries to the newly cache-warmed reader.

4. All distribution activity is logged and written back to the master to be viewable on the distribution page of its GUI.

5. Old versions of the index are removed from the master and slave servers by a cron'd snapcleaner.

If you are building an index from scratch, distribution is the final step of the process.

Manual copying of index files is not recommended; however, running distribution commands manually (that is, not relying on cr ond to run them)
is perfectly fine.

Snapshot Directories
Snapshots are stored in directories whose names follow this format: snapshot . yyyy mddHHWSS
All the files in the index directory are hard links to the latest snapshot. This design offers these advantages:
. TEe Solc; implementation can keep multiple snapshots on each host without needing to keep multiple copies of index files that have not
changed.

® File copying from master to slave is very fast.
® Taking a snapshot is very fast as well.

Solr Distribution Scripts

For the Solr distribution scripts, the name of the index directory is defined either by the environment variable dat a_di r in the configuration file
sol r/ conf/scripts. conf orthe command line argument - d. It should match the value used by the Solr server which is defined in
sol r/ conf/sol rconfig.xnl.

All Solr collection distribution scripts are bundled in a Solr release and reside in the directory sol r/ src/ scri pts. It's recommended that you
install the scripts in a sol r/ bi n/ directory.

Collection distribution scripts create and prepare for distribution a snapshot of a search collection after each commit and optimize request if the
postCommit and postOptimize event listener is configured in sol r confi g. xm to execute snapshooter.

The snapshooter script creates a directory snapshot . <t s>, where <t s> is a timestamp in the format, yyyymuddHHMVSS. It contains hard links
to the data files.

Snapshots are distributed from the master server when the slaves pull them, "smartcopying" the snapshot directory that contains the hard links to
the most recent collection data files.

Name Description

shapshooter Creates a snapshot of a collection. Snapshooter is normally configured to run on the master Solr server when a commit or
optimize happens. Snapshooter can also be run manually, but one must make sure that the index is in a consistent state,
which can only be done by pausing indexing and issuing a commit.

snappuller A shell script that runs as a cr on job on a slave Solr server. The script looks for new snapshots on the master Solr server
and pulls them.

shappuller-enable = Creates the file sol r/ 1 ogs/ snappul | er - enabl ed, whose presence enables snappuller.
snapinstaller Installs the latest snapshot (determined by the timestamp) into the place, using hard links (similar to the process of taking a
shapshot). Then sol r/ 1 ogs/ snapshot . current is written and scp'd (secure copied) back to the master Solr server.

shapinstaller then triggers the Solr server to open a new Searcher.

shapcleaner Runs as a cr on job to remove snapshots more than a configurable number of days old or all snapshots except for the
most recent n number of snapshots. Also can be run manually.

Apache Solr Reference Guide 4.4 321

rsyncd-start Starts the rsyncd daemon on the master Solr server which handles collection distribution requests from the slaves.

rsyncd daemon Efficiently synchronizes a collection--betweenrrasterand-stawves--by copying only the files that actually changed. In
addition, rsync can optionally compress data before transmitting it.

rsyncd-stop Stops the rsyncd daemon on the master Solr server. The stop script then makes sure that the daemon has in fact exited by
trying to connect to it for up to 300 seconds. The stop script exits with error code 2 if it fails to stop the rsyncd daemon.

rsyncd-enable Creates the file sol r/ | ogs/ r syncd- enabl ed, whose presence allows the rsyncd daemon to run, allowing replication to
occeur.

rsyncd-disable Removes the file sol r/ 1 ogs/ r syncd- enabl ed, whose absence prevents the rsyncd daemon from running, preventing
replication.

For more information about usage arguments and syntax see the SolrCollectionDistributionScripts page on the Solr Wiki.

Solr Distribution-related Cron Jobs

The distribution process is automated through the use of cron jobs. The cron jobs should run under the user ID that the Solr server is running
under.

Cron Job Description

snapcleaner = The snapcleaner job should be run out of cr on at the regular basis to clean up old snapshots. This should be done on both the
master and slave Solr servers. For example, the following cr on job runs everyday at midnight and cleans up snapshots 8 days
and older:

0 0 * * * <solr.solr.honme>/sol r/bin/snapcl eaner -D 7
Additional cleanup can always be performed on-demand by running snapcleaner manually.

snappuller On the slave Solr servers, snappuller should be run out of cron regularly to get the latest index from the master Solr server. It is
shapinstaller = a good idea to also run snapinstaller with snappuller back-to-back in the same crontab entry to install the latest index once it has
been copied over to the slave Solr server.

For example, the following cron job runs every 5 minutes to keep the slave Solr server in sync with the master Solr server:

0, 5, 10, 15, 20, 25, 30, 35, 40, 45,50, 55 * * * *
<sol r. sol r. hone>/ sol r/ bi n/ snappul | er; <sol r. sol r. hone>/ sol r/ bi n/ snapi nstal | er

' Modern cron allows this to be shortenedto */5 * * * *_ |

Performance Tuning for Script-based Replication

Because fetching a master index uses the rsync utility, which transfers only the segments that have changed, replication is normally very fast.
However, if the master server has been optimized, then rsync may take a long time, because many segments will have been changed in the
process of optimization.

® |f replicating to multiple slaves consumes too much network bandwidth, consider the use of a repeater.

® Make sure that slaves do not pull from the master so frequently that a previous replication is still running when a new one is started. In
general, it's best to allow at least a minute for the replication process to complete. But in configurations with low network bandwidth or a
very large index, even more time may be required.

Commit and Optimization

On a very large index, adding even a few documents and then running an optimize operation causes the complete index to be rewritten. This
consumes a lot of disk I/0 and impacts query performance. Optimizing a very large index may even involve copying the index twice and calling
optimize at the beginning and at the end. If some documents have been deleted, the first optimize call will rewrite the index even before the
second index is merged.

Optimization is an I/O intensive process, as the entire index is read and re-written in optimized form. Anecdotal data shows that optimizations on
modest server hardware can take around 5 minutes per GB, although this obviously varies considerably with index fragmentation and hardware
bottlenecks. We do not know what happens to query performance on a collection that has not been optimized for a long time. We do know that it
will get worse as the collection becomes more fragmented, but how much worse is very dependent on the manner of updates and commits to the
collection. The setting of the ner geFact or attribute affects performance as well. Dividing a large index with millions of documents into even as
few as five segments may degrade search performance by as much as 15-20%.

While optimizing has many benefits, a rapidly changing index will not retain those benefits for long, and since optimization is an intensive process,
it may be better to consider other options, such as lowering the merge factor (discussed in this Guide in the section on Configuring the Lucene

Apache Solr Reference Guide 4.4 322

http://wiki.apache.org/solr/SolrCollectionDistributionScripts
http://solr:Configuring+solrconfig.xml#Configuringsolrconfig.xml-ConfiguringtheLuceneIndexWriters

Index Writers).

Distribution and Optimization

The time required to optimize a master index can vary dramatically. A small index may be optimized in minutes. A very large index may take
hours. The variables include the size of the index and the speed of the hardware.

Distributing a newly optimized collection may take only a few minutes or up to an hour or more, again depending on the size of the index and the
performance capabilities of network connections and disks. During optimization the machine is under load and does not process queries very well.
Given a schedule of updates being driven a few times an hour to the slaves, we cannot run an optimize with every committed snapshot.

Copying an optimized collection means that the entire collection will need to be transferred during the next snappull. This is a large expense, but
not nearly as huge as running the optimize everywhere. Consider this example: on a three-slave one-master configuration, distributing a
newly-optimized collection takes approximately 80 seconds total. Rolling the change across a tier would require approximately ten minutes per
machine (or machine group). If this optimize were rolled across the query tier, and if each collection being optimized were disabled and not
receiving queries, a rollout would take at least twenty minutes and potentially as long as an hour and a half. Additionally, the files would need to
be synchronized so that the following rsync, snappull would not think that the independently optimized files were different in any way. This would
also leave the door open to independent corruption of collections instead of each being a perfect copy of the master.

Optimizing on the master allows for a straight-forward optimization operation. No query slaves need to be taken out of service. The optimized

collection can be distributed in the background as queries are being normally serviced. The optimization can occur at any time convenient to the
application providing collection updates.

Combining Distribution and Replication

When your index is too large for a single machine and you have a query volume that single shards cannot keep up with, it's time to replicate each
shard in your distributed search setup.

The idea is to combine distributed search with replication. As shown in the figure below, a combined distributed-replication configuration features
a master server for each shard and then 1-n slaves that are replicated from the master. As in a standard replicated configuration, the master
server handles updates and optimizations without adversely affecting query handling performance.

Query requests should be load balanced across each of the shard slaves. This gives you both increased query handling capacity and fail-over
backup if a server goes down.

Distributed + Replication

Shard 1 Master Shard 2 Master Shard 3 Master

slavel slavel slavel

> —>

slave?2 slave2 slave?2

A Solr configuration combining both replication and master-slave distribution.

None of the master shards in this configuration know about each other. You index to each master, the index is replicated to each slave, and then
searches are distributed across the slaves, using one slave from each master/slave shard.

For high availability you can use a load balancer to set up a virtual IP for each shard's set of slaves. If you are new to load balancing, HAProxy (
http://haproxy.1wt.eu/) is a good open source software load-balancer. If a slave server goes down, a good load-balancer will detect the failure
using some technique (generally a heartbeat system), and forward all requests to the remaining live slaves that served with the failed slave. A
single virtual IP should then be set up so that requests can hit a single IP, and get load balanced to each of the virtual IPs for the search slaves.

Apache Solr Reference Guide 4.4 323

http://solr:Configuring+solrconfig.xml#Configuringsolrconfig.xml-ConfiguringtheLuceneIndexWriters
http://haproxy.1wt.eu/

With this configuration you will have a fully load balanced, search-side fault-tolerant system (Solr does not yet support fault-tolerant indexing).
Incoming searches will be handed off to one of the functioning slaves, then the slave will distribute the search request across a slave for each of
the shards in your configuration. The slave will issue a request to each of the virtual IPs for each shard, and the load balancer will choose one of
the available slaves. Finally, the results will be combined into a single results set and returned. If any of the slaves go down, they will be taken out
of rotation and the remaining slaves will be used. If a shard master goes down, searches can still be served from the slaves until you have
corrected the problem and put the master back into production.

Merging Indexes

If you need to combine indexes from two different projects or from multiple servers previously used in a distributed configuration, you can use
either the IndexMergeTool included in | ucene- m sc or the Cor eAdm nHandl er.

To merge indexes, they must meet these requirements:

® The two indexes must be compatible: their schemas should include the same fields and they should analyze fields the same way.
® The indexes must not include duplicate data.

Optimally, the two indexes should be built using the same schema.

Using | ndexMer geTool

To merge the indexes, do the following:

1. Find the lucene-core and lucene-misc JAR files that your version of Solr is using. You can do this by copying your sol r. war file
somewhere and unpacking it (j ar xvf sol r. war). These two JAR files should be in WEB- | NF/ | i b. They are probably called
something like | ucene- cor e- VERSI ON. j ar and | ucene-mi sc- VERSI ON. j ar .

. Copy them somewhere easy to find.

. Make sure that both indexes you want to merge are closed.

. Issue this command:

AWN

java -cp /path/to/lucene-core-VERSION. jar:/path/to/lucene-m sc-VERSION. j ar
or g/ apache/ | ucene/ m sc/ | ndexMer geTool
/ pat h/ t o/ newi ndex
/ path/to/indexl
/ pat h/ t o/ i ndex2

This will create a new index at / pat h/ t o/ newi ndex that contains both index1 and index2.

5. Copy this new directory to the location of your application's solr index (move the old one aside first, of course) and start Solr.

For example:

java -cp /tnmp/lucene-core-4.4.0.jar:

/tnp/lucene-m sc-4.4.0.jar org/apache/l ucene/ m sc/| ndexMer geTool
./ newi ndex
.l appl/ sol r/ dat a/ i ndex
.l app2/ sol r/ dat a/ i ndex

Using CoreAdmin

This method uses the CoreAdminHandler with either the i ndexDi r or sr cCor e parameters.

The i ndexDi r parameter is used to define the path to the indexes for the cores that should be merged, and merge them into a 3rd core that
must already exist prior to initiation of the merge process. The indexes must exist on the disk of the Solr host, which may make using this in a
distributed environment cumbersome. With the i ndexDi r parameter, a commit should be called on the cores to be merged (so the IndexWriter
will close), and no writes should be allowed on either core until the merge is complete. If writes are allowed, corruption may occur on the merged
index. Once complete, a commit should be called on the merged core to make sure the changes are visible to searchers.

The following example shows how to construct the merge command with i ndexDi r:

Apache Solr Reference Guide 4.4 324

http://1ocal host: 8983/ sol r/ adm n/ cor es?act i on=ner gei ndexes&cor e=cor e0& ndexDi r =/ hone/ sol r/ corel/ dat a/ i ndex&i
In this example, cor e is the new core that is created prior to calling the merge process.

The sr cCor e parameter is used to call the cores to be merged by name instead of defining the path. The cores do not need to exist on the same
disk as the Solr host, and the merged core does not need to exist prior to issuing the command. sr cCor e also protects against corruption during
creation of the merged core index, so writes are still possible while the merge occurs. However, sr cCor e can only merge Solr Cores - indexes
built directly with Lucene should be merged with either the IndexMergeTool or the i ndexDi r parameter.

The following example shows how to construct the merge command with sr cCor e:

http://1ocal host: 8983/ sol r/ adm n/ cor es?act i on=ner gei ndexes&cor e=cor e0&sr cCor e=cor el&sr cCor e=cor e2

Apache Solr Reference Guide 4.4 325

http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&indexDir=/home/solr/core1/data/index&indexDir=/home/solr/core2/data/index
http://localhost:8983/solr/admin/cores?action=mergeindexes&core=core0&srcCore=core1&srcCore=core2

Client APIs

This section discusses the available client APIs for Solr. It covers the following topics:
Introduction to Client APIs: A conceptual overview of Solr client APIs.

Choosing an Output Format: Information about choosing a response format in Solr.
Using JavaScript: Explains why a client API is not needed for JavaScript responses.
Using Python: Information about Python and JSON responses.

Client API Lineup: A list of all Solr Client APIs, with links.

Using SolrJ: Detailed information about SolrJ, an API for working with Java applications.
Using Solr From Ruby: Detailed information about using Solr with Ruby applications.

MBean Request Handler: Describes the MBean request handler for programmatic access to Solr server statistics and information.

Introduction to Client APIs

At its heart, Solr is a Web application, but because it is built on open protocols, any type of client application can use Solr.

HTTP is the fundamental protocol used between client applications and Solr. The client makes a request and Solr does some work and provides a
response. Clients use requests to ask Solr to do things like perform queries or index documents.

Client applications can reach Solr by creating HTTP requests and parsing the HTTP responses. Client APIs encapsulate much of the work of
sending requests and parsing responses, which makes it much easier to write client applications.

Clients use Solr's five fundamental operations to work with Solr. The operations are query, index, delete, commit, and optimize.
Queries are executed by creating a URL that contains all the query parameters. Solr examines the request URL, performs the query, and returns
the results. The other operations are similar, although in certain cases the HTTP request is a POST operation and contains information beyond

whatever is included in the request URL. An index operation, for example, may contain a document in the body of the request.

Solr also features an EmbeddedSolrServer that offers a Java API without requiring an HTTP connection. For details, see Using SolrJ.

Choosing an Output Format

Many programming environments are able to send HTTP requests and retrieve responses. Parsing the responses is a slightly more thorny
problem. Fortunately, Solr makes it easy to choose an output format that will be easy to handle on the client side.

Specify a response format using the wt parameter in a query. The available response formats are documented in Response Writers.

Most client APIs hide this detail for you, so for many types of client applications, you won't ever have to specify a w parameter. In JavaScript,
however, the interface to Solr is a little closer to the metal, so you will need to add this parameter yourself.

Using JavaScript

Using Solr from JavaScript clients is so straightforward that it deserves a special mention. In fact, it is so straightforward that there is no client API.
You don't need to install any packages or configure anything.

HTTP requests can be sent to Solr using the standard XM_Ht t pRequest mechanism.

Out of the box, Solr can send JavaScript Object Notation (JSON) responses, which are easily interpreted in JavaScript. Just add wt =j son to the
request URL to have responses sent as JSON.

For more information and an excellent example, read the SolJSON page on the Solr Wiki:

http://wiki.apache.org/solr/SolJSON

Using Python

Solr includes an output format specifically for Python, but JSON output is a little more robust.

Apache Solr Reference Guide 4.4 326

http://wiki.apache.org/solr/SolJSON

Simple Python

Making a query is a simple matter. First, tell Python you will need to make HTTP connections.

fromurllib2 inmport *

Now open a connection to the server and get a response. The wt query parameter tells Solr to return results in a format that Python can
understand.

connection = url open(
"http://1ocal host: 8983/ sol r/ sel ect ?2g=cheese&n =pyt hon")
response = eval (connection.read())

Now interpreting the response is just a matter of pulling out the information that you need.

print response\['response'\]\[' nunFound'\], "documents found.
Print the name of each document.

for docunent in response\['response' \]\['docs'\]:
print * Nanme =", docunent\[' nanme'\]

Python with JSON

JSON is a more robust response format, but you will need to add a Python package in order to use it. At a command line, install the simplejson

package like this:

$ sudo easy_install sinplejson

Once that is done, making a query is nearly the same as before. However, notice that the wt query parameter is now json, and the response is

now digested by si npl ej son. | oad() .

fromurllib2 inmport *

i mport sinpl ej son

connection = urlopen('http://1ocal host: 8983/ sol r/ sel ect 72q=cheese&wt =j son")
response = sinpl ej son. | oad(connecti on)

print response\['response'\]\[' nunfFound'\], "docunents found."

Print the nane of each docunent.

for docunent in response\['response' \]\['docs'\]:
print " Name =", document\['nane'\]

Client API Lineup

The Solr Wiki contains a list of client APIs at http://wiki.apache.org/solr/IntegratingSolr.

Here is the list of client APIs, current at this writing (November 2011):

Apache Solr Reference Guide 4.4

327

http://wiki.apache.org/solr/IntegratingSolr

Name Environment URL

SolRuby Ruby http://wiki.apache.org/solr/SolRuby

DelSolr Ruby http://delsolr.rubyforge.org/

acts_as_solr = Rails http://acts-as-solr.rubyforge.org/, http://rubyforge.org/projects/background-solr/
Flare Rails http://wiki.apache.org/solr/Flare

SolPHP PHP http://wiki.apache.org/solr/SolPHP

SolrJ Java http://wiki.apache.org/solr/SolJava

Python API Python http://wiki.apache.org/solr/SolPython

PySolr Python http://code.google.com/p/pysolr/

SolPerl Perl http://wiki.apache.org/solr/SolPerl

Solr.pm Perl http://search.cpan.org/~garafola/Solr-0.03/lib/Solr.pm

SolrForrest Forrest/Cocoon = http://wiki.apache.org/solr/SolrForrest

SolrSharp C# http://www.codeplex.com/solrsharp
SolColdfusion = ColdFusion http://solcoldfusion.riaforge.org/

SolrNet .NET http://code.google.com/p/solrnet/

AJAX Solr AJAX http://github.com/evolvingweb/ajax-solr/wiki

Using SolrJ

SolrJ (also sometimes known as SolJava) is an API that makes it easy for Java applications to talk to Solr. SolrJ hides a lot of the details of
connecting to Solr and allows your application to interact with Solr with simple high-level methods.

The center of SolrJ is the or g. apache. sol r. cli ent. sol rj package, which contains just five main classes. Begin by creating a Sol r Ser ver
, which represents the Solr instance you want to use. Then send SolrRequests or SolrQuerys and get back SolrResponses.

Sol r Ser ver is abstract, so to connect to a remote Solr instance, you'll actually create an instance of
org. apache.solr.client.solrj.inpl.HttpSolrServer, which knows how to use HTTP to talk to Solr.

String urlString = "http://local host: 8983/solr";
Sol rServer solr = new HttpSol rServer(url String);

Creating a Sol r Ser ver does not make a network connection - that happens later when you perform a query or some other operation - but it will
throw Mal f or mredURLExcept i on if you give it a bad URL string.

Once you have a Sol r Ser ver , you can use it by calling methods like query(), add(),and comit ().

Building and Running SolrJ Applications

The Solrd API is included with Solr, so you do not have to download or install anything else. However, in order to build and run applications that
use SolrJ, you have to add some libraries to the classpath.

At build time, the examples presented with this section require the following libraries in the classpath (all paths are relative to the root of the Solr
installation).

® apache-solr-common-3.x.0.jar
® apache-solr-solrj-4.x.x.jar

At run time, the examples in this section require the libraries found in the 'dist/solrj-lib’ directory.
The Ant script bundled with this sections' examples includes the libraries as appropriate when building and running.

You can sidestep a lot of the messing around with the JAR files by using Maven instead of Ant. All you will need to do to include SolrJ in your
application is to put the following dependency in the project's pom xm :

Apache Solr Reference Guide 4.4 328

http://wiki.apache.org/solr/SolRuby
http://delsolr.rubyforge.org/
http://acts-as-solr.rubyforge.org/
http://rubyforge.org/projects/background-solr/
http://wiki.apache.org/solr/Flare
http://wiki.apache.org/solr/SolPHP
http://wiki.apache.org/solr/SolJava
http://wiki.apache.org/solr/SolPython
http://code.google.com/p/pysolr/
http://wiki.apache.org/solr/SolPerl
http://search.cpan.org/~garafola/Solr-0.03/lib/Solr.pm
http://wiki.apache.org/solr/SolrForrest
http://www.codeplex.com/solrsharp
http://solcoldfusion.riaforge.org/
http://code.google.com/p/solrnet/
http://github.com/evolvingweb/ajax-solr/wiki

<dependency>
<gr oupl d>or g. apache. sol r </ gr oupl d>
<artifactld>solr-solrj</artifactld>
<ver si on>3. x. 0</ ver si on>

</ dependency>

If you are worried about the SolrJ libraries expanding the size of your client application, you can use a code obfuscator like ProGuard to remove
APIs that you are not using.

Setting XMLResponseParser

SolrJ uses a binary format, rather than XML, as its default format. Users of earlier Solr releases who wish to continue working with XML must
explicitly set the parser to the XMLResponseParser, like so:

server. set Par ser (new XM_.ResponseParser());

Performing Queries

Use quer y() to have Solr search for results. You have to pass a Sol r Quer y object that describes the query, and you will get back a
QueryResponse (from the or g. apache. sol r. cli ent. sol rj.response package).

Sol r Quer y has methods that make it easy to add parameters to choose a request handler and send parameters to it. Here is a very simple
example that uses the default request handler and sets the g parameter:

Sol r Query paraneters = new Sol r Query();
paraneters.set("q", nmueryString);

To choose a different request handler, for example, just set the qt parameter like this:

paraneters.set("qt", "/spell CheckCompRH");

Once you have your Sol r Quer y set up, submit it with quer y() :

Quer yResponse response = solr.query(paraneters);

The client makes a network connection and sends the query. Solr processes the query, and the response is sent and parsed into a
Quer yResponse.

The Quer yResponse is a collection of documents that satisfy the query parameters. You can retrieve the documents directly with
get Resul t s() and you can call other methods to find out information about highlighting or facets.

Sol r Docurent Li st |ist = response. get Resul ts();

Indexing Documents

Other operations are just as simple. To index (add) a document, all you need to do is create a Sol r | nput Docunent and pass it along to the
Sol r Server's add() method.

Apache Solr Reference Guide 4.4 329

http://proguard.sourceforge.net/

String urlString = "http://local host:8983/solr";

Sol r Server solr = new HttpSol rServer(url String);

Sol r I nput Docunent docunent = new Sol r | nput Docunent () ;
docunent . addFi el d("id", "552199");

docunent . addFi el d(" name", "Gouda cheese wheel ");
docunent . addFi el d("price", "49.99");

Updat eResponse response = solr. add(docunent);

Remenber to conmit your changes!

solr.commt();

Uploading Content in XML or Binary Formats

SolrJ lets you upload content in XML and binary formats instead of the default XML format. Use the following to upload using binary format, which
is the same format SolrJ uses to fetch results.

server. set Request Wi ter(new Bi naryRequest Witer());

EmbeddedSolrServer

The EnbeddedSol r Ser ver provides the Java interface described above without requiring an HTTP connection. This is the recommended
approach if you need to use Solr in an embedded application. This approach enables you to work with the same Java interface whether or not you
have access to HTTP.

*, EnbeddedSol r Server works only with handlers registered in sol r conf i g. xni . The Solr Request Handl er must be
mapped to / updat e for a request to function. For more information about configuring handlers, see Configuring solrconfig.xml.

Note that the following property could be set through JVM level arguments:

System set Property("solr.sol r. honme",

"/ hore/ shal i nsmangar / wor k/ oss/ branch- 1. 3/ exanpl e/ sol r");
CoreContainer.lnitializer initializer = new CoreContainer.Initializer();
CoreCont ai ner coreContainer = initializer.initialize();

EnmbeddedSol r Server server = new EnbeddedSol r Ser ver (cor eCont ai ner, "");

If you want to use MultiCore features (which are described in Solr Cores and solr.xml), then you should use this:

File hone = new File("/path/to/solr/hone");

File f = new File(hone, "solr.xm");

Cor eCont ai ner cont ai ner = new Cor eCont ai ner () ;

container.load("/path/to/solr/hone", f);

EnbeddedSol r Server server = new EnbeddedSol r Server(contai ner, "core name as defined
insolr.xm");

Using the ConcurrentUpdateSolrServer

If you are working with Java, you can take advantage of the Concur r ent Updat eSol r Ser ver to perform bulk updates at high speed. The
Concurrent Ht t pSol r Ser ver buffers all added documents and writes them into open HTTP connections. This class is thread safe. Although
any SolrServer request can be made with this implementation, it is only recommended to use the Concur r r ent Updat eSol r Ser ver for

Apache Solr Reference Guide 4.4 330

http://lucene.apache.org/solr/4_0_0/solr-core/org/apache/solr/client/solrj/embedded/EmbeddedSolrServer.html
http://wiki.apache.org/solr/MultiCore

[updat e requests.

You can learn more about the Concur r ent Updat eSol r Ser ver at
http://lucene.apache.org/solr/4_0_0/solr-solrj/lorg/apache/solr/client/solrj/impl/ConcurrentUpdateSolrServer.html.

Related Topics

® SolrJ API documentation
® Solr Wiki page on SolrJ
® Indexing and Basic Data Operations

Using Solr From Ruby

For Ruby applications, the solr-ruby gem encapsulates the fundamental Solr operations.

At a command line, install solr-ruby as follows:

$ geminstall solr-ruby
Bul k updating Gem source index for: http://gens.rubyforge.org
Successfully installed solr-ruby-0.0.8

1 geminstalled

Installing ri docunentation for solr-ruby-0
Installing RDoc docunentation for solr-ruby-

0.8...
0.0.8...

This gives you a Sol r: : Connect i on class that makes it easy to add documents, perform queries, and do other Solr stuff.

Solr-ruby takes advantage of Solr's Ruby response writer, which is a subclass of the JSON response writer. This response writer sends
information from Solr to Ruby in a form that Ruby can understand and use directly.

Performing Queries

To perform queries, you just need to get a Sol r: : Connect i on and call its query method. Here is a script that looks for cheese. The return value
from quer y() is an array of documents, which are dictionaries, so the script iterates through each document and prints out a few fields.

requi re 'rubygens'
require 'solr'
solr = Solr::Connection.new(' http://1ocal host:8983/solr")
response = solr.query('cheese')
response. each do | hit
puts hit\['id"\] + "' ' + hit\['name'\] + ' ' + hit\['price'\].to_s
end

An example run looks like this:

$ ruby query.rb
551299 Gouda cheese wheel 49.99
123 Fresh nobzzarel |l a cheese

Indexing Documents

Indexing is just as simple. You have to get the Sol r: : Connect i on just as before. Then call the add() and conmi t () methods.

Apache Solr Reference Guide 4.4 331

http://lucene.apache.org/solr/4_0_0/solr-solrj/org/apache/solr/client/solrj/impl/ConcurrentUpdateSolrServer.html
http://lucene.apache.org/solr/4_0_0/solr-solrj/index.html
http://wiki.apache.org/solr/Solrj

require 'rubygens'

require 'solr’

solr = Solr::Connection.new(' http://1local host:8983/solr")
solr.add(:id => 123, :nane => 'Fresh nozzarella cheese')
solr.commit ()

More Information

For more information on solr-ruby, read the page at the Solr Wiki:

http://wiki.apache.org/solr/solr-ruby

MBean Request Handler

The MBean Request Handler offers programmatic access to the information provided on the Statistics and Info pages of the Admin Ul. You can
access the MBean Request Handler here: http://localhost:8983/solr/admin/mbeans.

The MBean Request Handler accepts the following parameters:

Parameter Type Default Description
key multivalued = all Restricts results by object key.
cat multivalued = all Restricts results by category name.
stats boolean false Specifies whether statistics are returned with results. You can override the st at s parameter on a per-field
basis.
wit multivalued = xml The output format. This operates the same as the wt parameter in a query.
Examples

To return information about the CACHE category only:

http://1ocal host: 8983/ sol r/ adm n/ nbeans?cat =CACHE

To return information and statistics about the CACHE category only:

http://1 ocal host: 8983/ sol r/ adm n/ nbeans?st at s=t r ue&cat =CACHE

To return information for everything, and statistics for everything except the fi el dCache:

http://1 ocal host: 8983/ sol r/ adm n/ nbeans?st at s=true&f . fi el dCache. st at s=f al se
To return information and statistics for the fi el dCache only:

http://1 ocal host: 8983/ sol r/ adm n/ nbeans?key=fi el dCache&st at s=true

Apache Solr Reference Guide 4.4 332

http://wiki.apache.org/solr/solr-ruby
http://localhost:8983/solr/admin/mbeans
http://localhost:8983/solr/admin/mbeans?cat=CACHE
http://localhost:8983/solr/admin/mbeans?stats=true&cat=CACHE
http://localhost:8983/solr/admin/mbeans?stats=true&f.fieldCache.stats=false
http://localhost:8983/solr/admin/mbeans?key=fieldCache&stats=true

Further Assistance

There is a very active user community around Solr and Lucene. The solr-user mailing list, and #solr IRC channel are both great resource for
asking questions.

To view the mailing list archives, subscribe to the list, or join the IRC channel, please see https://lucene.apache.org/solr/discussion.html

Apache Solr Reference Guide 4.4 333

https://lucene.apache.org/solr/discussion.html

Solr Glossary

Where possible, terms are linked to relevant parts of the Solr Reference Guide for more information.

Jump to a letter:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

B

Boolean Operators

These control the inclusion or exclusion of keywords in a query by using operators such as AND, OR, and NOT.

C

Cluster
In Salr, a cluster is a set of Solr nodes managed as a unit. They may contain many cores, collections, shards, and/or replicas. See also SolrCloud.
Collection

In Solr, one or more documents grouped together in a single logical index. A collection must have a single schema, but can be spread across
multiple cores.

In ZooKeeper, a group of cores managed together as part of a SolrCloud installation.

Commit

To make document changes permanent in the index. In the case of added documents, they would be searchable after a commit.

Core

An individual Solr instance (represents a logical index). Multiple cores can run on a single node. See also SolrCloud.

Core Reload

To re-initialize Solr after changes to schena. xmi , sol rconfi g. xm or other configuration files.

D

Distributed Search
Distributed search is one where queries are processed across more than one shard.
Document

One or more Fields and their values that are considered related for indexing. See also Field.

E

Ensemble

A ZooKeeper term to indicate multiple ZooKeeper instances running simultaneously.

F

Facet

The arrangement of search results into categories based on indexed terms.

Apache Solr Reference Guide 4.4 334

Field

The content to be indexed/searched along with metadata defining how the content should be processed by Solr.

Inverse Document Frequency (IDF)

A measure of the general importance of a term. It is calculated as the number of total Documents divided by the number of Documents that a
particular word occurs in the collection. See http://en.wikipedia.org/wiki/Tf-idf and
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html for more info on TF-IDF based scoring and Lucene scoring in
particular. See also Term Frequency.

Inverted Index

A way of creating a searchable index that lists every word and the documents that contain those words, similar to an index in the back of a book
which lists words and the pages on which they can be found. When performing keyword searches, this method is considered more efficient than
the alternative, which would be to create a list of documents paired with every word used in each document. Since users search using terms they
expect to be in documents, finding the term before the document saves processing resources and time.

L

Leader

The main shard for each node that routes document adds, updates, or deletes to other shards on the same node. See also SolrCloud.

M

Metadata

Literally, data about data. Metadata is information about a document, such as it's title, author, or location.

N

Natural Language Query
A search that is entered as a user would normally speak or write, as in, "What is aspirin?"
Node

A JVM instance running Solr. Also known as a Solr server.

O

Overseer

The name of the SolrCloud process that coordinates the clusters. It keeps track of existing nodes and shards, and assigns shards to nodes. See
also SolrCloud.

Q

Query Parser

A query parser processes the terms entered by a user.

R

Recall

The ability of a search engine to retrieve all of the possible matches to a user's query.

Apache Solr Reference Guide 4.4 335

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html

Relevance

The appropriateness of a document to the search conducted by the user.

Replica

A copy of a shard or single logical index, for use in failover or load balancing.

Replication

A method of copying a master index from one server to one or more "slave" or "child" servers.
RequestHandler

Logic and configuration parameters that tell Solr how to handle incoming "requests", whether the requests are to return search results, to index
documents, or to handle other custom situations.

S

SearchComponent

Logic and configuration parameters used by request handlers to process query requests. Examples of search components include faceting,
highlighting, and "more like this" functionality.

Shard

In SolrCloud, a logical section of a single collection. This may be spread across multiple nodes. See also SolrCloud.

SolrCloud

Umbrella term for a suite of functionality in Solr which allows managing a cluster of Solr servers for scalability, fault tolerance, and high availability.
Solr Schema (schema.xml)

The Apache Solr index schema. The schema defines the fields to be indexed and the type for the field (text, integers, etc.) The schema is stored
in schema.xml and is located in the Solr home conf directory.

SolrConfig (solrconfig.xml)

The Apache Solr configuration file. Defines indexing options, RequestHandlers, highlighting, spellchecking and various other configurations. The
file, solrconfig.xml is located in the Solr home conf directory.

Spell Check
The ability to suggest alternative spellings of search terms to a user, as a check against spelling errors causing few or zero results.
Stopwords

Generally, words that have little meaning to a user's search but which may have been entered as part of a natural language query. Stopwords are
generally very small pronouns, conjunctions and prepositions (such as, "the", "with", or "and")

Suggester
Functionality in Solr that provides the ability to suggest possible query terms to users as they type.
Synonyms

Synonyms generally are terms which are near to each other in meaning and may substitute for one another. In a search engine implementation,
synonyms may be abbreviations as well as words, or terms that are not consistently hyphenated. Examples of synonyms in this context would be
"Inc." and "Incorporated" or "iPod" and "i-pod".

T

Term Frequency

The number of times a word occurs in a given document. See http://en.wikipedia.org/wiki/Tf-idf and
http://lucene.apache.org/java/2_3_2/scoring.html for more info on TF-IDF based scoring and Lucene scoring in particular.

Apache Solr Reference Guide 4.4 336

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/java/2_3_2/scoring.html

See also Inverse Document Frequency (IDF).

Transaction Log

An append-only log of write operations maintained by each node. This log is only required with SolrCloud implementations and is created and
managed automatically by Solr.

w

Wildcard

A wildcard allows a substitution of one or more letters of a word to account for possible variations in spelling or tenses.

Z

ZooKeeper

Also known as Apache ZooKeeper. The system used by SolrCloud to keep track of configuration files and node names for a cluster. A ZooKeeper
cluster is used as the central configuration store for the cluster, a coordinator for operations requiring distributed synchronization, and the system

of record for cluster topology. See also SolrCloud.

Apache Solr Reference Guide 4.4 337

http://zookeeper.apache.org/

Major Changes from Solr 3 to Solr 4

Solr 4 includes some exciting new developments, and also includes many changes from Solr 3.x and earlier.

Highlights of Solr 4
Changes to Consider
® System Changes
Index Format
Query Parsers
Schema Configuration
Changes to solrconfig.xml
Other Changes

Highlights of Solr 4

Solr 4 is a major release of Solr, two years in the making, and includes new features for scalability and high performance for today's data driven,
real time search applications. Some of the major improvements include:

SolrCloud

The primary new feature in Solr 4 goes by the name "SolrCloud", a suite of tools to make scalability built into your project from day one:

Distributed indexing designed from the ground up for near real-time (NRT) and NoSQL features such as realtime-get, optimistic locking,
and durable updates.

High availability with no single points of failure.

Apache Zookeeper integration for distributed coordination and cluster metadata and configuration storage.

Immunity to split-brain issues due to Zookeeper's Paxos distributed consensus protocols.

Updates sent to any node in the cluster and are automatically forwarded to the correct shard and replicated to multiple nodes for
redundancy.

Queries sent to any node automatically perform a full distributed search across the cluster with load balancing and fail-over.

NoSQL Features

Users wishing to use Solr as their primary data store will be interested in these features:

Update durability - A transaction log ensures that even uncommitted documents are never lost.

Real-time Get - The ability to quickly retrieve the latest version of a document, without the need to commit or open a new searcher
Versioning and Optimistic Locking - combined with real-time get, this allows read-update-write functionality that ensures no conflicting
changes were made concurrently by other clients.

Atomic updates - the ability to add, remove, change, and increment fields of an existing document without having to send in the complete
document again.

Other Major Features

There's more:

Pivot Faceting - Multi-level or hierarchical faceting where the top constraints for one field are found for each top constraint of a different
field.

Pseudo-fields - The ability to alias fields, or to add metadata along with returned documents, such as function query values and results of
spatial distance calculations.

A spell checker implementation that can work directly from the main index instead of creating a sidecar index.

Pseudo-Join functionality - The ability to select a set of documents based on their relationship to a second set of documents.

Function query enhancements including conditional function queries and relevancy functions.

New update processors to facilitate modifying documents prior to indexing.

A brand new web admin interface, including support for SolrCloud.

Changes to Consider

There are some major changes in Solr 4 to consider before starting to migrate your configurations and indexes. There are many hundreds of
changes, so a thorough review of the changes.txt file in your Solr instance will help you plan migration to Solr 4.

System Changes

® Java 1.6 is now required to run Solr 4.

Index Format

®* The Lucene index format has changed. As a result, once you upgrade to Solr 4, previous versions of Solr will no longer be able to read

Apache Solr Reference Guide 4.4 338

your indices. In a master/slave configuration, all searchers/slaves should be upgraded before the master. If the master is updated first,
older searchers will not be able to read the new index format.

Query Parsers

® The default logic for the mmparameter of the Dismax Query Parser has changed. If no nmparameter is specified (either in the query or as
a defaultin sol rconfi g. xm , then the effective value of the gq. op parameter is used to influence the behavior (whether q. op is defined
in the query, in sol rconfi g. xnm , or from the def aul t Oper at or option in schenma. xm). If g. op is effectively "AND" then nm=100%
If g. op is effectively "OR" then nm=0% If you want to force legacy behavior, set a default value for the nmparameter in your
sol rconfig. xm file.

Schema Configuration

® Due to low level changes to support SolrCloud, the uni queKey fi el d can no longer be populated via <copyFi el d/ > or <fi el d
defaul t=...>inschema. xn . If you want to have Solr automatically generate a uniqueKey value when adding documents, use an
instance of solr.UUIDUpdateProcessorFactory in their update processor chain. See SOLR-2798 for more details.

® Solris now much more strict about requiring that the uni queKeyFi el d feature (if used) must refer to a field which is not multiValued. If
you upgrade from an earlier version of Solr and see an error that your uni queKeyFi el d "can not be configured to be multivalued"
please add mul ti Val ued="f al se'to the <fi el d / > declaration for your uni queKeyFi el d.

® Changestothe HTM.Char Fi | t er Fact ory:
® Known offset bugs have been fixed.
® The "Mark invalid" exceptions are no longer triggered.
®* Newlines are now substituted instead of spaces for block-level elements; this corresponds more closely to on-screen layout,
enables sentence segmentation, and doesn't change the offsets.
® Supplementary characters in tags are now recognized.
® Accepted tag names have been switched from [: XI D_Start:] and[: Xl D_Conti nue:] Unicode properties to the more
relaxed [: 1D _Start:] and[: | D _Conti nue:] properties, in order to broaden the range of recognizable input. (The improved
security afforded by the XI D_* properties is irrelevant to what a Char Fi | t er does.)
More cases of <script> tags are now properly stripped.
CDATA sections are now recognized.
No space is substituted for inline tags (e.g. , <i >,). The old version substituted spaces for all tags.
Broken MS-Word-generated processing instructions (? ... /) instead of <? ... ?>)are now handled.
Uppercase character entities ", "©", "<", ">", "®", and "&" are now recognized and handled as if they were lower case.
Opening tags with unbalanced quotation marks are now properly stripped.
Literal "<" and ">" characters in opening tags, regardless of whether they appear inside quotation marks, now inhibit recognition
(and stripping) of the tags. The only exception to this is for values of event-handler attributes, e.g. "onClick", "onLoad",
"onSelect".
® A newline \n' is substituted instead of a space for stripped HTML markup.
® Nothing is substituted for opening and closing inline tags - they are simply removed. The list of inline tags is (case insensitively):
<a>, <abbr>, <acronym>, , <basefont>, <bdo>, <big>, <cite>, <code>, <dfn>, , , <i>, , <input>, <kbd>,
<label>, <g>, <s>, <samp>, <select>, <small>, , <strike>, , <sub>, <sup>, <textarea>, <tt>, <u>, and <var>.
® HTMLStripCharFilterFactory now handles HTMLStripCharFilter's "escapedTags" feature: opening and closing tags with the given
names, including any attributes and their values, are left intact in the output.
® The replacement character U+FFFD is now used to replace numeric character entities for unpaired UTF-16 low and high
surrogates (in the range [U+D800-U+DFFF]).
® Properly paired numeric character entities for UTF-16 surrogates are now converted to the corresponding code units.
® The generated scanner's parse method has been changed from the default yyl ex() to next Char ().

Changes to solrconfig.xml

® The <indexDefaults> and <mainindex> sections of solrconfig.xml have been discontinued and replaced with the <indexConfig> section.
There are also better defaults. When migrating, If you don't know what your old settings mean, delete both the <indexDefaults> and
<mainindex> sections. If you have customized them, put them in the <indexConfig> section with the same syntax as before.

® The Pi ngRequest Handl er no longer looks for a <heal t hcheck> option in the (legacy) <admi n> section of sol r confi g. xni . If you
want to take advantage of this feature, configure a heal t hcheckFi | e initialization parameter directly on the Pi ngRequest Handl er .
As part of this change, relative file paths have been fixed to be resolved against the data directory. The sample sol rconfi g. xm has
an example of this configuration.

® The update request parameter to choose the Update Request Processor Chain has been renamed from updat e. pr ocessor to
updat e. chai n. The old parameter was deprecated in Solr 3.x, but now has been removed entirely.

® The VelocityResponseWriter is no longer built into the core. Its jar and dependencies now need to be addressed (via <lib> or solr/home
lib inclusion). It also needs to be registered in sol r conf i g. xni like this:

<queryResponseWiter nane="vel ocity" class="solr. Vel ocityResponseWiter"/>

Apache Solr Reference Guide 4.4 339

https://issues.apache.org/jira/browse/SOLR-2796

Other Changes

® Two of the SolrServer subclasses in SolrJ have been renamed and replaced. ConmonsHt t pSol r Ser ver is now Ht t pSol r Ser ver,
and St r eam ngUpdat eSol r Ser ver is now Concurr ent Updat eSol r Ser ver.

Apache Solr Reference Guide 4.4 340

Errata

Errata For This Documentation

Any mistakes found in this documentation after it's release will be listed on the on-line version of this page:

https://cwiki.apache.org/confluence/display/solr/Errata

Errata For Past Versions of This Documentation

Any known mistakes in past releases of this documentation will be noted below.

Apache Solr Reference Guide 4.4 341

	Apache Solr Reference Guide
	About This Guide
	Getting Started
	Installing Solr
	Running Solr
	A Quick Overview
	A Step Closer

	Upgrading Solr
	Using the Solr Administration User Interface
	Overview of the Solr Admin UI
	Getting Assistance
	Logging
	Cloud Screens
	Core Admin
	Java Properties
	Thread Dump
	Core-Specific Tools
	Analysis Screen
	Config Screen
	Dataimport Screen
	Documents Screen
	Ping
	Plugins & Stats Screen
	Query Screen
	Replication Screen
	Schema Screen
	Schema Browser Screen

	Documents, Fields, and Schema Design
	Overview of Documents, Fields, and Schema Design
	Solr Field Types
	Field Type Definitions and Properties
	Field Types Included with Solr
	Working with Currencies and Exchange Rates
	Working with Dates
	Working with External Files and Processes
	Field Properties by Use Case

	Defining Fields
	Copying Fields
	Dynamic Fields
	Other Schema Elements
	Schema API
	Putting the Pieces Together
	DocValues
	Schemaless Mode

	Understanding Analyzers, Tokenizers, and Filters
	Overview of Analyzers, Tokenizers, and Filters
	What Is An Analyzer?
	What Is A Tokenizer?
	What Is a Filter?
	Tokenizers
	Filter Descriptions
	CharFilterFactories
	Language Analysis
	Phonetic Matching
	Running Your Analyzer

	Indexing and Basic Data Operations
	What Is Indexing?
	Uploading Data with Solr Cell using Apache Tika
	Uploading Data with Index Handlers
	Uploading Structured Data Store Data with the Data Import Handler
	De-Duplication
	Detecting Languages During Indexing
	Content Streams
	UIMA Integration

	Searching
	Overview of Searching in Solr
	Velocity Search UI
	Relevance
	Query Syntax and Parsing
	Common Query Parameters
	The Standard Query Parser
	The DisMax Query Parser
	The Extended DisMax Query Parser
	Local Parameters in Queries
	Other Parsers

	Highlighting
	MoreLikeThis
	Faceting
	Result Grouping
	Spell Checking
	Suggester
	Function Queries
	Spatial Search
	The Terms Component
	The Term Vector Component
	The Stats Component
	The Query Elevation Component
	Response Writers
	Near Real Time Searching
	RealTime Get

	The Well-Configured Solr Instance
	Configuring solrconfig.xml
	DataDir and DirectoryFactory in SolrConfig
	Lib Directives in SolrConfig
	Managed Schema Definition in SolrConfig
	IndexConfig in SolrConfig
	UpdateHandlers in SolrConfig
	Query Settings in SolrConfig
	RequestDispatcher in SolrConfig
	RequestHandlers and SearchComponents in SolrConfig

	Solr Cores and solr.xml
	Format of solr.xml
	Legacy solr.xml Configuration
	Moving to the New solr.xml Format
	CoreAdminHandler Parameters and Usage

	Solr Plugins
	JVM Settings

	Managing Solr
	Running Solr on Tomcat
	Running Solr on Jetty
	Configuring Logging
	Backing Up
	Using JMX with Solr
	Running Solr on HDFS

	SolrCloud
	Getting Started with SolrCloud
	How SolrCloud Works
	Nodes, Cores, Clusters and Leaders
	Shards and Indexing Data in SolrCloud
	Distributed Requests
	Read and Write Side Fault Tolerance
	NRT, Replication, and Disaster Recovery with SolrCloud

	SolrCloud Configuration and Parameters
	Setting Up an External ZooKeeper Ensemble
	Using ZooKeeper to Manage Configuration Files
	Collections API
	Parameter Reference
	Command Line Utilities
	SolrCloud with Legacy Configuration Files

	SolrCloud Glossary

	Legacy Scaling and Distribution
	Introduction to Scaling and Distribution
	Distributed Search with Index Sharding
	Index Replication
	Combining Distribution and Replication
	Merging Indexes

	Client APIs
	Introduction to Client APIs
	Choosing an Output Format
	Using JavaScript
	Using Python
	Client API Lineup
	Using SolrJ
	Using Solr From Ruby
	MBean Request Handler

	Further Assistance
	Solr Glossary
	Major Changes from Solr 3 to Solr 4
	Errata

