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Abstract

In the arts and sciences, as well as in our daily lives, symmetry has
made a profound and lasting impact. Likewise, a computational treat-
ment of symmetry and group theory (the ultimate mathematical for-
malization of symmetry) has the potential to play an important role
in computational sciences. Though the term computational symmetry
was formally defined a decade ago by the first author, referring to algo-
rithmic treatment of symmetries, seeking symmetry from digital data
has been attempted for over four decades. Computational symmetry on
real world data turns out to be challenging enough that, after decades
of effort, a fully automated symmetry–savvy system remains elusive for
real world applications. The recent resurging interests in computational
symmetry for computer vision and computer graphics applications have
shown promising results. Recognizing the fundamental relevance and



potential power that computational symmetry affords, we offer this
survey to the computer vision and computer graphics communities.
This survey provides a succinct summary of the relevant mathemati-
cal theory, a historic perspective of some important symmetry-related
ideas, a partial yet timely report on the state of the arts symmetry
detection algorithms along with its first quantitative benchmark, a
diverse set of real world applications, suggestions for future directions
and a comprehensive reference list.



1
Introduction

Symmetry is a pervasive phenomenon presenting itself in all forms and
scales in natural and man-made environments, from galaxies to biolog-
ical structures (Figure 1.1), as well as in the arts (Figure 1.2 from the
classic book by Jones [106]). Much of our understanding of the world
is based on the perception and recognition of repeated patterns that
are generalized by the mathematical concept of symmetries [47, 277].
Humans and animals have an innate ability to perceive and take advan-
tage of symmetry in everyday life, but harnessing this powerful insight
for machine intelligence remains an elusive goal for computer science.

In the basic sciences, the understanding of symmetry played a pro-
found role in several important discoveries, including: the theory of rela-
tivity (the discovery of the isometries of Minkowski spacetime under the
Poincaré group, the full symmetry group) [195]; the double helix struc-
ture of DNA (with two-fold rotation symmetry) [275]; the discovery
of quasi-crystals (the first observation of an unusual fivefold symmetry
indicated by diffraction pictures of samples from an alloy of aluminium
and manganese) [247] and their mathematical counterpart Penrose tiles
[209]. It is not a coincidence that all of these symmetry-related discov-
eries led, directly or indirectly, to Nobel prizes — an indication of the
fundamental relevance of symmetry in science.

3
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Fig. 1.1 The ubiquitous appearance of real world symmetries in nature: from Nebula to the
firing field of grid cells in rats’ brains. The photos from four corners, and bottom-middle,
are courtesy of [182].

Given the evidence of the powerful role of symmetry in the history
of the natural sciences, we hypothesize that computational symmetry,
defined by the first author as using computers to model, analyze, syn-
thesize and manipulate symmetries in digital forms, imagery or other-
wise [152], will likewise play a crucial role in the advancement of our
understanding in artificial/machine intelligence.

In human perception, symmetry is considered a pre-attentive fea-
ture that enhances object recognition [40, 144, 268]. Although humans,
primates, dolphins, birds, and insects have an innate ability to recognize
and use real world symmetries that have been quantitatively docu-
mented [74, 226, 268], the symmetry cue is hardly used in today’s object
recognition, categorization or scene understanding systems due, largely,
to a lack of computational models and available robust algorithms.

In computational science, the development of symmetry detection
algorithms has had a long history. The earliest attempt at an algo-
rithmic treatment of bilateral reflection symmetry detection predates
computer vision itself [18]. In spite of years of effort, we are still short of
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Fig. 1.2 Symmetries in art.
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a robust, widely applicable “symmetry detector” for real images. Fur-
thermore, though an initial effort has been made [33, 203], we have yet
to see a large-scale, systematic, quantitative evaluation and a publicly
available test-image database to gauge the progress in this important,
widely applicable research direction.

Without attempting to cover all published related-work in this sur-
vey, we primarily focus on the theory and techniques that make explicit
use of symmetry groups. Due to a lack of coverage in the literature on
discrete finite and infinite symmetry groups and their relevance to and
impact on computer vision and computer graphics problems, we pay
special attention to these types of algorithms without excluding affine,
perspective, and non-Euclidan geometries. We hope to provide a clear
conceptual roadmap of group theory (Section 2), and its multi-facet
applications in computer vision and computer graphics. In particular,
we hope to achieve these goals:

(1) to de-mystify group theory, discrete and finitely generated
(infinite) groups in particular, using concrete examples from
2D and 3D Euclidean, projective and hyperbolic geometries;

(2) to illustrate the ubiquitous and persistent appearances of
symmetry structures, particularly those associated with dis-
crete symmetry groups, in real world data;

(3) to appreciate the substantial computational challenges as
well as promises in current and future computational sym-
metry research.

1.1 What is symmetry?

From the spirit of the Felix Klein’s Erlangen program [79]: geometry
is the study of a space that is invariant under a given transformation
group, to the Gestalt principles of perception [7]: among others, Laws
of Symmetry, symmetries and group theory play an important role in
describing the geometry and the apperance of an object. Informally,
we may think of symmetry as expressing the notion that a figure or
object is made from multiple copies of the same smaller unit that are
interchangeable somehow. Mathematically, we formalize this notion by
examining the effect of transformations on the object in a certain space
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such that its sub-parts coincide (map to each other). The following
quote from Weyl [277] captures the essence of symmetry eloquently:

“Starting from the somewhat vague notion of symme-
try = harmony of proportions, . . . rise to the general
idea . . . of invariance of a configuration of elements
under a group of automorphic transformations.”

More formally, in a metric space M , a symmetry g ∈ G of a set
S ⊆ M is an isometry (a distance preserving transformation) that maps
S to itself (an automorphism), g(S) = S. The transformation g keeps S
invariant as a whole while permuting its parts. Symmetries G of S form
a mathematical group {G,∗}, closed under transformation composition
∗, called the symmetry group of S [44].

Group theory provides a level of abstraction that leads to simplic-
ity and completeness in practical algorithm design and execution. In
two-dimensional (2D) Euclidean space, for example, there are four
distinct atomic transformations as primitive symmetries [41, 44, 277]:
translation, rotation, reflection and glide-reflection1 (Figure 1.3).
One somewhat surprising mathematical discovery of a century ago
is the answer to the first part of Hilbert’s 18th problem: there is
only a finite number of symmetry groups for all periodic patterns
in Rn of any n. These groups are referred to as crystallographic
groups [44, 84, 277]. While the number of distinct 1D (frieze) and 2D
(wallpaper) crystallographic groups is finite and relatively small, there
is an infinite number of potential instantiations; some samples can be
observed in Figures 1.1, 1.2 and 1.3.

1.2 Why is symmetry relevant to computational science?

A computational model for symmetry is especially pertinent to com-
puter vision and computer graphics, or machine intelligence in general,

1 Glide-reflection is defined as a symmetry composed of a translation along and a reflection
about the same axis.
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Fig. 1.3 Sample images of symmetry categorized by their respective ideal symmetry groups:
column (A) cyclic group containing rotation symmetries only, (B) dihedral group (reflec-
tion and rotation), (C) frieze group (translation plus reflection), and (D) wallpaper group
(translation, rotation, reflection and glide-reflection). The top row contains synthetic pat-
terns while the bottom row shows photos of real world scenes (bottom-right is an image of a
transverse slice of skeletal muscle magnified with a transmitter microscope 800,000 times).

because of its

• ubiquitousness: both the physical and the digital worlds are
filled with various forms of symmetry, near-symmetry and
distorted symmetry patterns (Figures 1.1, 1.2 and 1.3). The
applicability of such a computational model can only be lim-
ited by one’s imagination;

• essentiality: intelligent beings perceive and interact with the
chaotic real world in the most efficient and effective manner
by capturing its essential structures and sub-structures — the
generators of symmetry, near-symmetry, distorted symmetry
and/or repeated patterns;

• compactness: the recognition of symmetries is the first step
towards minimizing redundancy, often leading to drastic
reductions in computation; and
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• aestho-physiology: from a butterfly to an elephant, from a
tea cup to a building, symmetry or deviation from it, has
been a time-honored principle for design (by nature or by
human) that can guide machine perception, detection, recog-
nition and synthesis of the real world.

Since the earliest bilateral reflection symmetry detection algorithm
[18], attempts in computational treatment of symmetry and regular-
ity have been made continuously. Figure 1.4 shows the statistics of
published papers2 in several major computer vision/graphics confer-
ences/journals during the period of 1974–2009 (36 years). An increasing
level of interests can be observed in both computer vision and computer
graphics.

1.3 Why is computational symmetry challenging?

Humans are experts in symmetry detection and appreciation [144, 268].
Our ability to recognize and tolerate departures from prefect symme-
tries reflects a level of sophistication in human perception. From an
engineering point of view, however, it remains unclear how to cap-
ture and simulate this perceptual capability of humans and animals
for machine/artifitial intelligence. From a theoretical point of view,
even though group theory itself (especially Euclidean group and its
subgroups) is a mature field, little formal theory exists connecting the
elegant group theory to the noisy, incomplete and often inconsistent
real world. From an educational point of view, group theory is usually
introduced in classrooms as an abstract theory instead of a theoretical
basis for algorithmic treatment of real world problems, such like those
in computer vision and computer graphics.

Regardless of how powerful computers have become, one fundamen-
tal limitation of computers is their finite representation power. One
simple floating point round-up error destroys any perfect symmetry in
the data. In addition, and perhaps more importantly, the non-coherent

2 A list of the papers counted for can be found here: http://www.cse.psu.edu/∼yanxi/
symmetryCitation.htm.
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(A) Publications on symmetry detection and applications in major computer vision and
computer graphics conferences/journals.

(B) Dividing papers into on reflection symmetry alone versus other types of symmetries
(rotation, translation and glide-reflection).

Fig. 1.4 From the publication statistics, it is obvious that research on reflection symmetry
has been dominating the field in the past, with a growing awareness of the whole symmetry
spectrum. A similar reflection-symmetry-dominating trend has also been observed in the
psychology literature for human perception of symmetries [268].

(discrete versus continuous, and finite versus infinite) topological nature
of symmetry groups poses serious problems for their representation and
computation on computers under a uniform framework [151].
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Fig. 1.5 Sample images of distorted, disguised and layered real world symmetries. Top and
bottom-middle photos are courtesy of David R. Martin.

In summary, computational symmetry is challenged by at least two
acute discrepancies:

• the clean formal concepts of group theory versus imperfect,
noisy, ambiguous, distorted and often hidden symmetry pat-
terns in digitized real world data (Figure 1.5).

• the complete, concise and uniform mathematical theory of
symmetry, group theory, versus limitations of representa-
tional power of computers (hardware) and a lack of com-
putational models for real world symmetry (software);

Without explicitly and effectively addressing each of these challenges, it
is impossible for computational symmetry to release its potential power
and play a substantial role in computer vision and computer graphics
research even though the importance and relevance of symmetry in
these fields become increasingly obvious (Figure 1.4).

1.4 Historical Perspective

To gain some historic perspective and insight, interested readers can
find several influential symmetry-related papers, for example, the
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wonderful exposition on the role of symmetry in “Biological Shape
and Visual Science” by Blum in 1973 [20]; in 1977, the “Descrip-
tion and Recognition of Curved Objects” reported by Nevatia and
Binford, where bilateral symmetry of the object about different axes
is examined [197]3; the method of detecting angle/side regularities
of closed curves and plateaus in one-dimensional patterns by Davis
et al. [22, 48]; the introduction of the term skewed symmetry by Takeo
Kanade in 1981 [109]; the exposition on “Smoothed Local Symmetries
and Their Implementation” by Brady and Asada (1984) [24]; the theory
of recognition-by-components (RBC) proposed by Biederman in 1985
[14]4; “Perceptual Grouping and the Natural Representation of Natural
Form” using superquadrics as restricted generalized cylinders (GC) by
Pentland in 1986 [210]; “Perceptual Organization and Visual Recogni-
tion” by Lowe [175], where the non-coincidental appearance of symme-
try in the real world was noted; and the “Symmetry-seeking Models for
3D Object Reconstruction” (1987) illustrated by Terzopoulos, Witkin
and Kass [256].

1.5 Organization of this Survey

In order to make this survey concise, self-contained and easily search-
able, we organize this survey into eight relatively independent sections.
They are:

(1) Introduction, where we motivate the necessity of this sur-
vey;

(2) Symmetry and symmetry groups, where we provide a
set of standard definitions and proofs with intuitive explana-
tions of these concepts. The theoretical basis for symmetry is

3 The authors stated: because of the simple descriptors used for pieces, the symmetry cal-
culation is correspondingly crude. However, we feel that with improved descriptions, sym-
metry can be very useful.” (p. 90) [197].

4 The fundamental assumption of the proposed theory of RBC “is that a modest set of
components [N probably 5 ≤ 36] can be derived from contrasts of five readily detectable
properties of edges in a two-dimensional image: curvature, collinearity, symmetry, par-
allelism, and cotermination. The detection of these properties is generally invariant over
viewing position and image quality and consequently, allows robust object perception when
the image is projected from a novel viewpoint or degraded.”
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established under Euclidean, affine and perspectively-skewed
and non-Euclidean geometries;

• Symmetry in Euclidean geometry
• Symmetry-based invariants in perspective transfor-

mation (affine as a special case)
• Symmetry in non-Euclidean geometry

(3) Symmetry and Symmetry group detection, where we
describe and demonstrate the methods and the output of
several representative state of the art symmetry detection
algorithms followed by the results from the first quantified
benchmarking in this area;

(4) Near regular textures, where we show their mathematical
roots to crystallographic groups, and their increasingly wide
applicability in both computer vision and computer graphics
research;

(5) Continuous and quantified symmetry, where we demon-
strate a variety of real world applications using quantified
symmetry (or deviations from it) as a continuous measure;

(6) Symmetry in graphics, where a range of visually appeal-
ing symmetry-based graphics applications is illustrated;

(7) Summary, where we summarize this effort, provide pointers
to existing resources and lay out tangible future directions in
this research area; and

(8) References, a comprehensive reference list in computational
symmetry completes this survey.

Given limitations in space and time, some important aspects of
symmetry related topics are not covered in this survey, they include:

• Medial axis and its wide range of applications: for a recent
survey on this topic, refer to [249]; a classic shock graph
reference [250], and some recent developments [140, 253].

• Human and animal symmetry perceptions: these are well
studied and well documented. Interested readers can start
with [268, 144]; some excellent exploration of symmetry and
culture research can be found in these books [236, 274].
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• Alternative representations of symmetry groups: in this sur-
vey, we follow the classic group theory for symmetry. But we
recommend the book by Conway et al. [41] for great intuition
and a modern representation of symmetry groups.



2
Symmetry and Symmetry Groups

We start by providing some formal definitions of symmetry, and
symmetry groups as subgroups of the Euclidean group, including
cyclic, dihedral, frieze and wallpaper groups, and their subgroup inter-
relations. We then move on to affine, projective and non-Euclidean
spaces (hyperbolic spaces) to demonstrate a wide range of symmetries.

2.1 Symmetry in Euclidean Space

2.1.1 Basic Concepts

Definition 1. Let S be a subset of Rn. Then an isometry1 g is a
symmetry of S if and only if g(S) = S.

Definition 2. A symmetry g for a set S ∈ Rn is a primitive symmetry
if and only if for any non-trivial decompositions of g = g1 g2, neither g1
nor g2 is a symmetry of S.

1 An isometry is a distance preserving mapping.

15
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Fig. 2.1 An illustration of patterns with the four different primitive symmetries (PS) respec-
tively, in the 2D Euclidean space. Reflection symmetry has the reflection axis as its point-
wise invariance. Rotation symmetry has the center of rotation as its invariant point. An
n-fold rotational symmetry with respect to a particular point (in 2D) or axis (in 3D) means
that, set-wise, the rotation by an angle of 360/n does not change the object. Glide reflec-
tion is composed of a translation that is 1/2 of the smallest translation symmetry t and a
reflection r with respect to a reflection axis along the direction of the translation. There
are no invariant points under translation and glide-reflection symmetries.

For example, in 2D Euclidean space R2, there are four types [41,
44, 277] of primitive symmetries g(S) = S. They are, without loss of
generality, for the four images f(x,y) shown in Figure 2.1:

(1) Reflection: f(x,y) = f(−x,y), its reflection axis (plane) remains
invariant under the reflection.

(2) Rotation: f(x,y) = f(r cos(2π/n), r sin(2π/n)), r=
√

(x2+y2),
n is an integer (n = 3 in Figure 2.1), its rotation center point
(axis) remains invariant under the rotation.

(3) Translation: f(x,y) = f(x + �x,y + �y), for some �x,�y ∈
R, no invariant points exist.
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(4) Glide reflection: f(x,y) = f(x + �x,−y), for some �x ∈ R, no
invariant points exist. A glide-reflection g can be expressed as
g = tr, where t is a translation and r is a reflection whose axis of
reflection is along the direction of the translation. Note: neither
t or r alone is a symmetry of S thus g is a primitive symmetry
of S.

Euclidean space of three-dimension R3 has two additional primitive
symmetries:

(1) Rotoreflection symmetry: invariant to the center of rotation;
(2) Helical symmetry (screw operation or rotation–translation in

3D): invariant to its axis of rotation.

Given an arbitrary subset S ⊂ Rn, S has at least one symmetry —
the identity mapping which maps each point in S to itself. Thus sym-
metry groups can conceptually capture both regular shaped objects as
well as irregular shaped objects as having a trivial symmetry group
(with cardinality one).

Symmetries beyond isometries

S can be a purely point set or something beyond, such as surface orien-
tations in 3D space [166], for example, or color and texture of an image
(e.g., [202]).

• Color symmetry and counterchange symmetry are isometries
plus permutations of the color space.

• We can also expand the notion of symmetry to include dila-
tions. In that case, a shape like a logarithmic spiral in the
plane has a “dilate and rotate” symmetry that would not be
possible with ordinary isometries.

• Symmetry groups in the hyperbolic plane (Section 2.3), when
viewed as perspective transformations of the 2D Euclidean
plane under the Klein projection, form perfectly well-behaved
groups of non-isometries.
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Now let us review the mathematical notion of an algebraic group G:

Definition 3. Let G be a non-empty set with a well-defined binary
operation ∗ such that for each ordered pair g1,g2 ∈ G,g1 ∗ g2 is also in
G. (G,∗) is a group if and only if:

(1) there exists an identity element e ∈ G such that e ∗ g = g =
g ∗ e for all g ∈ G;

(2) any element g in G has an inverse g−1 ∈ G such that g ∗
g−1 = g−1 ∗ g = e.

(3) the binary operation ∗ is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c
for all a,b,c ∈ G.

Using the composition of mappings in Rn as the binary operation ∗,
one can prove that symmetries of a subset S ⊂ Rn form a group, which
is called the symmetry group of S.2

Proposition 2.1. Symmetries of a subset S ⊂ Rn form a symmetry
group GS of S.

Proof. Assume GS contains all the symmetries of S and ∗ is the trans-
formation composition defined on pairs of symmetries. Obviously, the
identity mapping e is a symmetry of S since e(S) = S → e ∈ GS (con-
dition #1 of Definition 3). Since all symmetries g of S are rigid trans-
formation in Euclidean space, each of them has a natural inverse g−1

to reverse the transformation of g. If g ∈ GS then g(S) = S, multi-
plying by g−1 on both sides, we have S = g−1g(S) = g−1(S) therefore
g−1 ∈ GS (condition #2). Finally, if g1,g2,g3 ∈ GS then (g1g2)g3(S) =
g1(g2(S)) = g1(S) = S = (g1(g2 ∗ g3)(S) thus ∗ is associative (condition
#3). By the definition of a group (Definition 3) (GS ,∗) is a group.

Definition 4. All the symmetries of Rn form the Euclidean Group E .

2 Note, the difference between symmetry group and symmetric group, the latter is the group
consisting of all permutations of a finite set with function composition as the group oper-
ation [69, 181].
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Definition 5. All the handedness-preserving isometries, i.e., excluding
reflections in E , form the Proper Euclidean Group E+. E+ is a subgroup
of E . The symmetry group of any S ⊂ Rn is a subgroup of E , or of E+

if reflections are excluded.

Table 2.1 lists some typical subgroups of E+ summarized in [151].

Definition 6. G1 and G2 are subgroups of group E+, G1 is conjugate
to G2 iff there exists g ∈ E+ such that G1 = gG2g

−1.

Proposition 2.2. If G is the symmetry group of S ⊂ �n then for any
rigid transformation g in E+, gGg−1 is the symmetry group of g(S).

Table 2.1. Some typical canonical subgroups of E+ in R3 [151].

Canonical groups Representative group element

Identity group
Gid {1}
Rotation subgroups
SO(3) {rot(i,θ)rot(j,σ)rot(k,φ)|θ,σ,φ ∈ R}
O(2) {rot(k,θ)rot(i,nπ)|θ ∈ R,n ∈ N}
SO(2) {rot(k,θ)|θ ∈ R}
Dn {rot(k,2π/n)rot(i,mπ)|m ∈ N},n ∈ N
Cn {rot(k,2π/n)},n ∈ N
Translation subgroups

T 1 {trans(0,0,z)|z ∈ R}
T 1
dis(t0) {trans(0,0, t0)}, t0 ∈ R

T 2 {trans(x,y,0)|x,y ∈ R}
T 3 {trans(x,y,z)|x,y,z ∈ R}
Mixed subgroups
Gcyl {trans(0,0,z)rot(k,θ)rot(i,nπ)|n ∈ N ,θ,z ∈ R}
Gdir cyl {trans(0,0,z)rot(k,θ)|z,θ ∈ R}
Gplane {trans(x,y,0)rot(k,θ)rot(i,nπ)|x,y,θ ∈ R,n ∈ N}
Gdir plane {trans(x,y,0)rot(k,θ)|x,y,θ ∈ R}
Gscrew(p) {trans(0,0,z)rot(k,2zπ/p)|z ∈ R},p ∈ R
GT1C2 {trans(0,0,z)rot(i,nπ)|n ∈ N ,z ∈ R}
E+ {trans(x,y,z)rot(i,θ)rot(j,σ)rot(k,φ)|x,y,z,θ,σ,φ ∈ �}
The major orthogonal axes are represented by i, j,k. rot(k,θ) is a rotation
about k by θ radius. trans(x,y,z) is a translation by x,y,z units in the i, j,k
directions respectively. R is real numbers and N is natural numbers.
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Proof. If a ∈ G,gag−1(g(S)) = ga(S) = g(S) thus gag−1 is a symmetry
of g(S). Obviously, 1 ∈ gGg−1 and (gag−1)−1(g(S)) = ga−1g−1(g(S)) =
ga−1(S) = g(S), therefore (gag−1)−1 is also a symmetry of g(S)
and belongs to gGg−1. Finally, for a,b ∈ G, gag−1gbg−1(g(S)) =
gag−1gb(S) = gag−1(g(S)) = ga(S) = g(S). So gGg−1 is the symmetry
group of g(S).

2.1.2 Symmetry Group Categorization

Groups can be divided into different categories. For example, G is a
finite group if there is a finite number of elements in G, an infinite
group otherwise.

One way to describe a symmetry group is to use the concept of
orbit.

Definition 7. An orbit of a point x ∈ Rn under groupG, or theG-orbit
of x, is G(x) = {g(x)|g ∈ G}.

A discrete symmetry group can be defined in terms of its orbits:

Definition 8. A discrete group G is a subgroup of E such that for any
x ∈ Rn and any sphere Br = {y|y ∈ Rn, ||y|| ≤ r} there is only a finite
number of points in the G-orbit of x that are contained in Br.

According to this definition, finite groups are always discrete but
discrete groups are not necessarily finite. For example, the cyclic group
Cn is a discrete and finite group while the symmetry group of an infinite
line of dots with equal intervals is not finite though indeed discrete. A
continuous group, such as the symmetry group of a sphere SO(3), is
neither finite nor discrete.

Another way to categorize different types of groups is by observing
what points in Rn are left invariant by a part or all the group actions.
These points are often called invariant points.

Definition 9. For every x in X, we define the stabilizer subgroup of x
(also called the isotropy group or little group) as the set of all elements
in G that fix x: Gx = {g ∈ G | g(x) = x}.



2.1 Symmetry in Euclidean Space 21

Definition 10. A point group G is a symmetry group that leaves a
single point x fixed. In another word, G = Gx, here Gx is the stabilizer
subgroup on x.

Definition 11. In crystallography, a space group is a group G of oper-
ations which leave the infinitely extended, regularly repeating pattern
of a crystal unchanged. In R3 there are 230 such groups. In another
word, such a group G as a whole leaves no point invariant, i.e., for all
possible x ∈ Rn, Gx is either a proper subgroup of G,Gx ⊂ G or empty.
Here Gx is the stabilizer subgroup on x.

A list of finite symmetry groups in R3 is shown in Table 2.2, includ-
ing symmetry groups of the five platonic solids (Figure 2.2). In R2, there
are only four types of discrete (finite and infinite) symmetry groups as

Table 2.2. Finite point groups in 3D Euclidean space.

Group name Size |G| Comments

Gid 1 The identity group
Cn = Gcyclic n Generated by the 2π/n rotation
Dn = Gdihedral 2n Generated by the 2π/n rotation + a 180◦ rotation

for a regular n-gon, n + 1 rotation axes
Gtetrahedral 24 7 Rotation axes, 12 rotation symmetries
Goctahedral 48 24 Rotation symmetries, 13 axes, same as cube
Gicosahedral 120 31 Rotation axes, 60 rotations, same as dodecahedron

Fig. 2.2 The five platonic solids. The cube and octahedron (the dodecahedron and
icosahedron) are dual solids with the same symmetry group. The symmetry groups
of the five platonic solids are all finite groups as shown in Table 2.2. Figure source:
http://en.wikipedia.org/wiki/Platonic solid.
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Table 2.3. Discrete symmetry groups in R2.

Name Group type Symbol Order Atomic symmetry Example

Cyclic Point Cn n Rotation Figure 1.3(A)
Dihedral Point Dn 2n Rotation and reflection Figure 1.3(B)
Frieze Space Gfrieze ∞ All 4 primitives Figure 1.3(C)
Wallpaper Space Gwallpaper ∞ All 4 primitives Figure 1.3(D)

Fig. 2.3 Examples of the only three types of rotation symmetry groups in the 2D Euclidean
space: Left: C5 is the cyclic group of order 5 with rotation symmetries only; middle: D5
is the dihedral group of order 2 × 5 = 10 with both rotation and reflection symmetries;
and right: O(2) is the infinite, continuous orthogonal group in 2D containing infinitesimal
rotation symmetries and reflection symmetries.

shown in Table 2.3. There are two special cases for cyclic group Cn and
dihedral group Dn respectively: when n = 1,Cn becomes the identity
group of size 1 and Dn of size 2 contains only a bilateral reflection
symmetry and the identity mapping; when n → ∞,Cn → SO(2) (spe-
cial orthogonal group), the symmetry group of an oriented disk (with-
out any reflection symmetries) and Dn → O(2) (orthogonal group), the
symmetry group of an un-oriented disk (all rotations and reflections
that keep the center of the disk invariant). Figure 2.3 demonstrates the
three sample shapes associated with its respective, distinct, non-trivial
2D point groups.

2.1.3 Crystallographic Groups

A mature mathematical theory for periodic patterns3 has been known
for over a century [13, 61, 62, 63], namely, the crystallographic groups.
These are groups composed of symmetries of periodic patterns in

3 An n-dimensional periodic pattern is formed by repeating a pattern-unit in equal intervals
along n or less than n directions.
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n dimensional Euclidean space. An essential mathematical theory of
periodic patterns is the answer to the first part of Hilbert’s 18th prob-
lem [189]: regardless of dimension n and despite an infinite number
of possible instantiations of periodic patterns, the number of distinct
symmetry groups for periodic patterns in any Euclidean space Rn is
always finite! These groups are often referred to as crystallographic
groups [42, 84, 277]. For 2D monochrome patterns, there are 7 frieze-
symmetry groups translating along one direction (strip-patterns) [42]
(Figure 1.3(C)). and 17 wallpaper-groups covering the whole plane
[61, 84] (Figure 1.3(D)). In 3D, there are 230 different space groups
[98] generated by three linearly independent translations (regular crys-
tal patterns).

Frieze Symmetry Group
A frieze pattern is a 2D strip in the plane that is periodic along

one dimension. Any frieze pattern P is associated with one of the seven
unique symmetry groups (Figure 2.4). These seven symmetry groups,
denoted by crystallographers as l1, lg,ml, l2,mg, lm,mm [42], are called
the frieze groups. These frieze groups are infinite yet discrete. Without
loss of generality, assume the direction of translation symmetry of a
frieze pattern is horizontal, the frieze pattern can exhibit five different
types of symmetries (Figure 2.4(A)):

(1) horizontal translation;
(2) two-fold rotation;
(3) horizontal reflection (reflection axis is placed horizontally);
(4) vertical reflection; and
(5) horizontal glide-reflection composed of a half-unit translation

followed by a horizontal reflection.

The primitive symmetries in each group (the inner-structure of
a frieze group) and the relationship among the seven frieze groups
(inter-structure of frieze groups) are depicted in Figure 2.4(A) and (B)
respectively. Each frieze pattern is associated with one of the seven
possible frieze groups, depending on the unique and legal combina-
tion of these five primitive symmetries presented in the pattern (Fig-
ure 2.4(A)). Not all possible combinations of symmetries form legit-
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(A) Primitive symmetries (PS) in frieze groups.

(B) Inter-structure of frieze groups.

Fig. 2.4 The inner (A) and inter-structures (B) of the seven frieze groups are shown. The
subgroup structures of frieze groups provide a sound regularity scale: the larger the sym-
metry group the higher the regularity in general.

imate symmetry groups, for example, a horizontal frieze pattern as
shown in Figure 2.4(A) cannot exhibit both horizontal reflection and
glide reflection symmetries simultaneously.

Wallpaper Symmetry Group
A wallpaper pattern is a 2D periodic pattern extending along two

linearly independent directions [42, 235] (Figure 2.5). Any wallpaper
pattern is associated with one of the 17 wallpaper groups. Wallpaper
group theory [84] states that all translationally symmetric patterns Pr

can be generated by a pair of linearly independent, shortest (among all
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Fig. 2.5 Sample wallpaper patterns associated with the 17 distinct wallpaper groups.

possible) vectors t1, t2 applied to a minimum sized tile. The orbits of this
pair of translation symmetry generator vectors form a 2D quadrilateral
lattice, which simultaneously defines all 2D tiles (partitions the space
into its smallest generating regions) and a topological lattice structure
relating all tiles (Figure 2.6). The unit lattice of each of the 17 wallpaper
groups and their relations are shown in Figure 2.7.

Motifs of Wallpaper Patterns
When translational symmetry subgroup of a periodic pattern is

determined, it fixes the size, shape and orientation of the unit lattice,
but leaves open the question of where the unit lattice should be located
in the pattern. Any parallelogram of the same size and shape carves
out an equally good tile that can be used to tile the plane. However,
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(A) (B)

Fig. 2.6 (A) The generators t1 and t2 simultaneously determine the lattice unit (shape,
size, orientation) and a tile (a parallelogram-shaped piece of the wallpaper) that can tile
the entire 2D plane. (B) The 2D lattice captures the translation subgroup of the wallpaper
pattern.

from a perception point of view, some parallelograms produce tiles that
are better descriptors of the underlying symmetry of the overall pat-
tern than others. For example, if the whole pattern has some rotation
symmetries, a tile located on the rotation centers can reflect the global
symmetry property of the wallpaper pattern instantly (Figure 2.6(A)).
Such motifs, as representative tiles of a periodic pattern, can be defined
mathematically:

Definition 12. A motif of a wallpaper pattern is a tile that is cut
out by a lattice whose lattice unit is centered on the fixed point of the
largest stabilizer group.

Candidate motifs can then be determined systematically by enumer-
ating each distinct centers of the highest-order rotation in the wallpaper
pattern ([28]).

Definition 13. Two rotation centers of the rotation subgroups with
the same order are distinct if they lie in different orbits of the symmetry
group, that is, if one cannot be mapped into the other by applying any
translation, rotation, reflection or glide-reflection symmetries in the
symmetry group.
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(A) Unit lattice and PSs of the 17 wallpaper groups.

(B) Inter-structure of wallpaper groups.

Fig. 2.7 The inner (A) and inter-structures (B) of the 17 wallpaper groups are shown.
The symbols p1,p2, . . . ,p4m,p6m are crystallographers’ representations for wallpaper
group [235]. The diamond, triangle, square and hexagon shapes correspond to 2, 3, 4 and
6-fold rotation centers. Solid single line, dotted single line and double parallel lines denote
unit translation, glide-reflection and reflection symmetries, respectively. (B), first appeared
in [156], is a pictorial interpretation of wallpaper group relations from [44].

Algorithmically, one can characterize a wallpaper pattern by deter-
mining the distinct orbits of a given pattern and shifting the found
unit lattice to center on each of the highest order of rotation symme-
tries (Figures 2.8, 2.9 and 2.10).
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Fig. 2.8 Motifs centered on the highest order of rotation symmetry centers. Different colors
indicate distinct orbits. For symmetry groups without rotation centers (p1, pm, pg, cm),
approximate rotation symmetry centers are used (courtesy of [159]).
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Fig. 2.9 Motifs centered on the highest order of rotation symmetry centers. Different colors
indicate distinct orbits. For symmetry groups without rotation centers (p1, pm, pg, cm),
approximate rotation symmetry centers are used (courtesy of [159]).

Infinite versus Finite Periodic Patterns
Mathematically, frieze and wallpaper groups are defined only for

infinite periodic patterns P . In practice, we use the term “symmetry
group G of P” equivalently for the infinite periodic pattern P or a finite
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Fig. 2.10 Motifs centered on the highest order of rotation symmetry centers. Different colors
indicate distinct orbits. For symmetry groups without rotation centers (p1, pm, pg, cm),
approximate rotation symmetry centers are used (courtesy of [159]).

segment of P . An intuitive “computer vision” interpretation is to view
any real world finite periodic pattern segment as an occluded or cropped
version of an infinite periodic pattern.
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Fig. 2.11 The Euclidean group and its major subgroups, providing an overview of the types
of symmetry groups in 3D Euclidean space. In 2D, the four light-blue colored symmetry
groups (cyclic, dihedral, frieze and wallpaper) are the most representative regularities, with
Tdis(1),Tdis(2) as their subgroups and O(2),SO(2) and T (2) as their extreme (continuous)
cases.

2.1.4 Euclidean Group and Its Subgroup Hierarchy

Figure 2.11 depicts the hierarchical structure of the 3D Euclidean group
and its subgroups (defined in Tables 2.1 and 2.2).

A full understanding of symmetry group types and their hierarchi-
cal structures (Table 2.3, Figures 2.4, 2.6, 2.11) provides a theoretically
sound set of qualitative standards for regularity. Computationally, this
understanding also helps us to focus on a comprehensive yet compu-
tationally tractable set of symmetry groups. In 2D space for example,
symmetry discovery becomes no more and no less than searching for
cyclic, dihedral, frieze and wallpaper symmetry groups (Table 2.3).

An understanding of symmetry groups also helps us to develop more
robust computer algorithms. Instead of looking for isolated symmetries
in a noisy real world image, we can search for specific, predictable,
structured symmetries: the symmetry groups.

2.2 Symmetry in Affine and Projective Spaces

2.2.1 Affine-Skewed Symmetry Groups [156]

Symmetry groups are composed of rigid Euclidean transformations
(Section 2.1). We define skewed symmetry groups as affinely trans-
formed Euclidean symmetry groups. The term skewed symmetry groups
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first appeared in [156] where a computational treatment for 2D wallpa-
per groups under affine transformations is presented. This seems to be
the first time that wallpaper groups are studied under full affine defor-
mations (conjugated by affine transformations) for computer vision
applications [43].

The study of skewed symmetry groups [156] is motivated by the
following observations: (1) even though the appearance of a periodic
pattern can change infinitely and sometimes drastically under all
possible affine transformations, its symmetry group stays in a small
finite set (much smaller than 17) and relatively stable, and thus pro-
vides a good index for regular textures viewed at arbitrary angles [156];
(2) according to a well-defined symmetry group hierarchy (Figure 2.6)
[44], different wallpaper patterns have their respective highest order of
symmetry group under all possible affine deformations. For example,
all three patterns in Figure 2.12 initially (leftmost patterns) have the
2-fold (180◦) rotation as their highest order of symmetry. Under cer-
tain affine deformations the symmetry group of each pattern follows a
different path to reach its own ‘highest’ order: (1) has 4-fold rotational
symmetry, (2) has 6-fold and (3) still only has 2-fold rotation as its
highest order of rotation symmetry.

In robotics manipulation related research, where only rigid trans-
formations are considered, we can show (Proposition 3.3.1 [166]):

Proposition: If G is a symmetry group of P and A is a rigid transfor-
mation, then AGA−1 is the symmetry group of A(P ).

Here, AGA−1 is a conjugation of group G via A [69]. When A is
a rigid transformation or a uniform scaling, there exists a bijection
between the original symmetry group and the conjugated symmetry
group, and thus G and AGA−1 are considered equivalent (isomorphic).

When a periodic pattern undergoes non-rigid transformations
(other than uniform scaling), the above proposition no longer holds.
In AGA−1 the original symmetry group G is being skewed by A, thus
the term skewed symmetry groups [156]. It is useful to note that cer-
tain symmetries do survive some constrained or even general affine
transformations. For example, 2-fold rotation symmetry remains under
all non-degenerative affine transformations. The question is whether
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Fig. 2.12 When a pattern is deformed by affine transformations, its symmetry group
migrates to different groups within its special orbit: (1) p2 → pmm → cmm → p4m, (2)
p2 → cmm → p6m, (3) p2 → pmm. Note: the labels p1,p2,p3,p6, . . . are classic notations
for crystallographic groups. For details see [44, 235].

AGA−1 retains its original group structure, and if not, which symme-
try group can it migrate to?

Let us examine under what conditions a symmetry of a pattern
P remains when an affine transformation A is applied to P . If g is a
symmetry of pattern P , g(P ) = P (definition of symmetry). For each
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x ∈ P , there exists a unique y ∈ P such that g(x) = y. Let A =
∣∣∣∣a b

c d

∣∣∣∣.
Applying A to P , and assuming g remains a symmetry of A(P ) so
g(A(P )) = A(P ) (modulo translations and rotations in A acting on g

since we know they do preserve symmetries), we have

g(A(x)) = A(y) ⇒ g(A(x)) = A(g(x)) ⇒ gA = Ag.

From this relation, we derive constraints that affine transformation A

must satisfy to maintain symmetry g
1) When g is a 2-fold rotation (rotation by 180◦),

g =
∣∣∣∣−1 0

0 −1

∣∣∣∣ ,
gA =

∣∣∣∣−a −b
−c −d

∣∣∣∣ , Ag =
∣∣∣∣−a −b
−c −d

∣∣∣∣
There are thus no constraints on the values of a,b,c, and d. This

means that a 2-fold rotational symmetry is invariant to any non-
singular affine transformation.
2) W.l.g. when g is a reflection about the Y axis

g =
∣∣∣∣−1 0

0 1

∣∣∣∣ ,
gA =

∣∣∣∣−a −b
c d

∣∣∣∣ , Ag =
∣∣∣∣−a b

−c d

∣∣∣∣
The derived constraints are: b = 0 and c = 0. This means that a

reflection is invariant only to non-uniform scaling parallel and perpen-
dicular to the axis of reflection.
3) When g is an n-fold rotation where n �= 2 (in this case, rotations
by 120◦, 90◦ and 60◦)

g =
∣∣∣∣cosθ −sinθ
sinθ cosθ

∣∣∣∣
gA =

∣∣∣∣acosθ − csinθ bcosθ − dsinθ
asinθ + ccosθ bsinθ + dcosθ

∣∣∣∣
Ag =

∣∣∣∣acosθ + bsinθ −asinθ + bcosθ
ccosθ + dsinθ −csinθ + dcosθ

∣∣∣∣
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Equating the two sides, we have the constraints:

acosθ − csinθ = acosθ + bsinθ ⇒ b = −c
bcosθ − dsinθ = −asinθ + bcosθ ⇒ a = d

asinθ + ccosθ = ccosθ + dsinθ ⇒ a = d

bsinθ + dcosθ = −csinθ + dcosθ ⇒ b = −c
Therefore

A =
∣∣∣∣ a b

−b a

∣∣∣∣ =√a2 + b2︸ ︷︷ ︸
S

∣∣∣∣∣
a√

a2+b2
−b√

a2+b2

b√
a2+b2

a√
a2+b2

∣∣∣∣∣︸ ︷︷ ︸
R

where S is a uniform scaling and R is a rotation with θ = atan2(b,a).
Therefore, 3-fold, 4-fold and 6-fold rotational symmetries are only
invariant to similarity transformations.

Based on the above results, we can derive a set of conditions that
specify when two different symmetry groups, G1 and G2, cannot be
transformed into each other:

(1) G1 has a 2-fold rotation symmetry but G2 does not (2-fold
rotation survives any nonsingular affine distortion);

(2) G1 and G2 have the same lattice type;
(3) after deforming the lattice type of group G1 into the lattice

type of group G2, at least one remaining symmetry in the
deformed G1 differs from all symmetries in G2; and

(4) G1 and G2 do not have a subgroup relationship (Figure 2.6).

We can now construct a 17 × 17 “migration map” that lists the com-
plete set of groups that any one of the 17 wallpaper groups can be
transformed into under affine transformations (Table 2.4).

For the first time, a given periodic pattern can be viewed not simply
under its Euclidean symmetry group but its highest potential symme-
try group under all possible affine deformations. The importance of
this result is a constructive, well-defined canonical representation of
any periodic patterns (its most symmetrical form) that can be used in
practice for diverse applications, ranging from an indexing and retrieval
scheme for regular patterns, to a maximal-symmetry-based shape and
orientation estimator from texture under unknown views [156].
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2.2.2 Symmetry-specific Invariants under
Perspective Transformation

A large part of this survey deals with symmetries of planar shapes. But
when these are observed from oblique viewing directions, this leads to
deformations in the image. These deformations tend to destroy some
of the characteristics that make symmetric patterns special in the first
place, but fortunately not all such characteristics go lost. Depending on
the viewing conditions, i.e., whether they can be modeled by pseudo-
orthographic projection or the full perspective model needs to be used,
more or fewer such characteristics may survive. Such characteristics
are called invariant features or invariants for short. In this section,
we will first have a closer look at characteristics that remain invariant
under perspective projection, then we will comment on the pseudo-
orthographic case, which is far more benign. In particular, we will derive
invariants that are specific for skewed symmetries as they appear for
the ornamental groups (cyclic and dihedral symmetry groups).

The groups governing skewed symmetries
Much of our analysis is based on the classifications of subgroups

of the plane projectivities. Nevertheless, the planar shapes that are
involved can be part of non-planar configurations. Moreover, some-
times the same geometrical analysis applies to the grouping of curved
surfaces. Surfaces of revolution are a good case in point, as their
outlines share their geometrical constraints with skewed planar sym-
metric shapes [211].

First, we recapitulate some issues of general, projective invariants,
to then press on with their specialisation towards the symmetry-specific
subgroups. This also stands to reason from a mathematical point of
view. As the symmetry-specific transformations will form subgroups of
the projectivities, any projective invariant will also be an invariant for
the symmetry-related groups.

2.2.2.1 Projective invariants

Introduction and notations. When observing a planar pattern
from two different viewpoints, corresponding points in the two image
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projections are related by a projective transformation (or projectivity).
If (x′,y′) are the image coordinates in the second image of the point
which corresponds to the point (x,y) in the first image, then there are
nine coefficients pij such that,

x′ = p11x + p12y + p13
p31x + p32y + p33

y′ = p21x + p22y + p23
p31x + p32y + p33

(2.1)

For other pairs of corresponding points the same coefficients pij and
thus the same projectivity apply. Although there are nine coefficients,
a projectivity only has eight degrees of freedom, as multiplying each
coefficient with the same non-zero scalar keeps the transformation
unchanged.

The symmetric patterns that we discuss here are co-planar, although
parts of this discussion also pertain to relations between planar but not
necessarily co-planar patterns. When co-planar, symmetric subpatterns
are viewed from different viewpoints, the transformation between their
images will still be projective. Due to the special nature of the symmet-
ric pattern, special subgroups of the projectivities will apply, however.
This issue will be discussed in the following subsections. There we will
derive features that remain unchanged between the different views, i.e.,
invariants. But before we do that, we first have a look at the features
that remain invariant under just any projectivity.

We will assume that we have available points for which we can also
identify the corresponding points in other views. The points are charac-
terised by their image coordinates x = (x,y)T, where “T” stands for the
transpose. In order to distinguish between multiple points, we will use
subscripts: xi = (xi,yi)T are the coordinates of point i. Moreover, some-
times points ly on curves. The coordinates of x(t) = (x(t),y(t))T of such
points are ordered along the curve, with some parameter t increasing
monotonously when moving along the curve. For points along a curve
with sufficient continuity, one can also extract their derivatives with
respect to the parameter t. These will be written as:

x(j) =
(
x(j)

y(j)

)
=


d

jx
dtj

djy
dtj


 .
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Please note that these derivatives will change their values upon
changing the parameterisation of the curve, i.e., when replacing the
parameter t by another parameter t′. More about this is to follow. The
notation x(j)

i then indicates the jth derivative of the coordinates at
xi. The notation x(j:t) = (x(j:t),y(j:t))T is used to denote derivatives
with respect to a specific parameter t. The notation s will be reserved
for Euclidean arclength, i.e., the actual length traversed when moving
along the curve, measured in the image from some starting point for
which s = 0.

Continuing our introduction of notations for this section, single bars
( | ) will indicate determinants, and double bars ( ‖ ) norms. As an
example

|x1 − x2 x1 − x3| = (x1 − x2)(y1 − y3) − (y1 − y2)(x1 − x3)

and

‖x(1)‖ =

√(
dx

dt

)2

+
(
dy

dt

)2

,

with t an arbitrary parameterisation of the curve. With these notations,
one also has

s(t) =
∫ t

0

√(
dx

dt

)2

+
(
dy

dt

)2

dt

Building blocks for invariants: In our quest for projective invari-
ants, we will take a shortcut when compared to the strict derivation
through so-called Lie prolongations. This shortcut will make use of
some simple expressions, which will serve as building blocks of the
invariants. As we will see, extracting invariants becomes an issue of
solving simple systems of linear equations, rather than the systems of
differential equations coming from the Lie prolongations.

First, recalling the expression for planar projective transformations,
we have

x′ = p11x + p12y + p13
p31x + p32y + p33

,

y′ = p21x + p22y + p23
p31x + p32y + p33

.
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In the sequel, N will serve as a shorthand notation for the denomi-
nator of these expressions:

N = p31x + p32y + p33

and similarly Ni = p31xi + p32yi + p33. Note that the projective trans-
formation can then be rewritten as

N


x′

y′

1


 =


p11 p12 p13

p21 p22 p23

p31 p32 p33




xy

1


 .

Hence, for three transformed points the action of the projectivity can
be summarized as

x′
1 x′

2 x′
3

y′
1 y′

2 y′
3

1 1 1


 =


p11 p12 p13

p21 p22 p23

p31 p32 p33




x1 x2 x3

y1 y2 y3

1 1 1




×

1/N1 0 0

0 1/N2 0
0 0 1/N3


 .

Taking the deteriminant of the left and right hand sides immediately
yields

|x′
1 − x′

2 x′
1 − x′

3| =
|P |

N1N2N3
|x1 − x2 x1 − x3| (2.2)

where P denotes the matrix of the transformation parameters pij . The
determinant expressions on both hand sides, i.e., before and after the
transformation, are related by a factor. This factor in turn is composed
of a number of factors. In order to find invariants one can combine sev-
eral such determinants in order to eliminate all such factors. One should
be careful not to generate trivial invariants (i.e., constants) though.

This type of determinant, which combines the coordinates of three
different points, is one type of building block for our projective invari-
ants. There are two other types, which change with similar factors
under the application of a projectivitiy. These are, together with
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their factors:

Building block Factor

|x1 − x2 x1 − x3| → |P |
N1N2N3

|x1 − x2 x(1)
1 | → |P |

N2
1 N2

|x(1)
1 x(2)

1 | → |P |
N3

1

Each of these building blocks has an especially simple interpretation.
The first building block gives the area of the parallelogram defined by
the three points needed to calculate it. Also the other two building
blocks take on a simple meaning if the derivatives are calculated with
respect to Euclidean arclength s,

s(tx) =
∫ tx

0
‖x(1:t)‖ dt

with t an arbitrary parameter and tx its particular value at the point x
which moves along the curve when t changes. It corresponds to length
measured along the contour. Using s for the parameter, the second
block measures the distance of point x2 to the tangent line to the
contour at point x1. This is the case because the tangent vector x(1)

1
is a unit vector (choice of Euclidean arclength as parameter!). The
third block expresses (Euclidean) curvature at the point x1. Again,
this interpretation hinges on the choice of Euclidean arclength for the
parameter, since in general curvature is given by

|x(1) x(2)|
‖x(1)‖3 .

These interpretations are illustrated in Figure 2.13.
Finally, an example is given to illustrate how the combination of

building blocks can yield invariants. Consider

|x1 − x2 x1 − x5| |x3 − x4 x3 − x5|
|x1 − x3 x1 − x5| |x2 − x4 x2 − x5| . (2.3)

It is an easy exercise to check that all the factors produced under a
projective transformation cancel. Notice that this invariant uses five
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Fig. 2.13 Euclidean interpretations for the different projective building blocks. Left: formula
for the building block; middle: graphical interpretation; right: interpretation in wording.

points. The above expression has the same value, whether one uses
the coordinates of the five points before or those of the corresponding
five points after the projective transformation. A second, independent
invariant on the basis of the same five points can be constructed:

|x3 − x2 x3 − x5| |x1 − x4 x1 − x5|
|x1 − x3 x1 − x5| |x2 − x4 x2 − x5| .

Additional invariants based on the coordinates of the five points are
dependent on the two foregoing invariants.

Reparameterisation. As we have seen, two out of the three projec-
tive building blocks contain derivatives. These can only be extracted
in as far as the points where they are evaluated only on contours. Such
derivatives are taken with respect to some contour parameter, say t.
When the parameterization is changed, the derivatives will take on dif-
ferent values, however. Usually, when given two contours and wanting
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to know whether they are possibly the projection of the same contour,
we would also not know which point on one contour could then corre-
spond to which point on the other. We would have to start our investi-
gations with parameterizations of the contours in the different images
that are still completely unrelated. Thus, if invariants should help us
with the comparison, they should be invariant under such changes of
parameter — i.e., under reparameterisation — as well.

Consider a general curve parametrised first with some parameter t
as (x(t),y(t)) and then with a parameter t∗ as (x(t∗),y(t∗)). Then,

dx

dt
=
dt∗

dt

dx

dt∗
.

The same holds for y. We see that the first derivative changes with a
factor dt∗/dt when we change the parameter. This factor corresponds
to the relative ‘speed’ of the two parameterisations at the point where
we consider the derivative. This factor will in general differ from point
to point, depending on the variations in the mapping t = φ(t∗) between
the parameterisations. Denoting differentiation with respect to t by a
dot, and differentiation with respect to t∗ by a prime, the following
transformation matrix for the derivatives is obtained:


x′

x′′

x′′′

...


 =



φ′ 0 0 . . .

φ′′ φ′2 0 . . .

φ′′′ 3φ′φ′′ φ′3 . . .
...

...
...

. . .





ẋ

ẍ
...
x
...


 (2.4)

Similar relations hold for y. Taking into account that the function φ is
an arbitrary monotone function, we see that the derivatives transform
as follows under reparameterization:



x

x′

x′′

x′′′

...


 =




1 0 0 0 . . .

0 a 0 0 . . .

0 b a2 0 . . .

0 c 3ab a3 . . .
...

...
...

...
. . .







x

ẋ

ẍ
...
x
...


 (2.5)

where a = φ′ > 0 (or a �= 0) for orientation-preserving (resp. arbitrary)
reparametrisations and where b = φ′′, c = φ′′′, . . . can take on arbitrary
values.
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It is easy to check that the set of the above type of matrices is
closed under matrix multiplication. In fact, they form a group, which
we will refer at as the reparametrization group. Note that for both x

and y coordinates of a single point the same reparameterization matrix
applies. But at different points a different matrix will have to be consid-
ered and each such matrix will add to the list of parameters to remain
invariant under.

In summary, in order to extract useful features for the recognition
of plane curves, both the projective group ánd the reparameterization
group will have to be considered and the features should be invari-
ant under both. Hence, the question arises how the reparameterisation
group affects the building blocks we have just derived. Fortunately,
under reparameterisation they again change by simple factors:

Building block Factor

|x1 − x2 x1 − x3| → 1

|x1 − x2 x(1)
1 | → a1

|x(1)
1 x(2)

1 | → (a1)3

The subscripts indicate values for the different points used in the
expression. We want to emphasise again that, in contrast to the
projective transformations, the parameters of the reparameterisation
will differ for each point.

An example of an invariant under reparameterisation is

|x1 − x2 x(1)
1 |

‖x(1)
1 ‖

,

which is not invariant under projectivities though. An example invari-
ant under both projectivities and reparameterisation is

|x1 − x2 x(1)
2 |3 |x(1)

1 x(2)
1 |

|x1 − x2 x(1)
1 |3 |x(1)

2 x(2)
2 |

This expression requires finding two corresponding points before and
after the transformation. We suppose these points are lying on some
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curves, so that we can calculate the first and second derivatives of their
coordinates with respect to the curve’s parameterisation. Needing two
rather than five corresponding points as when no derivatives would
have been used, avoids a serious combinatorial bottleneck. On the other
hand, this expression is still far simpler than the simplest purely dif-
ferential invariant, i.e., when one would work solely with derivatives in
a single point.

It is interesting to note that, as soon as an expression is invariant
under reparameterisation, its building blocks can be given the meaning
of Figure 2.13 again, even when calculated on the basis of a parameteri-
sation other than Euclidean arclength. Indeed, once such invariance has
been achieved, the choice of parameter no longer matters. As a result,
projective invariants can often be expressed as relations between more
intuitive, Euclidean concepts. Taking the last expression as an example,
it consists of the ratio of the two curvatures in the two points, times
the cube of a ratio of two distances, each measured from one of the
points to the tangent line in the other.

2.2.2.2 Fixed structures and subgroups

Suppose we are not observing just any planar pattern, but one which
has some symmetry. From what we saw in the previous sections, we
know that the repeated subpatterns will all have undergone the same
projective transformation. Thus, if we want to discover that these sub-
patterns are repeated, we could try to match them on the basis of their
projective invariants. Even if they look different in the image, these
invariants should still be the same.

Yet, using general projective invariants is not necessarily the opti-
mal approach. The reason is that fragments that match under projectiv-
ities, are not necessarily the result of a symmetry. Any other fragment
with the same shape, would be seen as projectively equivalent. These
fragments do not even have to be coplanar. More symmetry-specific
invariants can be derived, however. And they may be simpler than the
general projective invariants.

The existence of such symmetry-specific invariants hinges on the
existence of projective subgroups to which the skewed symmetries
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belong. So-called fixed structures yield a direct route to finding such
subgroups. As already seen earlier in this chapter, all projective trans-
formations that keep certain structures fixed (e.g., a point) form a
subgroup of the projectivities. Thus, we are interested in the fixed
structures of the symmetries, as these implicitly define the correspond-
ing subgroups. A more complete discussion on the different types of
projective subgroups defined by fixed points and fixed lines is given by
Van Gool [269].

Consider two planar shapes in 3D space. It is typical that a sym-
metry keeps certain structures fixed. For instance, a mirror symme-
try maps all points of its symmetry axis onto themselves. Moreover,
lines connecting symmetric points are also mapped onto themselves, in
the sense that a point on such line is always mapped onto a point on
the same line. For our further analysis, it is crucial that a point of the
symmetric shape maps onto a point in the image, and a line to a line.
Thus, if a point on the original, symmetric shape is mapped onto itself
under the symmetry, so is the point under the projective transforma-
tion in the image which corresponds to this symmetry. The same holds
for a line mapped onto itself under this symmetry. Fixed structures
under the symmetry map to fixed structures under the corresponding
projectivity.

If one wants to systematically determine the fixed structures under
a transformation like a projectivity, then one needs to analyse its
eigenvalue structure [245]. The fact that the same fixed structures are
found under image projection, follows from the conjugation relation
between the original symmetry and its image. Suppose the symme-
try transformation matrix is given by S, and the projection from the
original pattern plane to the image is given by P , then the transfor-
mation between the projection of the symmetric subpatterns is given
by P S P−1. This is a so-called conjugation, as we have already seen
earlier in this chapter. It is known from algebra, that conjugation does
not alter the eigenvalue structure. Eigenvalues being real, imaginary,
zero, or identical, are properties that are preserved. As a consequence,
the fixed structures are of the same type as those of the original sym-
metries, i.e., fixed points under s yield fixed points under the skewed
symmetry, the same for lines, etc.
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The fixed structures of symmetries. Fixed structures define sub-
groups of the projectivities. For instance, all projectivities that keep the
same point fixed form such a subgroup. This can be easily verified by
checking out that all properties that together define a group structure
are still valid, like e.g., the fact that the composition of two projectiv-
ities that keep that point fixed will also keep the point fixed. Whereas
the full group of projectivities has 8 degrees of freedom (DOF), this
subgroup has only 6 DOF. In [269], Van Gool discusses a taxonomy of
fixed structures and the DOF of the corresponing projective subgroups.
From that discussion, it is useful to highlight two special cases. One is
the case of a fixed line, for which also all the individual points are kept
fixed. Such line will in the sequel be referred to as a line of fixed points.
The other is a pencil of fixed lines. This entity contains all lines going
through a single point and all these lines are fixed lines. Both cases are
special in the sense that they only require two parameters to specify
them, but each lifts 5 DOF. Subgroups that share a line of fixed points
have 3 DOF, and so subgroups that share a pencil of fixed lines (under
the assumption that no other fixed structures are specified).

The fact that the specification of a mere two parameters reduces
the number of DOF from 8 to 3, causes the invariants for such sub-
groups to be quite simple when compared to those for the complete
group of projectivities. These are also the very fixed structures that
we see appear with several of the symmetries we are interested in. In
particular, mirror symmetry has both. The symmetry axis is a line of
fixed points and symmetric points are connected by fixed lines which
all intersect in the same point (at infinity when the symmetry is not
skewed). A point symmetry has the same fixed structures. The pencil
has its center at the point about which the shape is symmetric. The
line of fixed points corresponds to the line at infinity of the shape’s
plane. As a matter of fact, projectively a mirror and a point symmetry
are equivalent.

For the sake of brevity, we will refer to a line of fixed points as
axis and to a pencil of fixed lines as pencil. Transformations with both
an axis and pencil as fixed structures are called planar homologies or,
in case the pencil has its center on the axis, elations. All projective
transformations sharing the same axis and pencil form a subgroup with
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1 DOF. The remaining DOF corresponds to the cross ratio for four
special points along the fixed lines of the pencil: a pair of symmetric
points, the intersection of the line with the axis, and the center of the
pencil. All such quadruples of points yield the same cross ratio. A mirror
or point symmetry correspond to a cross ratio with value 2. This case is
sometimes referred at as a harmonic homology. A transformation which
yields the identity when repeated twice is sometimes also referred to as
an involution. Mirror and point symmetries are also involutions.

Other than mirror and point symmetries, rotational symmetries also
get special attention in this tutorial. Also when skewed, such transfor-
mations have a set of fixed structures. First, there is the center point
about which the pattern is rotationally symmetric. This is a fixed point.
Moreover, the line at infinity for the shape’s plane is a fixed line. Hav-
ing a fixed point and a fixed line as such are not special properties,
however. Every projective transformation has a fixed point and a fixed
line. Yet, our skewed rotational symmetry also has fixed sets of points.
Indeed, each time we apply the symmetry, a point goes to a new point,
until after sufficient such applications of the symmetry, we are back
at the start. This entire set of points is mapped onto itself under the
symmetry. We have an infinite number of such point sets, where each
point belongs to one and only one such set.

Building blocks and symmetries. We now analyse the behaviour of
the building blocks as introduced in Section 2.2.2.1, in the presence of
several types of fixed structures. We also give some example invariants
for the corresponding symmetry groups. However, we want to empha-
size that the sets of invariants are not complete and that the discussion
is not exhaustive.

A pencil. If there is a pencil of fixed lines, then every point is known to
stay on the line of the pencil on which it lies. Denoting the pencil vertex
with xv = (xv,yv)T, one therefore knows that there exists a factor ki

such that for a point (xi,yi)T and its image (x′
i,y

′
i)

T

(x′
i − xv) = ki(xi − xv),

(y′
i − yv) = ki(yi − yv).
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Such a factor ki exists for every point xi. It immediately follows that

(yi − yv)
(xi − xv)

is an invariant, requiring only two points, one of which is the vertex.
In order to derive additional invariants (combinations with the dif-

ferent building blocks of Section 2.2), it is important to know more
about the factor ki. Consider

|x′
1 − xv x′

2 − xv| =
|P |

N1N2Nv
|x1 − xv x2 − xv|.

This can also be written as

|x′
1 − xv x′

2 − xv| = k1k2|x1 − xv x2 − xv|
and therefore

k1k2 =
|P |

N1N2Nv
.

From the fact that this latter equality holds for any choice of the points
x1 and x2, it follows that

ki = ±
√

abs
( |P |
Nv

)
1
Ni
. (2.6)

We conclude that (xi − xv) and (yi − yv) come as additional build-
ing blocks with the pencil of fixed lines, easing the construction of
invariants. An example invariant parameter is∫

abs

(
|x − xv x(1)|

(x − xv)2

)
dt.

Given that this parameterisation of a curve on which the point x lies is
invariant under projective skewing, it is remarkably simple. Knowledge
of the center of the pencil is required to exploit the parameterisation
though.

An axis. If there is a line of fixed points — in the sequel referred to
as the axis — then any point xai on it is fixed. Hence,

|P |
NNa1Na3

=
|x′ − xa1 x′ − xa3|
|x − xa1 x − xa3| =

|x′ − xa1 x′ − xa2|
|x − xa1 x − xa2| =

|P |
NNa1Na2
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and thus Na1 = Na2 = Na where Na is one and the same value for all
the points on the axis.

It follows that, e.g.,

|xa1 − x1 xa1 − x2|
|xa2 − x1 xa2 − x2|

is an invariant, which requires knowledge about the axis and only two
additional points, hence a total of six parameters (the two points on
the axis can be chosen arbitrarily). A geometrical interpretation of this
invariant is that the lines 〈x1,x2〉 and 〈x′

1,x
′
2〉 interesect the axis in

the same point. Again, we get access to an invariant which is simpler
than a similar invariant under any projectivity, which would require the
combination of a minimum of five points in a double ratio instead of
four in a single ratio (see e.g., Equation (2.3)). The complexity of this
invariant is comparable to that of simpler affine invariants. We cannot
exploit it without the knowledge of the axis, however.

A pencil and an axis. If both a pencil of fixed lines and a line of
fixed points exist — i.e., if we are dealing with a planar homology —
then the previous results can be combined. If one considers (xa − xv)
where both the point on the axis xa and the pencil vertex xv are fixed
points now, this expression is a trivial invariant, i.e.,

ka = ±
√

abs
( |P |
Nv

)
1
Na

= 1 (2.7)

and thereforeNa = ±√abs(|P |/Nv), or, equivalently,Nv = |P |/N2
a . For

a single point, we can then find the invariant

(x − xv)
|x − xv x − xa| .

As usual, this invariant can only be used if one has complete knowledge
about the pencil and the axis.

Fixed sets of points. As already briefly discussed for the case of
rotational symmetry, a set of points may, rather than being fixed indi-
vidually, map onto each other. The set is fixed, not its points. Such cases
are important, because they correspond to discrete symmetries. Mirror
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symmetry is an example where every point belongs to a fixed pair of
symmetric points. Ornamental symmetries include all cyclic and dihe-
dral symmetry groups of different orders. Cyclic symmetry of order n is
synonymous to n-fold rotational symmetry. Dihedral symmetry groups
add mirror symmetries. There is an isomorphism between the skewed
symmetries as observed in the image and the ‘ornamental symmetry
group’ of the shape. Vice versa, the existence of fixed sets of points
typically are a strong indication for the presence of skewed ornamental
symmetries, and in some cases it even gives a guarantee (e.g., if there
is a fixed triple [245]).

As in the case of a line of fixed points or a pencil of fixed lines, the
presence of fixed discrete sets of points yields specialized invariants.
And again, these are based on further constraints on the factors of the
building blocks in Section 2.2.2.1.

Consider a fixed n-tuple of points, x,x′,x′′, . . . ,x[n−1]. Consider what
happens to |x − x′ x − x′′|. Applying the transformation n times brings
all the points back to their original positions. Hence, following the factor
brought about by such building blocks according to Equation (2.2)

|P |n
(NN ′N ′′, . . . ,N [n−1])3

= 1

and therefore

NN ′N ′′, . . . ,N [n−1] = |P |n/3. (2.8)

A degenerate case of a point cycle is the n-fold repetition of the rota-
tion center. It follows from Equation 2.8 that for this point — xc

say — Nn
c = |P |n/3, i.e., Nc = ±|P |1/3. This holds irrespective of the

angle of rotation.
As an example, if one is looking obliquely at a 3-fold rotational

symmetry,

|x1 − x2 x′
1 − x2| |x1 − x3 x′′

1 − x3|
|x1 − x2 x1 − x3| .

is an invariant under the transformation that corresponds to the 120◦

rotation as seen in the image. The symmetrically positioned counter-
parts of x2 and x3 yield the same values, while also cycling through



52 Symmetry and Symmetry Groups

x1,x′
1,x

′′
1 in the appropriate way, e.g.:

|x′
1 − x′

2 x′′
1 − x′

2| |x′
1 − x′

3 x1 − x′
3|

|x′
1 − x′

2 x′
1 − x′

3|

=
|x1 − x2 x′

1 − x2| |x1 − x3 x′′
1 − x3|

|x1 − x2 x1 − x3| .

Although this invariant uses a total of five points just like a general
point-based projective invariant would, it is both simpler and more
selective. This expression is not invariant under general projectivities.
Note that — as usual — this symmetry-specific invariant contains infor-
mation on the fixed structures of the symmetry, i.e., the fixed triple
x1,x′

1,x
′′
1.

The following expression is invariant under all skewed rotations
about the point xc:

|x1 − xc x(1)
1 | |x2 − xc x(1)

2 | |x3 − xc x(1)
3 |

|x1 − x2 x(1)
1 | |x2 − x3 x(1)

2 | |x3 − x1 x(1)
3 |

|x1 − x2 x1 − x3|.

In order to use this expression, one has to be able to extract a direction
vector at each point, e.g., the tangent vector if the points x1, x2, and
x3 lie on curves.

Skewed mirror symmetries. Skewed mirror and point symmetries
deserve some special attention, as they have an axis, pencil and fixed
pairs of points. They thus contain all the types of fixed structures that
we have considered so far.

Consider a pair of symmetric points x and x′. As we have already
seen, the case of projectively skewed mirror or point symmetry are
equivalent. Hence, for such pair of points we have

NN ′ = |P |2/3. (2.9)

since a point symmetry is nothing but a rotational symmetry of order
2 and therefore n = 2 in Equation (2.8). It also follows that for fixed
points, which are their own symmetric point, N = N ′ and therefore

N = |P |1/3. (2.10)

In particular, this is the case for all points on the axis as well as for the
vertex of the pencil, i.e., Nv = Na = |P |1/3. It then also follows from
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Equation (2.6) that

(x′ − xv) =
Nv

N
(x − xv) and (y′ − yv) =

Nv

N
(y − yv),

with (x − xv) and (y − yv) building blocks at our disposal.
In the case of affinely skewed symmetry, Ponce [216] has shown that

in a pair of symmetric points

κ

κ′ =
sin3 θ

sin3 θ′

where κ and κ′ are the curvatures of the symmetric contours in these
points and the meaning of θ and θ′ is explained in Figure 2.14.

A similar relation has been used by Cham and Cipolla [31] for the
detection of affinely skewed symmetries. Based on our prior discussion,
it can be shown that this relation also holds under projective skewing.
In order to prove this, we can rewrite Ponce’s relation in the equivalent
form

|x(1) x(2)|
|x − x′ x(1)|3 =

|x′(1) x
′(2)|

|x′ − x x
′(1)|3

This equality follows from the behaviour of the two types of building
blocks in these expressions, as specified in Section 2.2.2.1, when com-
bined with the mirror/point symmetry (involution) specific rule (2.9).
The expression on the left-hand side is an invariant under the symme-
try, since it has the same value upon replacement of x by the symmetric

curvature κ′

curvature κ

x

x′

θ θ′

Fig. 2.14 Variables used in Ponce’s symmetry invariant.
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point x′ and vice versa. This relation holds for a single pair of sym-
metric points. To check the symmetry of two contour segments, one
can start from a single (hypothesised) correspondence x1,x′

1, and find
additional pairs of symmetric points by using the symmetry-specific
invariant parameter

∫
abs

(
|x(1) x(2)|1/3

|x1 − x′
1 x1 − x|

)
dt,

which is the affine arclength with a local correction factor |x1 − x′
1 x1 −

x|−1. Corresponding points on symmetric contours will have the same
value if this parameterisation is used on each, starting from the point x1

and x′
1, respectively, and upon swapping their roles in the expression.

For each new point correspondence, the Ponce relation can then be
checked. A further example of an invariant for this case is

|x − x1 x(1)
1 |2 |x − x′

1 x(1)|
|x − x1 x − x′

1|2 |x − x1 x(1)||x1 − x′
1 x(1)

1 |2
.

Observe that the limiting behaviour of this invariant when x
approaches the reference point x1 is

|x(1)
1 x(2)

1 |
|x1 − x′

1 x(1)
1 |3

.

In case the contour under scrutiny contains corner points (i.e., points
at which the contour is not differentiable), then it is natural to take
such a corner point as a reference point, because it can more easily
be identified. For such points, however, the above invariants cannot be
used. But a corner point being an isolated point at which the contour
is not differentiable, one can compute its left and right derivatives (i.e.,
replacing the two-sided limit in the definition of the tangent vector by a
left and a right limit, respectively). The following expression is a (full)
projective invariant:

|x − x′
1 x′(1:�)

1 | |x1 − x′
1 x′(1:r)

1 |
|x − x′

1 x′(1:r)
1 | |x1 − x′

1 x′(1:�)
1 |

. (2.11)
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A second, symmetry-specific invariant involving left and right deriva-
tives in the point x1 is given by

|x − x1 x − x′
1|2 |x − x1 x(1:ell)| |x1 − x′

1 x(1:�)
1 | |x1 − x′

1 x(1:r)
1 |

|x − x′
1 x(1:r)| |x − x1 x(1:�)

1 |2
.

(2.12)
Additional examples and a more elaborate discussion can be found in
[270].

A note on the affine case. The case where affine rather than projec-
tive transformations suffice to describe the effects of image projection,
the situation gets a lot simpler. This corresponds to the case where
orthographic projection combined with a scaling model the situation,
i.e., when perspective effects like parallel lines converging after projec-
tion do not happen. The same and additional building blocks can be
used, but they change with factors that are less complicated than for
the projective case. An affine transformation takes the general form(

x′

y′

)
=
(
a11 a12

a21 a22

)(
x

y

)
+
(
t1
t2

)
.

The three projection building blocks now all change with the simple
factor |A|, which is the determinant of the linear part of the trans-
formation. Indeed, for an affine transformation, which is a special
projectivity, we have |P | = |A| and N = 1 for all points. From Equa-
tion refeq−pencil+axis and Equation (2.8) it follows that for affinely
skewed mirror and rotational symmetries one has (abs)(|A|) = 1. This
means that those symmetries correspond to so-called equi-affine trans-
formations, i.e., they preserve areas also after image projection. Thus,
all areas are invariant under these skewed symmetries.

In order to test for affinely skewed mirror symmetry, one has some-
times tested for two conditions that must hold between pairs of sym-
metric points in the image. On the one hand, the lines through such
pairs are all parallel (the pencil has a vertex at infinity in this case).
On the other hand, the midpoints between corresponding points are
all collinear. It can be shown [271] that these pair of conditions - the
parallelism and collinearity constraints - which are both sufficient and
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necessary, can be replaced by the equivalent pair that the transforma-
tion between the symmetric parts is both equiaffine and an involution.
In practice, the latter pair is sometimes easier and more efficient to
check, based on invariant representations of the symmetric parts, e.g.,
when there are contour segments that one can describe in such way.

2.3 Symmetry in non-Euclidean Geometry

In the nineteenth century, several mathematicians realized indepen-
dently that the fifth postulate of Euclidean geometry — the “parallel
postulate” — was independent of the other four. Indeed, the negation
of the parallel postulate could be combined with the other axioms of
geometry to yield a self-consistent non-Euclidean (hyperbolic) geome-
try in which a line may have multiple distinct parallels through a point.
This realization marked one of the greatest revolutions in the history
of science [79].

It is impossible to draw a hyperbolic plane without distortion, but
there are several Euclidean models of hyperbolic geometry that we can
choose for visualization purposes. These models may be thought of
as projections that distort some aspects of hyperbolic geometry and
preserve others. Each has advantages and disadvantages for computer
graphics applications [94].

The Beltrami–Klein model maps the entire hyperbolic plane into
the interior of a circular disc. It is projective — that is, straight lines
in the hyperbolic plane are represented by straight chords of the disc,
including diameters. It also has the remarkable property that isome-
tries of the hyperbolic plane become perspectivities of the Euclidean
plane under projection [86, 87], making the rendering of images in the
Beltrami–Klein model compatible with a standard graphics hardware
pipeline. The disadvantage of this model is that it is not very well
suited to making drawings of hyperbolic patterns, because it tends to
compress most of the information in a drawing towards the boundary
of the disc.

The Poincaré disc model also fits the plane into a disc, but
conformally — it preserves angles. Straight hyperbolic lines are rep-
resented by arcs of circles that meet the bounding disc at right angles.
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Fig. 2.15 Visualizations of identical lines in the Beltrami–Klein (a) and Poincaré disc (b)
models of the hyperbolic plane. The diagrams also demonstrate the impossibility of satis-
fying the Euclidean parallel postulate in the hyperbolic plane: the line l is parallel to lines
a and b, both of which pass through the point P.

Drawings in this model are more legible than in the Beltrami–Klein
model. For example, Escher’s “Circle Limit” prints are all made using
the Poincaré disc (Escher developed an intuitive undertanding of hyper-
bolic geometry after seeing diagrams in a book by Coxeter [238]).

Figure 2.15 illustrates a simple configuration of lines in the
Beltrami–Klein and Poincaré disc models of the hyperbolic plane.

In the hyperboloid model (sometimes also known as the Minkowski
model), the points of the hyperbolic plane are taken from one sheet
of the hyperboloid given by the equation x2 + y2 − z2 = −1. Lines are
the intersections of the hyperboloid with planes that pass through the
origin of 3D space. The hyperboloid model is a useful internal model for
computation on the hyperbolic plane. Isometries can be represented by
matrices, and therefore composed via matrix multiplication. Construc-
tions in the hyperboloid model can then be projected down to either
of the two disc models.

The Euclidean wallpaper groups do not map directly into hyper-
bolic geometry; most obviously, the hyperbolic plane does not have an
affine structure, meaning that even a simple Euclidean group like p1 has
no hyperbolic equivalent. But there are simple infinite families of dis-
crete hyperbolic symmetry groups that are useful for creating appealing
imagery. Dunham et al. observe that for every pair of positive integers
p and q satisfying (p − 2)(q − 2) > 4, there exists a regular tiling {p,q}



58 Symmetry and Symmetry Groups

Fig. 2.16 A visualization of the hyperbolic symmetry group [7,3], the group of symmetries
of the tiling of the hyperbolic plane by regular heptagons meeting three at a vertex. The
green, red, and blue shapes denote centres of sevenfold, threefold, and twofold rotations
respectively. The dashed arcs (which are straight lines in the hyperbolic plane) denote lines
of reflection.

of the hyperbolic plane made from regular p-gons meeting q around
every vertex [56]. This tiling has a symmetry group [p,q], generated by
reflections in the sides of a right angle triangle with interior angles π/p
and π/q. For example, the group [7,3] is visualized in Figure 2.16. These
regular tilings can be seen as the generalization of the three tilings of
the plane by regular squares, triangles and hexagons, as well as the five
tilings of the sphere that correspond to the Platonic solids. The groups
of the form [p,q], together with their orientation-preserving subgroups,
form a practical set for experimenting with hyperbolic imagery in com-
puter graphics. A more general set of discrete groups can be found by
taking those groups generated by reflections in a triangle with interior
angles π

k , π
m , and π

n , for any k, m, and n with 1
k + 1

m + 1
n < 1 [273].

It is tempting also to include the sphere as another non-Euclidean
plane, one in which parallels do no exist. This step would be too hasty,
however: given a line and a point not on it, the first four axioms of
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Euclid guarantee the existence of at least one parallel through the point.
Fortunately, the foundations of geometry can be reformulated in such
a way that we can consider the Euclidean plane, the hyperbolic plane,
and the sphere side-by-side. One approach is to use Birkhoff’s ruler-
and-protractor postulates [121].

In practice, the spherical case is straightforward compared to the
hyperbolic. The isometries of the sphere are precisely the elements of
the Orthogonal Group O(3). Its discrete symmetry groups are those of
the platonic solids, prisms and antiprisms (Table 2.2).

We will revisit both hyperbolic and spherical symmetry, and their
uses in computer graphics, in Section 6.4. For an excellent general
introduction to the history and mathematical foundations of non-
Euclidean geometry, see the book by Greenberg [79]. Dunham has
written extensively on the algorithmic generation of symmetric draw-
ings in the hyperbolic plane; several of his papers include the necessary
matrices, formulas, and pseudocode [57, 55]. Levy [142] offers a more
sophisticated, table-driven replication algorithm based on the theory
of automatic groups.



3
Symmetry Detection

Symmetry is an important cue for humans, animals, insects as well as
machine perception [144, 268, 74, 226] of the world. Automatic symme-
try detection from digital images/patterns has been a standing topic in
computer vision and, more recently, computer graphics. The develop-
ment of symmetry detection algorithms has a long history: the earliest
attempt at detection of reflection symmetry (1932) even predates com-
puter vision itself [18]. In spite of years of effort, computationally we are
still short of a robust, widely applicable general “symmetry detector”
that can parallel other types of computer vision/image processing tools
for the more primitive structural features, such as an “edge” or “corner”
detector. As shown in Figure 1.4, reflection symmetry detection used to
dominate the field of symmetry detection in computer vision. Recently,
we observe a surge of new symmetry detection algorithms from un-
segmented real images that go beyond bilateral reflection symmetry
detection. Here, we attempt to put forward a summary of the state of
the art work on symmetry detection, organized by:

(1) the types of methods applied: from correlation-based,
local feature-based, transformation-driven, graphic models

60
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and energy-based methods, . . . to, more recently, spectral
methods, MRF-based and other statistical learning-based
approaches.

(2) the types of primitive symmetries and symmetry groups
detected: from primitive symmetries (reflection, rotation,
translation and glide-reflection symmetries) to symmetry
groups (cyclic, dihedral, crystallographic groups, . . . ).

In particular, we recap the results from a recent (and the first) sys-
tematic assessment of a set of state of the arts rotation, reflection and
translation symmetry detection algorithms published within the past
couple of years. The symmetry detection results are quantitatively eval-
uated using a set of carefully chosen synthetic and real images (publicly
available), with labeled groundtruth, that contain both single and mul-
tiple symmetries within one image. This publicly available test-image
database is the first standard data set for gauging the progress in this
important and widely applicable research direction. These quantified
results indicate that even after several decades of effort, symmetry
detection from digital data (2D images or otherwise) remains a chal-
lenging and largely unsolved problem.

3.1 Symmetry Detection by Methods

Given its relative simplicity, the detection of bilateral reflection sym-
metry (mirror-symmetry) and its affinely and perspectively skewed ver-
sion from processed images has been the dominant focus in computer
vision for about 40 years. Some of the representative work includes
[24, 30, 48, 71, 81, 109, 135, 194, 197, 216, 224, 270, 303]. The detec-
tion of rotation and translation symmetries and their skewed versions
have also been explored in the literature, while the glide reflection sym-
metry seems to be completely ignored until recently [133, 159].

The basic question of symmetry detection is discussed in early
papers of geometry and theoretical mathematics. These early stud-
ies deal with evaluating deviation from symmetry of sets in Euclidean
space and are based on cord length, surface area (contour length) and
internal volume (internal area). Examples include Minkowski, Win-
ternitz and Kovner–Besicovitch measures of symmetry. These studies



62 Symmetry Detection

approach symmetry evaluation from the theoretical point of view and
do not suggest methods to efficiently evaluate these measures. A review
of geometrical evaluation of symmetry of convex sets is given in [82].

A different approach to symmetry definition can be found in a
collection of papers in which a computational approach was taken
[5, 8, 58, 99, 279]. These studies present algorithms for detecting sym-
metry in collections of geometrical objects such as points, line seg-
ments, circles, etc. The basic idea in these algorithms is to reformulate
the problem as a 1D pattern matching problem which can be solved
efficiently (e.g., using known techniques such as KMP [126]). The com-
plexity of these algorithms are shown to be O(n logn) where n is the
number of geometric objects. These algorithms are simple and efficient,
however they are highly sensitive to noise. In fact, slight perturba-
tions of the elements location, or slight computer precision errors, will
cause the algorithm to fail in finding symmetry. Extension to higher
dimensions [5], namely points in Rd, is implemented using a simplified
Extended Gaussian Images. This method is also efficient (O(n logn)),
however, as in the 2D case, it is not robust to noise, perturbation of
points, nor to numerical imprecision. The matter of imprecision and
approximate symmetry in these cases is described in [5] in terms of
time complexity.

3.1.1 Symmetry in 2D images — Direct Approach

Detection of 2D symmetry in digital images has been widely studied
and numerous approaches suggested. The most basic method, often
referred to as the Direct Approach, for determining if a given image
is mirror or rotationally symmetric is to apply the symmetry trans-
formation (i.e., reflection or rotation) to the image and then compare
with the original image. Such an approach is assumed in [272] where
an optical–mechanical system is described to optically determine 2D
symmetry in images. In [130], comparison of an image and its reflec-
tion is used for detection of vehicles. A similar approach is taken also
in [29, 129]. In [29] this approach is combined with a recursive strategy
using a multiresolution representation of an image — specifically, an
image pyramid. This method recursively tests for perfect symmetry,
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initiating the process at low resolution where time complexity is low,
and continuing to higher resolution images. In [129], the overlap method
is used to determine rotational symmetry by performing autocorrela-
tion of the image in polar coordinates. These Direct Approach methods
assume that the evaluated object is either perfectly symmetric or it is
not at all, consequently, they are highly sensitive to noise and occlusion
and cannot serve as satisfactory measures of symmetry.

Although in [272] one may suggest that the area of overlap between
an object and its reflection can be used as a measure of symmetry,
this would not always support our intuition of the symmetry measure
value. For example, the images in Figure 3.1 are intuitively evaluated as
highly symmetric (almost symmetric), however, the suggested overlap
symmetry measure would give very low values.

3.1.2 Voting Schemes

A different approach to symmetry detection uses a voting scheme. The
voting scheme is based on the fact that the symmetry axis is uniquely
determined by two points in the object and, similarly, the center of
rotational symmetry is determined by two pairs of points. In the voting
scheme pairs of points are tested and a vote for their preferred sym-
metry axis is recorded. The oriented line with highest vote is selected
as the symmetry axis of the object. In [206], a digitized polygon is
represented by its chain code imposing a discrete number of possible
mirror-symmetry axes which are voted on. In [141, 198] the Hough
transform is used for the voting scheme. For every pair of points in the

Fig. 3.1 Two images which give low symmetry content values using overlap techniques,
though they are intuitively “almost” symmetric. (a) Folding across the mid horizontal axis,
the region of overlap is minimal. (b) Rotating about the center by π/2 (obtaining the shape
with the dotted outline), the overlap is minimal.
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image, the midpoint and the direction perpendicular to the segment
connecting the pair are determined and voted for in the Hough space.
The line with maximal votes is selected as the mirror symmetry axis.
A variant of this method is used in [291] for detecting rotational sym-
metry. Another variant of the Hough transform voting scheme is the
projection scheme [197, 217, 218]. The voting scheme can also be found
in [307] where a feed-forward network is used to detect and enhance
edges that are symmetric in terms of edge orientation.

The voting schemes are robust, to a certain degree, under noise
and occlusion in the input image, however, they have high complexity.
Several methods have been suggested to reduce complexity by grouping
points into regions or into curve-segments, thus reducing the number
of possible pairs involved in the voting [75, 229].

The voting schemes usually assume the existence of symmetry axes
as well as the knowledge of the number of such axes (although thresh-
olding heuristics could provide these variables, the process is image
and noise dependent and generally unstable). These studies generally
approach symmetry as a binary feature, where thresholding is per-
formed to overcome noise in the input. Although a measure of certainty
can be associated with a voted symmetry axis, the discrete nature of
voting in bins provides only approximate symmetry detection and an
approximate measure of symmetry, not to mention imprecision in sym-
metry axis location and orientation.

3.1.3 Global vs. Local Symmetry

Symmetry can be discussed as a global feature where all object points
contribute to determining the symmetry, or as a local feature where
every symmetry element is supported locally by some subset of the
object (Figure 3.2).

The global symmetry methods are much more efficient in run time,
usually having a linear time complexity, however they are generally
sensitive to noise and occlusion. The local symmetry methods are more
robust to noise and occlusion, and they are easily parallelized, however
they have high time complexity.

In the case of global symmetry, the image or shape is assumed to be
symmetric on a global scale, with symmetry axis supported by all object
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Fig. 3.2 Global vs. local symmetry. (a) Global symmetry — the mirror-symmetry axis is
supported by all points of the shape. (b) Local symmetry — the symmetry axes (curves)
are each supported locally by a subset of the shape.

points. The voting schemes described above fall into this category. Two
other prominent global approaches are methods based on basis func-
tions and methods based on moments.

Basis Function Methods. In [287], the Walsh functions are used
as basis functions for evaluating mirror-symmetry (horizontal, verti-
cal or both) and rotational-symmetry (of order 2). The 2D basis func-
tions (Figure 3.3a) denoted Wn,m (with integer n,m values) are equally
divided into four sets according to the type of symmetry they represent:
vertical mirror (m-even, n-odd), horizontal mirror (m-odd, n-even),
doubly mirror (m-even, n-even) and rotational-symmetry (m-odd,
n-odd). Summing the Walsh coefficients according to this classifica-
tion, a vector of four values is obtained representing the symmetries of
an image. An overall evaluation of symmetry is obtained for the image
by taking the entropy of these four values (accordingly, this single value
is termed “symmetropy”).

In [16, 17, 15], Radial Basis Functions are used to detect rotationally
symmetric images. These functions are spiral-like with varying number
of “arms” and variable curvature (Figure 3.3b). Rotational symmetry of
an image is evaluated by computing the weighted averages of its radial
basis transform. Similar to the Fourier Basis functions, computations
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(a) (b)

Fig. 3.3 Basis functions for global symmetry detection. (a) The Walsh basis functions,
divided into four classes according to symmetry, are used to detect horizontal, vertical and
double mirror-symmetry and to detect rotational symmetry (of order 2). (b) The radial
basis functions are used to detect rotational and circular symmetry in images.

in the radial frequency domain can be exploited, reducing time com-
plexity to O(n logn). Similarly, the power spectrum of the transform is
invariant to rotation. In addition to the symmetry evaluation, an asso-
ciated uncertainty value is computed. Low values of uncertainty reflect
high symmetry content.

Moments Based Methods. Another global symmetry approach is
that based on moments. In [103], moment invariants are developed
for pattern recognition. As a specific case, an invariant was developed
to distinguish between “mirror-images”. Additionally, constraints on
possible invariants for circular and rotational symmetries are discussed.
These are based on the non-uniqueness of the principle axes.

In [183], a method is presented for finding the n-mirror axes of a
2D shape which is rotationally symmetric of order n and having n

mirror-axes. The method is based on the fact that all mirror-axes of a
shape pass through the centroid of the shape. In [35, 261] a method is
suggested for overcoming the problem of non-uniqueness of the principle
axes for rotationally symmetric shapes. In [261] a method was suggested
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for generalizing the principle axes to rotationally symmetric shapes.
The rotationally symmetric shape is transformed into a shape which
generally has no rotational symmetry and thus the principle axes can
be computed. The computed principle axes are then transformed back
as generalized principle axes of the original rotational symmetric shape.

The general use of moments either as invariants for shape descrip-
tion and recognition or as determinants for shape localization and ori-
entation, are very sensitive to noise and occlusion, thus they are usually
impractical for use in digital images. The method in [183] as presented
in its theoretical formulation, must assume perfect n-fold symmetry.
However, the method is extended to deal efficiently with imperfectly
symmetric images, thus becoming more robust to noise and occlusion.
Additionally, this method finds the number of reflection axes of the
image. The method in [261] is a priori defined for all shapes including
imperfectly symmetric shapes. Whereas the method in [183] might be
defined as a measure of symmetry, the study in [261] deals with finding
the principle axes and does not extend as a measure. Additionally, the
methods in [35, 261] assume a priori knowledge of the order n of the
rotational symmetry.

3.1.4 Local Symmetry

In the case of local symmetry, only part of a shape or a subset of its
points is symmetric with respect to any given symmetry (rotational
symmetry or mirror-symmetry). The subset supporting a given sym-
metry is typically forms a continuous section of the shape’s contour or
a continuous neighborhood around an image point.

It should be noted that global symmetry approaches such as those
described above, can be implemented for detecting local symmetry by
segmenting the shape or image into parts or regions and applying the
global symmetry methods to each region independently. However, in
contrast with the global symmetry approaches, the methods described
here as local symmetry methods, are inherently local by definition.

Symmetry Axis Transform — SAT.
The Symmetry Axis Transform — SAT introduced in [21] (also

known as the Medial Axis Transform — MAT), is defined as the loci
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Fig. 3.4 Symmetry Axis Transform (SAT). (a-c) The SAT is the loci of all maximal disks
enclosed in the shape (dashed lines). The SAT description of a shape is very sensitive to
noise (c).

of the centers of all maximal disks contained within the shape (a 2D
example is shown in Figure 3.4a). The SAT is shown to be piecewise
smooth [23] and forms a graph-like structure. Associating every point
of the SAT with the radius of the corresponding maximal disk, allows
perfect reconstruction of the shape from its SAT. A weakness of the
SAT description is that it is very sensitive to noise. Thus, small pertur-
bations of the bounding curve of the shape, induce extreme effects on
the SAT (Figure 3.4c). The SAT reflects various properties of the shape;
parts of the SAT structure reflects the general shape and orientation
of the shape and can be viewed as the major axis or spine of the shape
(for example the SAT’s horizontal axis in Figure 3.4b). Other parts of
the SAT reflect local boundary formations (e.g., the oblique segments
of the SAT in Figure 3.4b are associated with the corners of the shape).

In [214], the sensitivity to noise and the variance in SAT saliency
are dealt with by extending the SAT to a hierarchical description.
Smoothing a shape simplifies its SAT graph-structure and eliminates
non-salient limbs. Thus an hierarchy of saliency of the SAT limbs can be
obtained. A further extension in [70] builds a hierarchical SAT descrip-
tion of gray-scale images by thresholding the image at successive levels
and applying standard 2D SATs to each of the obtaining binary images,
independently. These 2D SATs are combined to create a 3D SAT of the
intensity image. In [196] the SAT is extended to proper 3D where the
SAT description is a 3D graph structure representing the loci of all
maximal balls bounded in the 3D object. In digital images, the SAT
has been extended to deal with graylevel images in [139, 208].
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Additional variations of the SAT extend the front propagation inter-
pretation of the SAT so as to regularize the original definition and allow
robustness to noise. In [241] propagation is combined with diffusion to
find the medial axis/. In [248] shock grammar is introduced in which
a wave propagation scheme continuously smooths the shape bound-
ary from which the medial axis can be easily determined. A similar
approach based on image edge smoothing was introduced in [255].

Generalized Ribbons — GR. In [26], a class of shapes called Gen-
eralized Ribbons — GR is described. These shapes are generated from
a 2D curve serving as a spine and from a generator segment which
follows the spine trajectory at a constant angle (with possible length
change). The area swept out by the segment is a generalized ribbon
(Figure 3.5). The spine of the GR can be taken as a description of
the ribbon shape. This definition of an axial shape description is more
flexible than the SAT description [21], but is not uniquely defined (see
Figure 3.5a, b). Note that the spine of a GR need not be straight and
may be curved. Thus, the spine represents local symmetry of the shape
(Figure 3.5c). The GR are 2D versions of the generalized cylinders
(cones) [197] which are generated by moving a planar surface along a
3D curve (spine) at a constant angle to the spine and allowing changes
of size in the planar shape (see also [230]).

Smoothed Local Symmetries — SLS An extension to the GR are
the Smoothed Local Symmetries — SLS [24]. The GR of 2D shapes
involves two steps: the determination of local symmetry and the for-
mation of maximal smooth loci of these local symmetries. A local sym-
metry exists between points A and B on the contour of a shape if the

Fig. 3.5 Generalized Ribbons (GR). The GR is defined as the shape swept out by a segment
moving along a 2D curve or spine. The 2D curve is the GR representation of a shape. (a,
b) The GR is not uniquely defined. (c) The GR may be curved thus representing local
symmetry of the shape.
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Fig. 3.6 Smoothed Local Symmetries (SLS). (a) The SLS is defined between two points A
and B on a bounding contour of a shape if the two angles between the segment ĀB and
the two normals to the curves nA,nB at points A and B, are equal. The midpoint P of a
segment connecting a pair of locally symmetric points is a symmetry locus. (b) In general
a point (e.g., A) may be locally symmetric with several other points.

two angles between the segment ĀB and the two normals to the curves
at points A and B are equal (see Figure 3.6a). In general, a point may
be locally symmetric with several other points (Figure 3.6b). The mid-
point of a segment connecting a pair of locally symmetric points is a
symmetry locus. These loci are connected into smooth curves (spines)
creating the SLS representation of the shape (Figure 3.7a, b). This def-
inition of SLS gives rise to multiple limbs of the SLS in shapes that
have deep concavities or protrusions (Figure 3.7c).

In [34], an extension to SLS is presented, namely Hierarchical Local
Symmetry — HLS, which eliminate these redundancies in the SLS.
In [67] the SLS is extended to circular symmetries and local rotation
symmetries (LRS) were presented.

Additional Axial Representations. Additional discussion on axial
representations can be found in [217] where skew symmetry is shown
to be a special case of GR with a straight spine. Also, in [143], Pro-
cess Inferring Symmetry Analysis (PISA) was introduced. PISA points
have a 1-to-1 correspondence with the SAT points but are differently
located so that they are more adequate for inferring the process of
shape formation.
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Fig. 3.7 Smoothed Local Symmetries (SLS). (a, b) The midpoint of segments connecting
pairs of locally symmetric points are connected into smooth curves (spines) creating the
SLS representation of a shape (dashed lines). (c) The SLS gives rise to multiple limbs of
the SLS in shapes that have deep concavities or protrusions.

Fig. 3.8 The geometry of different local symmetry points. C, SAT; P, SLS, HLS, GR; Q,
PISA.

In [227], the above described axial descriptions of 2D shapes are
discussed and compared. It is shown that for the special case where
the spines are straight and constant angles of the GR are set to 90◦,
the following relationship holds: SAT ⊂ GR ⊂ SLS. However, in [217],
it is shown that in the general case the above relationship does not
hold. In [34] the geometry of different symmetry points is discussed
(see Figure 3.8).
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Local Symmetry in Images. The local symmetries described above
apply to shapes defined by bounding contours and the locality is in
terms of subparts of the contour. For grey level images, locality is in
terms of local regions or neighborhoods.

In [222], the local symmetry approach is followed in order to find
points of local mirror and circular symmetry. These points are defined
as points of interest in the digital image. The local symmetries are
found using a symmetry operator which is applied to every point in
the image and with respect to a local predefined neighborhood. For
every point Pk in the image, a gradient vector Vk = (rk,θk) is defined
where rk denotes the gradient intensity and θk denotes the gradient
direction. For every two points Pi and Pj , l denotes the line passing
through them and αij denotes the angle between l and the x-axis (see
Figure 3.9a). For a given direction ψ, a symmetry measure S(P,ψ) is
defined as follows:

S(P,ψ) =
∑

Pi,Pj∈Γ(P )

rirj(1 − cos(θi + θj − 2αij))(1 − cos(θi − θj))
‖Pi − Pj‖

where Γ(P ) is a neighborhood of P. Points Pi and Pj contribute maxi-
mally when there is good correlation between the two gradients (ri, r2)
and when (θi − αij) + (θj − αij) is close to π (excluding the case where
θi − αij = θj − αij = π/2 which occurs when both Pi and Pj are on the
same straight edge). Accumulating the values S(P,ψ) in bins according
to the direction ψ, allows detection of various symmetries. Thus, con-
sidering the two bins in Figure 3.9b, horizontal symmetry is detected
when S(P,ψ) is summed over ψ values falling in bin 1 and vertical

Fig. 3.9 Local symmetries in digital images. (a) A symmetry operator is applied to every
point in the image with respect to a local neighborhood of the point (see text). (b) Dividing
the angular orientations into bins, different symmetries can be detected.
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symmetry in bin 2. Circular symmetry is detected by summing over all
ψ values.

This method is easily parallelized and is applied directly on gradi-
ents of the original image with no need of edge detection or segmenta-
tion. This method has been applied to detection of facial features for
normalization and recognition [223].

In [242], local mirror symmetry is found in images by autocorrelat-
ing a local region in the image with its reflection across a mirror-axis at
angle θ. A 1D function of θ is obtained describing the symmetry content
of the region with respect to mirror symmetry at angle θ. Local mirror
symmetry is determined to be at the angle with highest correlation
value. The correlation is simplified by first averaging the grey values
along radial rays so that the angular correlations are then performed
on a 1D grey scale function of the averages.

Computationally, finding Axial Shape Description and finding sym-
metric loci in images is computationally intense. The basic methods
use voting schemes (described earlier) where pairs of points vote for
a local symmetry axis or point. According to the highest vote, local
symmetry axes are determined. In order to reduce complexity, con-
tours are either approximated by parameterized curves (circular arcs
[24], splines [229], etc.) or a projection method is assumed as described
above [197, 34, 217]. In images, a smoothing process or hierarchical
representation is used to regularize the method.

Local symmetries are typically used for shape and object representa-
tion, or for shape formation characterization. The notion of a Measure
of Symmetry (as discussed in the following) is difficult to associate with
local symmetries as the output of these representations are either struc-
tures (SAT, MAT, Skeletons) or collections of symmetry focal points.
Additionally, without using smoothing or regularization the axial rep-
resentations are highly sensitive to variations in the shape and they do
not necessarily change smoothly with these variations.

3.1.5 Grouping using Coupled Diffusion Maps

Proesmans, Van Gool and A. Oosterlinck [220, 221] implemented a
set of grouping principles, based on coupled diffusion equations. Each
equation yields a so-called map, like an image but containing not the
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raw intensities but one or the other evolving feature. One map may,
e.g., contain pixel intensities as they get enhanced, while a coupled map
contains intensity discontinuities that are being detected in parallel,
i.e., edges. Such Coupled Diffusion Maps or CODIMS have also been
proposed for the detection of different symmetries, including imperfect
2D repeated patterns and mirror symmetries. Thus, in the CODIM
context, these symmetries are considered as examples among several
possible grouping principles.

Grouping tasks are divided into two classes — local and bilocal —
and for each a prototypical set of equations was presented. The local
grouping processes grow regions that are reasonably homogeneous in
one or the other basic feature (intensity, gradient orientation, etc.) by
considering in parallel all individual pixels and their immediate neigh-
borhoods. The regions get connected and grow through the diffusion
nature of the equations. Examples are the search for regions of the
same color or orientation of their texture. Simultaneously, the corre-
sponding edge maps develop, as a coupled process. Bilocal processes
follow similar processes, but consider two distinct places in an image
or multiple images, comparing basic cues at these pixel pairs and their
respective neighborhoods. Examples are the extraction of contiguous
motion regions in single images or depth regions on the basis of stereo
disparity in pairs of images.

In this CODIM framework, both the search of imperfect mirror sym-
metries and distorted 2D periodicities are examples of bilocal group-
ing cases. Both processes work by initializing several optical flow type
procedures by Horn and Schunck [221, 220], but implemented bi-
directionally and enriched with discontinuity preserving diffusion oper-
ators and additional discontinuity maps. Such processes are initialized
with constant motion vector maps, each map having a different ori-
entation and length for its vectors. Maps with vectors similar to peri-
odicities or a joint connecting symmetric points, soon lock into such
order. It suffices that this locking happens in small regions. From there
onwards, the diffusion can spread the solution in a flexible manner,
adapting the vectors along the way. This procedure allows for local
deviations from perfect symmetry. For mirror symmetries, the process
was adapted as to encourage pixels on both sides of a symmetry axis to
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grow the symmetry in opposite directions, whereas in all other processes
like optical flow, stereo, or periodicity search, pixel pairs try to expand
the regularities by both evolving in the same direction. In order to keep
the computational cost under control, only vectors up to some maximal
length are considered. The price one pays is that the symmetry in a
region close to the axis needs to be visible to kick-start the locking in
process. Interestingly, also human vision does not pick up symmetry if
a limited region around a symmetry axis is made asymmetric [27]. For
the case of 2D periodicities, several processes initialized with different
directions and lengths lock into different periodicities, where the same
periodicity may be found by multiple, initial vectors. Together, the dif-
ferent periodicities allow such process to recover the tessellation of the
periodic image regions.

Of course, one could initialize the matching processes in a more
parsimonious fashion, by searching for matching interest points, for
instance. It may well be however, that the brain throws in its powerful
parallel processing capabilities, as would be beneficial for the CODIM
algorithms.

Figure 3.10 shows examples of imperfect mirror symmetries,
detected by a system of coupled diffusion equations. The figure shows
the symmetry axes as they can be extracted by connecting the mid-
points of corresponding points as found by the algorithm.

Fig. 3.10 Two examples of detected mirror symmetries with the CODIM framework.
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Fig. 3.11 (A): Original image, (B, C): x and y components for the first periodicity under-
lying the near regular tessellation; (D, E): x and y components of the second periodicity
underlying the tessellation — together these two periodicities define the local tiles; (F):
shape-from-texture (surface normals) based on the observed deformations of the tessella-
tion (attributing the source of the deformation to the effect of projection).

Fig. 3.12 Left image shows an atomic structure with a dislocation, i.e., an imperfection
in the regularity. On the right, one of the CODIM discontinuity maps highlighting this
deviation.

Figure 3.11 shows a curling sheet of wallpaper. Different period-
icities were detected using CODIMs. The two main periodicities are
shown in the middle of the figure. The horizontal and vertical compo-
nents of each of those periodicities are shown in a first and second row,
respectively. These maps exhibit the smooth variations in the period-
icity vectors.

Figure 3.12 shows another example of an imperfect periodicity. This
is a dislocation as found in atomic layouts. CODIMs come with maps
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which explicitly indicate discontinuities. Here such discontinuity in the
periodicity is found at the location of the dislocation (bright region in
the image on the right).

3.2 Symmetry Detection by Symmetry Types

Primitive symmetries are the ‘atomic’ set-invariant transformations
of an object, individually, each of them cannot be further divided
and remains to satisfy the definition of symmetry (Section 2). In 2D
Euclidean space there are only four different primitive symmetries:
rotation, translation, reflection and glide-reflection. We focus on algo-
rithms that detect these types of primitive symmetries and their combi-
nations. Given its relative simplicity, the detection of bilateral reflection
symmetry (mirror-symmetry) and its skewed version from images has
been the dominant focus in computer vision (Figure 1.4).

As summarized in Table 2.3, there are only four types of discrete
symmetry groups in 2D Euclidean space:

(1) cyclic group Cn (rotation),
(2) dihedral group Dn (rotation and reflection),
(3) the seven frieze groups, and
(4) the 17 wallpaper groups.

with the following special/limit cases:

• the identity group (asymmetrical figures with only one trivial
symmetry),

• SO(2) (Figure 2.3, special orthogonal group containing con-
tinuous rotation symmetry, a limiting case of Cn),

• O(2) (Figure 2.3, continuous rotation plus infinite number of
reflections, a limiting case of Dn),

• T1(T2) symmetry group (a limiting case of the
frieze/wallpaper groups, with infinitesimal translation
symmetries, Table 2.1), and

• the symmetry group the 2D plane (Table 2.1).

Though the world is filled with various repeated patterns that can be
characterized by discrete symmetry groups (Figure 1.1), the automatic
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detection of discrete symmetry groups from real, non-segmented, digital
imagery is relatively new. In texture analysis (Section 4), for example,
many algorithms for finding the repeated image patches (texels) exist
but few is aiming at an indepth analysis of the underlying symmetry
group structures.

3.2.1 Reflection and Rotation

3.2.1.1 From Reflection Symmetry to Dihedral Dn and
Frieze symmetry groups [162]

Recognizing that reflection symmetry plays an important visual as well
as functional role in the folk art of paper-cut, this work [162] is per-
haps the first algorithmic treatment (analysis and synthesis) of digitized
paper-cut patterns (Figure 3.13) using automatically detected reflection
symmetries. Making a connection between a reflection symmetry of the
pattern and a folding action of the artist, the algorithm tries to dis-
cover all the potential single ‘folding lines’ (reflection symmetry axes)
and the patterns formed by them, leading to more sophisticated sym-
metry structures such as patterns with a dihedral and a frieze symmetry
group (Figure 3.13). This is done by searching through the entire 2D
polar coordinates space (θ,r), for reflection axes that are supported by
a sufficient set of edge feature pairs (Figure 3.14). This work proposes
a hierarchical symmetry detection algorithm starting by finding indi-
vidual reflection symmetries and moving on to find dihedral and frieze
group structures: axes of a dihedral group forms a pencil shape and
those of the frieze group form a set of equal distance parallel lines. The
algorithm is voting based and uses edge features as the main matching
cue. Figure 3.14 depicts the main steps in this algorithm [162].

Fig. 3.13 Detect dihedral and frieze symmetry groups from reflection symmetries [162].
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(A) Searching the 2D parameter space (θ,r) for potential reflection symmetry axes

(B) Assigning a (supporting) score for each potential folding line

Fig. 3.14 The algorithm [162] discovers and organizes the potential reflection axes in the
image. (A) Searching the θ,r parameter space of the reflection axes (a voting method);
(B) treating each reflection axis as a folding line, trying to match the edge points and
assigning a score to the potential axis.

Given a paper-cut-pattern P , for each potential reflection symme-
try axis l(r,θ) on P , the algorithm first verifies whether l is a potential
reflection symmetry axis of P by: (1) reflecting P about line l to obtain
Pref(l); (2) computing a symmetry score Sl = Σcos(φ) where φ is the
angle between the orientations of corresponding edges of P (x,y) and
Pref(l)(x,y) at pixel (x,y). The algorithm searches for peaks inM(r,θ) =
Sl(r,θ) to locate those axes l with the highest scores. Finally, the
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collections of l(r,θ) are examined to see whether any of their structures
indicate a desired symmetry group: (1) dihedral group: all reflection
axes intersect in one point; or (2) frieze group: all reflection axes are
parallel with each other and with equal intervals. Near-symmetry is also
treated locally (Figure 3.14). The algorithm is implemented in MAT-
LAB (available upon request at http://vision.cse.psu.edu/data.html).

Since the paper-cut patterns are human designed and hand cut,
the images present various degrees of local and global symmetry or
deviations from symmetry. The computational challenge to this algo-
rithm is to distinguish symmetry from asymmetry, partial from global,
and primitive reflection symmetries from higher level symmetry groups.
This is one of the symmetry detection algorithms that are quantita-
tively evaluated and compared with in [203] (Section 3.3).

3.2.1.2 Reflection and rotation symmetry detection
using local features [177]

This is a feature-based reflection and rotation symmetry detection algo-
rithm proposed by Loy and Eklundh in 2006 [177], which takes advan-
tage of local oriented features expressed as SIFT keys [176]. The basic
idea is to collect pairwise feature matches to vote for candidate symme-
try foci, either a straight reflection axis from multiple pairs of reflection
symmetries (Figure 3.15) or a rotation symmetry center (or centers)
from pairs of cyclic Cn symmetries (Figure 3.17), in a Hough trans-
form fashion. The algorithm detects the rotation symmetry center and

Fig. 3.15 The basic algorithm flow for reflection symmetry detection proposed in [177], a
feature-based symmetry detection method.
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(A) Input image (B) Extracted SIFT features (C) Estimated reflection axes

(D)Linear Hough transform
voted dominant axis

(E) Features associated with
the dominant axis

(F) Symmetric constellations
constrainthe axis

Fig. 3.16 A sample result from [177], a feature-based reflection symmetry detection method.

Fig. 3.17 The basic algorithm flow for rotation symmetry detection proposed in [177], a
feature-based symmetry detection method. Every non-parallel feature pair defines a centre
cij of rotational symmetry.

the fold (cardinality) of the rotation symmetry group. However, it only
detects single reflection symmetries without recognizing any potential
dihedral groups where both rotation and reflection symmetries co-exist.



82 Symmetry Detection

(A) Input image (B) SIFT features

(C) Rotation centers from matched pairs (D) Rotation symmetry detected (order 10)

Fig. 3.18 Sample result from [177], a feature-based rotation symmetry detection method.

Figures 3.16 and 3.18 show two sample results of [177] for reflec-
tion and rotation symmetry detection from real images. This is one
of the fastest and relatively more effective symmetry detection algo-
rithms among the reflection/rotation symmetry detection algorithms
evaluated in [203] (Section 3.3).

3.2.1.3 Rotation Symmetry Groups (Cn,D2n,O(2))
Detection via Frieze Expansion [132]

In 2D Euclidean space there are only three types of possible rotation
symmetry groups about a fixed point (Figure 2.3). They are cyclic
group Cn, dihedral group Dn and the orthogonal group of degree two
O(2) (Table 2.3). Rarely, all three rotation symmetry groups can be
detected from unsegmented images by a single symmetry algorithm,
while a recently proposed rotation symmetry detection algorithm by
Lee et al. [132] does it all. A rotation symmetry group is detected when
the following four properties are identified by the algorithm automati-
cally: (1) center of the rotation, (2) number of fold (cardinality of the
symmetry group), (3) type of symmetry group (dihedral/cyclic/O(2)),
and (4) local supporting region (annulus).
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A key idea behind this algorithm is to discover rotation symmetries
in the Cartesian space by a freize-expansion to discover translation
symmetries of a freize pattern in a corresponding polar coordinate
space (Figure 3.19). A key observation is close relation between
rotation symmetry groups and frieze groups (Figure 3.20). Given
the location of a candidate rotation center, a diameter and a polar
angle-step size, the algorithm maps each diameter to parallel lines,
and re-aligns them from left to right, to form a horizontal pattern
while advancing about the center angularly in the original image
(Figure 3.19). This operation is called frieze expansion. Once the
rotation symmetry pattern opens up, a frequency-based method is
used to figure out the fold of the rotation and the supporting local
regions, by performing a one-dimensional horizontal discrete Fourier
transform (DFT) on each row of the frieze-expansion.

The proposed algorithm detects these four properties of a rotation
symmetry group in two steps: (1) rotation center detection and (2) sym-
metry group analysis. A rotation symmetry-strength (RSS) map rep-
resents the symmetry strength at each pixel location of the image by
a 2D weighted map. Rotation center detection finds peaks in the RSS
map, followed by a symmetry analysis step to find the rest of the three
symmetry group properties.

Let px,y(r,n) be an N × R frieze-expansion pattern (FEP)
(Figure 3.19) expanded at an image position (x,y) where r ∈ [1,R],
n ∈ [1,N ], R and N are the height and width of the FEP respectively.
A one-dimensional horizontal discrete Fourier transform (DFT) is per-
formed on each row of the FEP. The kth coefficient of the DFT of the
rth row, Px,y(r,k) is

Px,y(r,k) = ax,y(r,k) + ibx,y(r,k)

=
N∑

n=1

px,y(r,n)e−i 2π
N

(n−1)(k−1) (3.1)

where ax,y(r,k) is the real part and bx,y(r,k) is the imaginary part
of the DFT coefficient. Px,y(r,k) represents the complex value of each
frequency component of the spatial domain information px,y(r,n).
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(A)

(B)

Fig. 3.19 Figures from [133] and [132] describing the rotation symmetry detection method:
frequency analysis on the frieze expansion patterns. (A) A sample rotation symmetry detec-
tion process from a real image to detected rotation centers, rotation symmetry group types
(all are dihedral group in this case) and their respective cardinality, and the supporting
regions. (B) The proposed frieze expansion and symmetry analysis process on a sample
image. Top-row: finding the rotation center; bottom-row: finding the corresponding sym-
metry groups dihedral group D4, cyclic group C5 and orthogonal group O(2) are detected
at different bands (annulus).

Sx,y(r,k) is the energy spectral density of px,y(r,n):

Sx,y(r,k) = Px,y(r,k)Px,y(r,k) = ax,y(r,k)2 + bx,y(r,k)2 (3.2)

The rotation symmetry-strength (RSS) equals to Sx,y(r,k), which
reflects the relative strength of a translational symmetry on the FEP
with the kth potential frequency. Originally, RSS is a function of center
position (x,y), the radius r and the angular step size θ. In the rotation
center detection step of our algorithm, the largest circle with radius r
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Fig. 3.20 One key observation of [132] and [134] (Figure 4 of [134]) is the unique relation
between the discrete rotation symmetry groups and frieze patterns: if there is a rotation
symmetry group (Cn: cyclic group of order n, Dn: dihedral group of order 2n) in an image,
its frieze-expansion should fall into one of the seven frieze groups.

inside the given image for each center location (x,y) is used and the
angular step size θ is fixed to 2π

N , whereN = 90 [132]. RSS then becomes
a function of position (x,y) only and can be represented as a two-
dimensional RSS map. Higher values of RSS imply higher likelihood of
rotation symmetry centered at that location. By calculating RSS values
at each pixel of an image one can construct a pointwise RSS map, which
reveals the rotation symmetry saliency of the given image (Figure 3.19).
Sample results from this algorithm can be found in Figure 3.21. Lee
and Liu [134] extends the algorithm reported in [132] by including
skewed rotation symmetry groups, a novel rotation symmetry measure
and an extensive quantitative comparison with state of the art rotation
symmetry detection algorithms [132] and [177].

3.2.2 Curved Glide-reflection Symmetry

To the best of our knowledge, little attention has been paid to glide-
reflection symmetry detection algorithms, except in [159] where the
authors evaluate the existence of specific glide-reflection symmetries to
verify certain types of wallpaper and frieze symmetry groups.
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Fig. 3.21 Sample results of the proposed rotation symmetry detection [132].

In 2009, Lee and Liu [133] propose a new curved glide reflection
symmetry that captures many real world symmetries without a straight
reflection axis (Figure 3.24). This type of symmetry generalizes the pop-
ular reflection symmetry and the not-so-popular glide reflection sym-
metry as two of its special cases, as follows (Figure 3.22).
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Fig. 3.22 Four special cases of the curved glide-reflection symmetry and detection results
of the proposed algorithm (yellow lines): blue dots represent the middle points of the sup-
porting local feature pairs and yellow lines are detected curved reflection axes.

Glide-reflection symmetry is a transformation composed of a trans-
lation T along and a reflection R about the same axis (Figure 2.1).
If a pair of image patches Pi and Pj has a glide-reflection symmetry,
it can be expressed as: Pi = T + R(Pj). Thus, a pure reflection is a
special case of a glide-reflection when T = 0. A curved glide-reflection
symmetry is defined in [133] as: a sequential collection of local glide-
reflection symmetries whose reflection axes are connected and tangent
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Fig. 3.23 3D parameter space examples of the four sub-types of curved glide-reflection
symmetries: red circles show the characteristic patterns detected in the 3D parameter space
location.

to a smooth curve. Thus a curved, glide-reflection symmetry can be
represented as a sequence of (Ti,Ri)s where Ti �= Tj and Ri �= Rj in
general. The four special cases are (Figure 3.22):

(1) Reflection when all Ti = Tj = 0 and Ri = Rj ;
(2) Glide-reflection when Ti = Tj = T �= 0;
(3) Local glide-reflection when multiple glide-reflections exist,

and 0 �= Ti �= Tj �= 0;
(4) Curved reflection when multiple reflections exist, Ti = Tj =

0,Ri �= Rj .

The proposed method is feature-based that groups statistically dom-
inant local reflection axis in a 3D parametric space: translation is
represented by one parameter Tij , reflection R is indicated by a pair
of parameters (rij ,φaxis) representing its reflection axis (Figure 3.23).
They also develop a curved glide reflection symmetry detection algo-
rithm and applied on 40 real world images (Figure 3.24).

3.2.3 Wallpaper and Frieze Groups Classification:
Euclidean Case

In computer vision, the introduction of a fully automated, computa-
tional treatment of the 17 wallpaper groups and the seven frieze groups
embedded in real, unsegmented images, appeared in a sequence of
papers: [154, 155, 156, 159]. The authors argue that the discrete (finitely
generated) symmetry groups for periodic patterns, discovered by math-
ematicians a century ago, but largely ignored by the computer vision
community, are indeed important, relevant and useful for computer
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Fig. 3.24 Results from [133]. The bottom row shows some of the failure cases.

vision, computer graphics and pattern recognition research. Various
computer vision/graphics applications of such symmetry groups, espe-
cially its translation subgroups and its associated lattice structures,
subsequently followed (Section 4), including: texture replacement in
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real photos [262], human gait analysis [158], real world near-regular
texture analysis, synthesis and manipulation [171, 163, 164, 172],
dynamic near-regular texture tracking and dynamic texture replace-
ment/superimposing [147, 148], image ‘de-fencing’ [153], automatic geo-
tagging [240], fabric categorization [89], architectural facard in-painting
[127], multi-target tracking of time-varying spatial patterns [150] and a
quantification of the firing fields of the rats’ grid cells in computational
neurosciences [32].

3.2.3.1 Lattice detection

A non-trivial translation subgroup is common to all crystallographic
groups (Figure 2.7). For example, the translation subgroup of each
wallpaper group is generated using a pair of translation generators, cus-
tomarily called t1, t2 (Figure 3.25). In order to classify the wallpaper
(frieze) symmetry group of a real periodic pattern, the first step is to
detect the lattice that is equivalent to locating the translation subgroup
of the symmetry group by finding its t1, t2 generators (Figures 3.26,
3.27). Figures 3.28, 3.29, and 3.30 demonstrate the underlying lattice

Fig. 3.25 The 2D lattice and its respective translation generators t1 and t2 [159].
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Fig. 3.26 (A) An incorrect lattice found by the algorithm of Lin et al. [145] (B) Correct
lattice found by the authors’ algorithm. (C) Frieze pattern and (D) its 1D autocorrelation
response, used to explain how spurious peaks can form.

Fig. 3.27 (A) Original image of a rug. (B) An autocorrelation surface. (C) Peaks found
using a global threshold. (D) Peaks extracted using the threshold-free method of [145]. (E)
The highest 32 peaks from those return by [145]. (F) The 32 most-dominant peaks found
using the region-of-dominnce idea.

automatically discovered and the wallpaper symmetry group classifica-
tion results [159].

The proposed algorithm in [159] requires each of the input images
dominated by some periodic pattern, thus the auto-correlation method
is feasible while the Fourier method is not, due to the lack of a large
number of sample cycles (usually 2–3 cycles only on each input image).
Realizing that the peak-finding problem is non-trivial, the authors pro-
posed a region-of-dominace idea based on the observation that the abso-
lute height of a peak is not as important as the size of its region of
dominance, defined as the largest circle centered on the candidate peak
such that no higher peaks are contained in the circle. A peak with a low
height, but located far from any larger neighbors, is much more percep-
tually important than a high peak that is close to an even higher one.
Referring to Figure 3.26(D), the true peak E is lower than the spurious
peak B, but is located twice as far away from any higher peak than B is,
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and thus dominates a larger region. Revisiting Figure 3.27(F), the first
32 most-dominant peaks found using this method are well distributed
over the whole image, with very few spurious peaks.

3.2.3.2 Wallpaper group classification

For the 17 wallpaper groups, once the translation generators t1, t2
are identified, i.e., the translation subgroup is found, the algorithm
proceeds to verify the existence of the rest of symmetries, rota-
tion, reflection and glide-reflections, based on the group definitions
(Figure 2.4) and Table 3.1 (from [159]). The seven Frieze groups are
classified in an analogous manner. The algorithm in [159] successfully
classifies the symmetry group of a given pattern into one of the 7
frieze groups or one of the 17 wallpaper groups (Figures 3.28, 3.29,
and 3.30).

The limitations of the work are: (1) the periodic pattern has to dom-
inate the input image; and (2) geometrically, the pattern has to be close
to periodic. Later deformed lattice detection algorithms (Section 4,
[95, 204, 202]) are not restricted by these constraints.

Table 3.1. Wallpaper group classification: the group associated with a wallpaper pattern
can be determined by checking the small number of symmetries: 180, 120, 90 or 60 degree
rotation symmetry, reflection symmetry and glide-reflection symmetry about axes parallel
to lattice unit parallelogram boundary vectors T1 and T2 or diagonal vectors D1 and D2.

p1 p2 pm pg cm pmm pmg pgg cmm p4 p4m p4g p3 p3m1 p31m p6 p6m

180 Y Y Y Y Y Y Y Y Y Y
120 Y Y Y Y Y
90 Y Y Y
60 Y Y
T1 Y Y(g) Y Y(g) Y(g) Y Y(g) Y Y
T2 Y Y Y(g) Y Y(g) Y Y
D1 Y Y Y Y Y Y Y
D2 Y Y Y Y

“Y” means the symmetry exists for that symmetry group; empty space means no. Y(g)
denotes a glide reflection.
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Fig. 3.28 The detected lattice and corresponding wallpaper symmetry group [159].
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Fig. 3.29 The detected lattice and corresponding wallpaper symmetry group [159].



3.2 Symmetry Detection by Symmetry Types 95

Fig. 3.30 The detected lattice and corresponding wallpaper symmetry group [159].

3.2.4 Discovering Structural Regularity in 3D Models [207]

The advantages of discovering regular structures in 3D graphical models
are recently demonstrated in [207]. Pauly et al. developed an algorithm
to capture a set of repeated structures of 3D models in Euclidean space.
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Figure 3 of [210]: the types of 2D (2-parameter) symmetries it handles.

Figure 2 of [210]: the processing pipe line – the lattice is found in a 2D transformation space.

Fig. 3.31 Regular structures discovered by [207] involve combinations of rotation, trans-
lation, and scaling of the repetitive elements. Bottom: structure discovery and procedural
design on a 3D model of an amphitheater. The top row indicates which of the three regular
structures (blue, green and yellow) can be reconstructed in their entirety when successively
removing geometry. The density plots show a section of the distribution of transformations
of the structure depicted in blue. The recovered structures are used to procedurally design
a new model in the bottom right.

The algorithm searches for a finite set (three 1-parameter and five com-
mutative 2-parameter groups) of discrete symmetry groups composed
of translation, rotation and scaling (Figure 3.31 top row), extending
the Euclidean symmetries to Similarity transformations while exclud-
ing reflection and glide-reflection symmetries (Figure 1.3, Table 2.3).

The idea is to study the structures of a set of 3D points by clustering
its symmetries in a 2D transformation space. The authors pick a finite
set of possible 1D and 2D discrete symmetry groups. Therefore, the
central computational problem is to discover a set of 2D symmetries
such like 1D translation, rotation, helical, spiral, and 2D translation
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symmetries in Euclidean space that appear as regular grids in transfor-
mation space (Figure 3.31 pipeline). Different from the noisy real world
image data faced by computer vision researchers, the input is composed
of random sampled point pairs from a 3D computer model (a large point
set) . However, this work faces similar challenges as in computer vision
algorithms (e.g., [95, 159, 202, 204]), namely the algorithm does not
know either the implied symmetry group (transformations) or the unit
tile or generators to start with.

Using a quadratic objective function inspired by the iterative closest
point (ICP) algorithm, the authors construct an energy-based model to
minimize the sum of squared distances of the grid locations to the
cluster centers, where a Gauss–Newton solver is applied. The user need
to input a parameter h to determine the smallest scale at which regular
structures are discovered. Impressive results are shown, in particular
for subsampled data (Figure 3.31 bottom), where the regular structure
prevails even when 71% of the data is missing. This example serves as
yet another evidence that symmetry features, if exist, are resilient to
statistical sampling perturbations.

3.2.5 Translation and Reflection Symmetries under
Perspective Skew [267]

Tuytelaars et al. propose a framework for detecting regular repetitions
of planar (but not necessarily coplanar) patterns with translation and
reflection symmetries [267]. They aim at a uniform framework, by
picking up the fixed structures under different types of (perspectively
skewed) symmetries. Most of the paper focuses on the cases where
the symmetry presents itself as a planar homology in the image plane.
This means that the symmetry leaves all points on a line and all
lines through a point fixed. Skewed mirror symmetries and skewed
periodicities are special cases.

A key goal of the paper is to find such fixed structures efficiently,
i.e., without lengthy combinatorial search. Therefore, corresponding
points are searched through the matching of affine-invariant interest
points. These matches then yield the input for a so-called Cascaded
Hough Tranform (CHT). This involves an interated application of the
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Fig. 3.32 Figure 2.4 in [267]. The candidate pencils of fixed lines (due to vanishing points)
and line of fixed points, as detected by the Cascaded Hough Transform (CHT, an iterated
application of the traditional Hough transform for straight lines). Different sizes of the
vertices indicate different supports.

Hough transform for straight lines, but with the special parameteriza-
tion ax + b + y = 0 for the lines. This expression is perfectly symmetric
in the point coordinates (x,y) and the line coordinates (a,b), thereby
bringing out the duality between the two types of structures in the pro-
jective plane (Figure 3.32). Identically the same Hough transform can
then be repeated, where the first detects co-linear points, the second
the points where multiple such lines intersect, and the third collinear
arrangements of such intersections. These structures then potentially
correspond to fixed structures of (skewed) symmetries. The system is
also capable to reason about the consistency of multiple homologies
that are detected, to further weed out false detections. Figure 3.33
shows some regularities picked up by CHT analysis. Note how for the
carpet multiple, consistent symmetries have been found.

3.3 Quantitative Comparison of Symmetry Detection
Algorithms [203]

Within the past few years, we have observed a surge of new symmetry
detection papers in the related fields of computer vision and computer
graphics [95, 162, 177, 190, 215, 219, 259]. While each paper demon-
strates certain experimental results of the proposed algorithm, with-
out a systematic evaluation of different symmetry detection algorithms
against a common image set under a uniform standard, our understand-
ing of the power and limitations/pitfalls in state of the art symmetry
detection algorithms remains partial. This situation seriously hinders a
wide applicability of existing symmetry detection algorithms and any
concrete, measurable improvements thereafter.
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Fig. 3.33 Figures 2.11 and 2.12 in [267].

The first quantitative benchmark dataset for evaluation of different
symmetry detection algorithms on the same set of images is reported
in [33, 203]. The authors make a specific effort on

• collecting a test image set and making it publicly avaible;
• providing hand-labeled groundtruth by a group of raters;
• proposing and implementing a performance evaluation stan-

dard; and
• selecting publicly available (code or executable) state of the

art discrete symmetry detection algorithms for evaluation.
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The primary reasons the authors choose the following three algo-
rithms [162, 177, 219] to evaluate are: (1) recently published; (2) have
gone beyond single reflection/rotation symmetry detection. In fact,
they all claim to detect multiple symmetries in an image1; (3) directly
applicable to un-segmented, real images; and (4) the authors make their
source code publicly available.

Reflection/Rotation Symmetry Detection Algorithms. We
briefly describe each symmetry detection algorithm evaluated in this
paper below.

1. Detecting Symmetry and Symmetric Constellations of Fea-
tures [177] (ECCV06) for both rotation and reflection symmetry detec-
tion (Figure 3.34 (1)):
This is a feature-based reflection and rotation symmetry detection algo-
rithm, which takes advantage of local oriented features expressed as
SIFT keys [176]. The basic symmetry detection technique uses pair-
wise matching and voting for symmetry foci (single reflections and Cn

symmetries) in a Hough transform fashion. It also estimates the n in
cyclic group Cn but it does not make the distinction between Cn and
D2n type symmetry groups.

2. Digital Papercutting (Papercut) [162] (SIGGRAPH 2005) for
reflection symmetry detection (Figure 3.34 (2)):
This algorithm is originally designed for the analysis of images of artis-
tic papercutting patterns. Thus, it uses edge-based features. The algo-
rithm exhaustively searches through the parameter space of potential
reflection axes (in polar coordinates ρ,d) to identify single reflection
symmetries by voting for pairwise matches, and structures of reflection
axes to discover D2n (if reflection axes intersect in one point) and frieze
(reflection axes are placed in parallel, with equal distance) symmetries.

3. Detecting Rotational Symmetries [219] (ICCV05) (Fig-
ure 3.34 (3)):
This algorithm filters an input color image into a gradient vector flow
(GVF) field and conducts the extraction and matching of local features
in the GVF field. The symmetry detection is formulated, once again,
as a voting scheme for the centroids of Cn symmetries.

1 Even though [162] is designed to work on images of papercut-patterns only.
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Fig. 3.34 Sample results for multiple-symmetry detection without segmentation and pre-
processing from each of the three algorithms evaluated in [203].
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Reection Symmetry Detection Test Set

Rotation Symmetry Detection Test Set

Fig. 3.35 Sample images and results from our test image set. We also provide labeled ground
truth, descriptions of computational challenges, and the numbers of ground truth (GT), and
detected true positive (TP) and false positives (FP). The complete test image set can be
found in http:vision.cse.psu.eduevaluation.htm.

Test image data set: the authors tested these symmetry detec-
tion algorithms on a total of more than 800 images, including 176
images with hand-labeled ground truth and images from three publicly
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Fig. 3.36 The pairwise reflection and rotation symmetry detection algorithms evaluation
on our 176 test-images with labeled ground truth.

available databases: PASCAL VOC’07 [60], MSRC Object class recog-
nition database [278] and Caltech-256 [80] data sets. The 176-image
test set provided by the authors is selected to demonstrate unambigu-
ous object-level symmetries, with diverse visual properties: synthesized
versus real images, single symmetry versus multiple, clean versus tex-
tured regions, frontal versus skewed views, similar versus contrasting
color intensities. The whole 176-test-image set is divided according to
two standards: (1) synthetic versus real images; and (2) images contain-
ing a single dominant symmetry versus multiple symmetries. Given two
types of symmetries (rotation and reflection), there is a total of eight
different subcategories of test images (Figure 3.36).

Furthermore, they explored the potential role a symmetry detec-
tion algorithm might play in object and object class recogni-
tion/categorization by testing and evaluating the algorithm with best
performance on selected images from PASCAL VOC’07 [60], MSRC
Object class recognition database [278] and CALtech-256 [80].

Evaluation standard: to quantify algorithm performance, the follow-
ing formula is proposed to compute the success rate on a test image
set [33, 203]:

SKp =
(Nt − Kp × Nf)

NGT
(3.3)

where Nt is the number of true positive (symmetries in the image
that are detected by the algorithm), Nf is the number of false positive
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(non-symmetries detected by the algorithm as symmetries), and NGT

is the number of ground truth (symmetries in the image that should
be detected). Kp is a constant weight that determines how strongly we
penalize the false positives. When Kp = 0, S0 = Nt

NGT
is the commonly

known sensitivity [131] that is independent of the false positives. When
Kp = 1, S1 = (Nt−Nf)

NGT
reflects a combination of rewarding true positives

and penalizing false positives in a 1-to-1 ratio.

Results: the evaluation results (Figure 3.36) show that for all types
(synthetic or real, single or multiple symmetries) of images the best
mean sensitivity is 63% and 58% by [177] for reflection and rotation
symmetry detection, respectively. For computer vision applications, the
detection of multiple symmetries in one real image should be most rel-
evant. We have found the best mean sensitivity rates to be 42% (for
reflection) and 32% (for rotation), once again by [177]. However, for
a true understanding of multiple existing symmetries in an image, we
should be more concerned with the overall success rate S1 (including
the false positives). The best values of S1 are much worse: 25–27%
[162, 177] for reflection/rotation symmetry detection in the overall
image set, and 16–19% [162, 177] on real images. The drastic drop
from S0 (42%) to S1(1%) (Table 1, real image, multiple symmetries, of
[203]) reveals a fatal weakness of the SIFT-type feature-based method
used in [177], indicating high false positive rates on real images with
multiple symmetries.

Ideally, these algorithms should be compared either under a
precision-recall or ROC curve framework by varying certain internal
parameters of the corresponding algorithm. Instead, the current results
are shown on the default parameter settings given, for which the orig-
inal authors consider that the algorithm performs optimally.

These quantitative evaluation results of reflection/rotation symme-
try detection algorithms from this initial benchmark effort are alarm-
ing: namely, the best symmetry detection algorithm tested fails more
than 70% of the time on all-type symmetry/images, and more than 80%
on multiple reflection/rotation-symmetry detection in real images!



4
Near Regular Texture (NRT)

Texture has been an intersecting research interest of computer vision,
human vision, computer graphics and psychology for decades. There
exist ample computational models and methods for texture analysis
and synthesis. Directly related to computational symmetry is an alter-
native view of textures, that is in terms of textures’ regularities. Using
regularity as an essential measure, we can now view all textures in a
spectrum of varying regularity (Figure 4.1 [164]). Near Regular Textures
(NRT) are characterized in [164] as: “The commonality behind the var-
ied appearance of near-regular patterns is their strong tendency towards
regularity or symmetry, even though the regularity is often imperfectly
presented and intertwined with stochastic signals and random noise”
(Figure 1.1). Finding repeating structures in a scene attracts the atten-
tion of many since it has a direct relation to perceptual grouping in com-
puter vision and texture sampling in computer graphics. Researchers
encounter a great need for and difficult in dealing with NRTs, textures
that not only repeat but also has an obvious underlying topological
structure that relates all its texture elements.

The central theme of a sequence of recent papers on NRTs
[95, 127, 146, 147, 148, 153, 163, 164, 171, 172, 204] is to address
that real world NRTs (1) are important and ubiquitous (Figures 1.1

105



106 Near Regular Texture (NRT)

Fig. 4.1 A texture spectrum in terms of texture regularity [164].

and 4.1); (2) present severe computational challenges to the state of the
art computer vision and computer graphics algorithms (Figure 4.2); and
thus (3) deserve a special computational treatment for their analysis,
synthesis and manipulation (Figure 4.3). Quantitative evaluations also
show statistically significant results that human observers are indeed
sensitive to the irregularities in the synthesized textures if they are
inconsistent to input textures in terms of regularity [146].

4.1 NRT Formalization

The term near-regular texture (NRT) is formally introduced by Liu
et al. in [164] as

. . . a statistical distortion of a regular, wallpaper-like
congruent tiling, possibly with individual variations in
tile shape, size, color and lighting. Near-regular textures
can depart from regular tiling along different axes of
appearance, and thus could have (1) a regular struc-
tural layout but irregular color appearance in individ-
ual tiles; (2) distorted spatial layout but topologically
regular alterations in color; or (3) deviations from regu-
larity in both structural placement and color intensity.
We call these Type I, II and III near-regular textures,
respectively (Table 4.1).
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Fig. 4.2 NRT synthesis results of general texture synthesis algorithms, where the geometry
(top row) and color (bottom row) regularities are not faithfully preserved in the synthesized
results.

Fig. 4.3 Near-regular texture analysis and manipulation [164].

Regular textures are defined as wallpaper-like, congruent 2D tiling
whose structural regularity can be completely characterized by the 17
wallpaper groups [84, 235]. The underlying lattice structure of each
regular texture can thus be represented and generated by a pair of
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Table 4.1. A categorization of near-regular textures [164].

Type Geometry Color Symbols

0 Regular Regular GRCR
I Regular Irregular GRCI
II Irregular Regular GICR
III Irregular Irregular GICI

linearly independent translations �t1, �t2. Under the translational sub-
group of each 2D regular texture pr, the smallest bounded region that
produces simultaneously a covering (no gaps) and a packing (no over-
laps) of the texture pattern on the 2D plane is called a tile [84]. A near-
regular texture is defined as p = d(pr) where d = dgeo × dlight × dcolor is
a pixel-wise mapping representing the composition of geometric trans-
formations, lighting changes and color alterations, respectively. Using
regular tiling [84] as our anchor point, we are able to define and capture
these statistical departures from regularity using a multi-modal (geom-
etry dgeo, lighting dlight, color dcolor), multi-dimensional mapping, which
we call a deformation field.

For any near-regular texture p, there exists an underlying lattice
L that is a geometric distortion of a regular lattice Lr from a regular
texture pr. Though there may be many potential regular lattices that a
near-regular lattice L can deform to, there is a well-defined regular lat-
tice Lr that has a minimum distance from L [122, 159]. The Geometric
deformation field dgeo is defined as a function that maps L to Lr and
warps all the input texture pixels to a geometrically regular texture.

As it turns out, the idea of formulating a given texture as a deformed
version of a regular texture is not new. In 1976, Zucker proposed a tex-
ture model [308] for the so-called structural texture models with tex-
ture primitives. The texture primitive placement rule is based on a
graph that is isomorphic to a set of regular tessellations (only three
types), and eight star-shaped patterns. This class of algorithms was
considered “in general, limited in power unless one is dealing with
very regular textures” [263]. At the time, the straightforward link to
the translation subgroup of wallpaper patterns with a pair of linearly
independent generators was not made, nor did an effective algorithm
existed that could handle both topological regularity/invariance and
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geometric/photometric deformations/variations in real images (Sec-
tion 4.4). The recent development, by making the connection between
regular textures and wallpaper patterns (and wallpaper groups) explic-
itly, has led to the generalization to a single degree-4 graph for
all NRTs and computational efficiency for real world applications
[159, 95, 147, 148, 202].

4.2 NRT Quantification

A pair of quantitative regularity measurements is proposed in [164] to
measure and compare the degrees of regularity of various NRTs (Fig-
ure 4.4). They are Geometry regularity and Appearance regularity
scores or the so-called GA-scores (Figure 4.4). Figure 4.4 demonstrates
some sample Type I, II, and III near-regular textures placed in the 2D
GA-score regularity space. This pair of measures is used subsequently
to evaluate:

(1) the synthesis results for NRT input [140] (Figure 4.5) [164];
(2) the appearance model of dynamic near-regular texture track-

ing [147, 205];
(3) the quality of automatically detected lattices in [95, 204]; and
(4) the clustering of grid cells in rats’ (Figure 4.10) [32].

4.2.1 Measuring the Firing Fields of Grid Cells

Surprisingly strong hexagonal symmetry is observed in the the firing
fields of grid cells found in the rat dorsolateral medial entorhinal cor-
tex [88] (top of Figure 4.10). Chastain and Liu apply computational
wallpaper group theory [159] and the NRT regularity quantification
method [164]. They demonstrate qualitatively that the firing fields have
a nearest symmetry group of p6m (one of the 17 wallpaper groups) and,
quantitatively, the cells cluster around two types of regularities (bottom
of Figure 4.10): one is more regular in geometry and intensity (Type I
NRT), and one tends to be less regular in both (Type III NRT). These
analysis of the patterns are important because they may serve as indi-
cators of the associated cells function in navigation, with the regular
set acting as a reference for the deviating set which indicates unique
orientations [32].
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Fig. 4.4 Regularity quantification: geometry (G) and appearance (A) scores.

4.3 NRT Applications

4.3.1 Texture Replacement in Real Images [262]

Tsin et al. [262] are among the first to take advantage of planar texture
regularity to estimate a statistical lighting model from a real photo,
automatically segment out the texture in the image and achieve texture
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Fig. 4.5 Top: courtesy of Nature [88]. Bottom: clustering of the firing fields from the rats
grid cells [32] using the GA-score developed in [164].

replacement with similar lighting effects (Figure 4.6). This method is
further extended in [164] to NRT synthesis, replacement and analogy
for non-planar NRTs (Figure 4.9).
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Fig. 4.6 Figure 2.3 from [164], using GA-scores to compare, quantitatively, the output of
one of the NRT synthesis results from different texture synthesis algorithms. This result
shows that the near-regular alterations in color (. . . yellow, green, yellow, green, . . . ) of
the input texture is more faithfully preserved by the texture synthesis method proposed in
[164] (Figure 4.8 when gain =1): in the quantified geometry-appearance regularity space
represented by the G–A regularity scores, its distance to the input texture is the shortest.

4.3.2 NRT Synthesis and Manipulation [164, 171, 172]

The authors of [147, 148, 164, 171, 172] illustrate that in general the
popular, state of the art texture synthesis algorithms cannot han-
dle faithful reproduction of input NRTs (Figure 4.2). Therefore, the
authors proposed a set of texture analysis and synthesis algorithms that
respect texture regularities. In [171, 172], an NRT synthesis algorithm
for Type I NRTs is proposed. The idea is to add an analysis step before
synthesis to locate the t1 and t2 generators while during synthesis the
choice of ‘tiles’ is made randomly such that the geometric regularity and
the randomized appearance are both preserved (Figure 4.7). In [164], a
complete set of NRT synthesis algorithms is proposed for Type I, II and
III NRTs. The idea is to first extract the geometric, lighting and color
deformation fields from an input NRT, then treating these deformation
fields themselves as ‘textures’ for synthesis, and finally the synthesized
deformation fields are mapped back to their functional (as opposed to
their appearance) side of the dual role and applied to regular textures
to accomplish the deformation process (Figure 4.8).
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(A) (B)

Fig. 4.7 (A) Estimated lighting distributions of two scenes taken by two different cameras.
(a) A scene with many soft shadows on the textured region. (b) An image whose textured
regions have little soft shadows. (c) Lighting samples estimated from (a). They are dis-
tributed along a curved structure. (d) Lighting samples are concentrated on two clouds in
the lighting space. [262]. (B) Texture replacement in real photos [262].

Fig. 4.8 Few samples results from [172] where Type I NRT is analyzed and synthesized.
The algorithm respects both the regular spatial arrangement and the random visual effect
of the input texture — an example of Type I NRT.
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Fig. 4.9 NRT analysis, synthesis and manipulation algorithm for Type II/III NRTs, and
results from [164].

Using the fact that the geometric deformation field is capable of
warping an arbitrary near-regular texture back to a Type I texture,
by indicating a portion of the texture that is regular (after rectifica-
tion) and canonically lighted, the proposed algorithm simultaneously
finds the lighting map (shadows, occlusion) while segmenting out the
texture region in the image. The algorithm for extracting the light-
ing deformation field works as follows: (1) straighten the lattice of the
input NRT using the geometric deformation field dgeo; (2) apply Tsin
et al. [262] algorithm for lighting map extraction in the plane; and
(3) apply the inverse geometric deformation field to map the lighting
deformation field back to the original input texture.

4.3.3 NRT for Gait Analysis [158, 159]

Human and animal gaits are known to be approximately periodic
[39, 46, 149, 244]. Therefore, the gait patterns generated by human
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[164].

Fig. 4.10 NRT synthesis and replacement results from [164].
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or animal motions appear to be near regular. The authors of [158, 159]
investigate two types of spatiotemporal image representations of gait.
The first is a wallpaper pattern-like NRT composed of the correlation
scores between all pairs of video frames i, j from a gait sequence. Fig-
ure 4.11 shows that the gait patterns of a running dog and a walking
human have different symmetry groups, cm and p4m, respectively. This
result reinforces that human gait is more bilaterally symmetric than a
dog’s gallop gait (similar to a horse), and thus symmetry of the gait
patterns serves as a discriminative feature when shape cues are hard
to extract. The second type of spatiotemporal representation of gaits
is a frieze pattern. Figure 4.12(A) illustrates how a frieze pattern is
generated from a time sequence of projections of 2D silhouettes along
the X or Y axis. Note that each frieze pattern shown in Figure 4.12(A)
is a 1D (along the time axis) near-periodic pattern in a 2D space: time
versus X-axis for column projection fC and time versus Y -axis for
row-projection fR. Figure 4.12(B) shows frieze pattern variation of fC

for a walking avatar viewed from different orientations. Figure 4.12(C)
shows the trajectory and fC frieze pattern of a 30-second human walk-
ing sequence, in which one can observe the variations of frieze pattern
fC with the change of the viewing angles.

This frieze pattern based gait analysis idea was explored further
in [158], where gait angle estimation is carried out using fC frieze

Fig. 4.11 The symmetry groups of human walking gait (p4m) and dog running gait patterns
(cmm) differ. Human is more symmetrical than a dog’s gait pattern. Dog running sequence
courtesy of [46].
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(A) (B) (C)

Fig. 4.12 (A) Spatio-temporal gait representations are generated by projecting the body
silhouette along its columns and rows, then stacking these 1D projections over time to form
frieze-like patterns fC,fR repeating along the time dimension. (B) Observation #1: fC of a
humanoid avatar exhibits a wide variety of symmetric structures when viewed from different
orientations. (C) Frieze pattern extracted from a 30-second long human walking sequence.
Observation #2: the symmetry group variations of fC of a human echo those of the avatar
when viewed from different orientations.

patterns while human identification from gaits observed from similar
orientations is carried out using fR. Classiciation rates range from 81%
to 100% when training and testing on four different types of human
gaits: slow walk, fast walk, inclined walk and walk holding a ball.

4.4 Discovery of NRTs in the Real World:
Deformed-Lattice Extraction

Texture analysis has been a long-standing and surprisingly difficult
problem. Interest in visual texture predates computer vision, going back
at least to Gibson [72], who pointed out its importance for the percep-
tion of surface orientation (i.e., shape-from-texture). Later, Bela Julesz
developed a theory of human texture discrimination based on matching
Nth order texture statistics [108]. Both researchers speak of a texture
element (texel), as a unit of texture that is repeated. The one exception
would be in talking about texture discrimination which is the context
in which Julesz uses the term texton.

Ample evidence can be found that real world repeated patterns
(textures) are not composed of merely random collections of indi-
vidual texture elements. Instead, they often exhibit some geometric,
topologic and/or statistical regularities among the elements. The causes
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of these inter-relations are deeply rooted in the original design inten-
tions, natural formations or biological laws. Thus, instead of treating
texture elements as isolated individuals, the underlying topological lat-
tice structure of a near-regular texture (NRT) [164] is sought after to
gain insights of the textures formation and robust manipulation. In par-
ticular, dynamic (moving) NRTs present additional challenges to classic
tracking algorithms, while can be handled with considerable robustness
when tracked as multiple targets connected by one or more underlying
lattice structures [147, 150].

A wide range of image manipulations become possible as shown
in Figures 4.9, 4.10, 4.11, 4.12, once the underlying lattice structure
(geometric deformation field) of an NRT in a real image/video is found
either interactively [164] or automatically [95, 148, 202, 204].

There are several existing algorithms for repeated pattern/texture
analysis [68, 137, 147, 159, 164, 232, 251, 264]. We distinguish these
algorithms from an automatic deformed-lattice detection algorithm
like Hays et al. [95] and Park et al. [202, 204] because (1) they
[68, 137, 173, 251] place more emphasis on the appearance of indi-
vidual texels rather than the spatial relationships among the texels,
thus no lattice is detected; (2) for those algorithms where a lattice is
extracted, their initialization is not fully automatic [147, 164, 251] or
no significant geometric deformations are allowed [89, 159]; (3) Schaf-
falitzky et al. [232] and Turina et al. [264] assume that the texture has
undergone a global projective transformation without significant local
geometric distortions.

Previous work on discovering repeated texture elements can be
viewed as two extremes: one focusing on individual texels (or local
neighborhoods) with no regard to their global organization or regular-
ity [138, 173]; the other placing very strict requirements on the overall
image structure (i.e., planar regular texture under global perspective
transformation) [232, 264]. The former can handle a wide range of tex-
tures but at the cost of relying entirely on the appearance of individ-
ual texels. The latter uses the overall arrangement of the texels to its
advantage, but is only applicable to a limited, globally transfromed
textures.
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Though many previous attempts have been made in finding the
underlying lattice structure of a given wallpaper-like structure [145,
159, 308], algorithms for automatic detection of deformed-lattices from
non-segmented images is rare. Hays et al. [95] are perhaps the first
to develop a completely automated lattice extraction algorithm for
an arbitrarily distorted (local and global) near-regular texture in an
image without segmentation. Meanwhile Lin and Liu [147, 148] devel-
oped the first deformed-lattice tracking algorithm for dynamic NRTs
(Section 4.5) where the lattice in the first frame of the video is initial-
ized semi-automatically: the user inputs three points indicating a pair
of t1 and t2 vectors, then the algorithm discovers the whole, mostly
deformed-lattice automatically under a spatial tracking framework.

Two important observations on the lattice are worth noting:
(1) topological consistency — the lattice topology for all different
types of 2D repeating patterns (wallpaper patterns) remains the same:
quadrilateral; (2) topological invariance — while NRT may suffer large
geometry and appearance variations locally or globally, its lattice topol-
ogy remains invariant. Therefore, automatically discovering the lattice
of an NRT is a well-defined and conceptually feasible task.

Understanding and explicitly searching for lattice structures in real
world textures enables more powerful texture analysis algorithms that
are aware of the global structure of a texture thus less dependent on
specific, local image features [138, 173]; and it leads to a much broader
set of textures than could be covered before in [232, 264].

The key insight for translation symmetry detection in NRT
(Sections 4.4.1 and 4.4.2) and dynamic NRT (Section 4.5) is to cap-
ture the underlying quadrilateral lattice of a 2D texture, generated by
translating its texture element (texel) using the two generating vectors:
t1 and t2 (bounding a texel region) [159]. Real world textures can be
considered as globally and locally deformed wallpaper patterns (NRTs)
[164], where t1 and t2 vectors become a function of location — differing
from a regular pattern where t1 and t2 remain constant across the
whole pattern. Therefore, translation symmetry detection from real-
world images is equivalent to finding the underlying deformed-lattice
of a piece of texture in an image.
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4.4.1 Regularity Discovery in Real Images:
A Spectral Method [95]

In this work, the authors formulate lattice discovery as an instance
of the general correspondence problem. Different from the usual
correspondence problems in computer vision when two disjoint sets of
features require a one-to-one assignment (e.g., stereo correspondence,
non-rigid shape matching, etc.), this assignment of neighbor relation-
ships is from a set of potential texels to itself, with constraints to avoid
self-assignments and other degeneracies. By phrasing lattice finding as
a correspondence problem the authors can leverage powerful matching
algorithms to reason globally about lattice regularity.

Finding texture regularity is inherently a non-local problem. It
requires global consensus, thus assignments that are geometrically
consistent with each other are encouraged, leading to a higher order
problem. Finding the globally optimal assignments under second-order
constraints is an instance of the Integer Quadratic Programming prob-
lem and is NP-complete. The authors therefore adapt an alternative
method to approximate the optimal assignments for higher order cor-
respondence based on a spectral method proposed in [136] given its
speed and simplicity.

Two semi-independent pairwise correspondence assignments are
carried out, resulting in each texel being paired with two of its neigh-
bors along two directions (one at a time), which turn out to be precisely
the two translation symmetry subgroup generating vectors t1 and t2.

The lattice discovery algorithm proceeds in four stages: (1) Proposal
of texels, in which new candidate texels will be proposed based on an
interest point detector, correlation with a random template, or a lat-
tice from a previous iteration. (2) Lattice assignment, in which poten-
tial texels will be assigned t1 and t2 neighbors based on their pairwise
relationships to each other as well as higher-order relationships between
assignments. (3) Lattice refinement, in which the assignments are inter-
preted so as to form a meaningful lattice and discard the outlier tex-
els. (4) Thin-plate spline warping, in which the texture is regularized.
The algorithm iterates through these four stages based on several ran-
dom initializations and pick the best overall lattice. These four stages
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Fig. 4.13 Flow chart of the proposed lattice extraction algorithm (from [95]). The leftmost
column shows the first iteration of the algorithm after initialization from the maximally sta-
ble extremal region interest point detector [184]. The middle column is the second iteration
and the rightmost column is the final iteration.

are visualized in Figure 4.13 with each column representing a single
iteration through these four stages. Formulating the lattice detection
problem as a higher order correspondence problem adds computational
robustness against geometric distortions and photometric artifacts in
real images. Figure 4.14 shows the lattice detection results from a set
of real world images.
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Fig. 4.14 Input and extracted lattice pairs (from [95]).
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4.4.2 Regularity Discovery in Real Images: A Graphical
Model Approach [204]

Although the deformed-lattice detection algorithm proposed by Hays
et al. [95] produces impressive results (Figure 4.14), there are several
limitations preventing its wider applicability. First, local correlation-
based peak finding is used as a last resort for finding points of interest,
which is both time consuming and sensitive to noise, occlusion and
transformation discontinuity in the image. Second, the method is based
on finding the eigenvalues of a n2 × n2 sparse matrix (n is the number
of potential texture elements), which is cumbersome computationally.
Third, the algorithm only examines one of the t1 and t2 vectors at a
time, and is thus less robust against misleading repetitions and prone
to wasting time on interest points that do not lead to legitimate t1 and
t2 neighbors. The authors of [204] proposed an alternative method that
overcomes these weaknesses.

The novelty of [204] is to formulate the extraction of an underly-
ing deformed-lattice as a spatial, multi-target tracking problem using a
new and efficient Mean-Shift Belief Propagation (MSBP) method [205]
as an inference tool on an Markov Radom Field (a degree-4 graph).
Compared to [95, 204] has shown effectiveness in (1) incorporating
higher order constraints early-on to propose highly plausible lattice
generator pairs; (2) growing a lattice in multiple directions simultane-
ously instead of one at a time sequentially; and (3) achieving signif-
icant speed-up and accuracy improvement over [95]. The paper [204]
also differs from [147, 148] in that the MRF model proposed is used
for automatic deformed-lattice detection via spatial tracking, while the
first-frame lattice detection in [147, 148] is done semi-automatically
and the MRF model is primarily used for tracking the dynamic NRTs.

A Markov Random Field (MRF) specifies a factorization of the
joint distribution of a set X of random variables. An MRF can be rep-
resented as an undirected graph G = (N,E), where each node in N
represents a random variable in set X and each edge in E represents
a statistical dependency between random variables in X. In [204], the
value of a random variable is the location of a texture element, and
the spatial dependency between variables represents how one element’s
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position constrains the positions of its neighboring elements in the pat-
tern. Since the lattice indicates a repeated pattern, the appearance
of each of the texture elements can be described by a single refer-
ence appearance model. Determining the location of an element thus
requires combining these two sources of information: the compatibili-
ties of the texture element locations and their appearance. Determining
the location of one particular element given estimated positions of all
other elements would be infeasible if it requires brute force evaluation of
the marginal distribution of that single random variable’s value, since
that will lead to O(n × nk−1) computation time where k is the number
of nodes in the graph and n is the size of the hidden variable space
(for simplicity we can think of it as 2D location in the current exam-
ple). Thus determining where each of the elements is in the pattern
requires O(knk) computation time. Fortunately, the joint probability
over the pattern state x and image measurement z in an MRF can be
factored as

p(x1, . . . ,xN ,z1, . . . ,zN ) =
∏
(i,j)

ψ(xi,xj)
∏
s

φ(xs,zs) (4.1)

where ψ and φ are functions specifying pairwise compatibility (spa-
tial constraints between elements) and joint compatibility (appearance
similarity of elements at given image locations), respectively. The belief
propagation algorithm takes advantage of this factorization to perform
inference on the graph efficiently. Cost of computation for estimating
the state of all NRT elements is reduced from O(knk) to O(kn2). How-
ever, if the hidden variable state space is large, BP can still be very
expensive. Figure 4.15 illustrates a simplified flowchart of the overall
algorithm for deformed lattice detection.

Quantitatively, the detection rate of Lin and Liu [147, 148] is
20 ± 21%, of Hays et al.1 is 47 ± 38%, and of [204] is 81 ± 19%. The
detection rate is computed by the ratio of the number of detected texels

1 The algorithm of [95] includes an element of randomness; it runs for several iterations,
and takes the best result according to a modified A-score. A-score, originally introduced
in [164], is the average per-pixel standard deviation among the final, aligned texels. The
modification is the inclusion of

√
n in the divisor in order to bias the A-score toward more

complete lattices [95].
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Fig. 4.15 Flowchart for the deformed lattice detection algorithm proposed in [204]. There
are two main components: initialization and spatial tracking, plus a transition phase for
spatial warping (rectifying the lattice into an integer coordinate system).

over the number of ground truth texels. The ground truth is manually
obtained by two human coders. The average ratio of run times of the
Hays’ algorithm [95] versus [204] is 10.66 ± 9.6. The paper [95] failed
on five images which are excluded when computing average time ratio.
Running time ratio is defined by the ratio of the time used by [95] over
the time used by [204] to detect the lattice on each of the 32 test images
(Figure 4.16).

4.4.3 See-Through NRTs: Image De-fencing [153]

This work delivers both a positive and a negative message. On the
one hand, it demonstrates the promise of translation symmetry (or a
deformed version of it) for machine perception of layers, and a relevant
graphics application: successful image de-fencing examples are obtained
using the automatically discovered foreground mask as the holes for
an state of the art in-painting algorithm (Figure 4.17). On the other
hand, the paper reports more negative results than positive ones, by
demonstrating the limits of both the lattice extraction algorithm [95]
and the in-painting algorithm [45].

Assuming that an automatic NRT extraction algorithm can identify
accurately the fence-like structure with approximate translational sym-
metry in a real image, the authors implement a foreground/backgroup
classifier. In conjunction with texture-based inpainting [45], a mesh-
occluded background (as much as 53% occluded area) can be recovered
to achieve the effect of image and photo de-fencing (Figure 4.17).
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Fig. 4.16 Figure 1.4 from [204]: Sample lattice detection results: the input images (leftmost),
the results of [147, 148] (second left), the results of [95] (second right), and our results
(rightmost). Note that the comparison with [147, 148] is not a fair comparison since they
are designed to start interactively. For a complete set of images tested, see our website
http://vision.cse.psu.edu/MSBPLattice.htm.

The algorithm consists of three distinct phases — (1) automatically
finding the skeleton structure of a potential frontal layer (fence) in
the form of a deformed-lattice, (2) separating foreground/background
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Fig. 4.17 Figure 2.3 of [153]. Several relatively promising image de-fencing results demon-
strate the effectiveness of the proposed, translation symmetry-based detection-classification-
inpainting method. The lattice detection in (4) is imperfect, thus a piece of the fence remains
after inpainting.

layers using appearance regularity, and (3) occluded foreground
inpainting to reveal a complete, non-occluded image. Each of these
three tasks presents its own special computational challenges that
are not encountered in previous, general image de-layering or texture
inpainting applications.
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This paper reports results to show the limitations of both
the lattice detection algorithms and the inpainting algorithms
(http://vision.cse.psu.edu/defencing.htm) by pointing out:

Automatic lattice detection from real images [95]
has met some serious challenges in this application:
detection of see-through, near-regular structures from
adverse background clutters. We have observed the
failure cases often are accompanied by sudden changes
of colors in the background (e.g., peacock, moose);
obscuring objects in front of the fence (e.g., building),
and irregular background geometry.

. . . contrary to our initial expectations, we observe
that the mesh-like regions are actually more difficult to
texture fill than large, circular regions of similar area.
This is because the mesh-like regions are wide enough
to show errors with incorrect structure propagation,
but they have dramatically larger perimeter than a
single large region and thus there are many more
structures which need to be correctly propagated
and joined. ... The high ratio of foreground area to
background area as well as the fragmented background
source textures present special challenges for existing
inpainting methods.

These results provide a new NRT application in foreground/ back-
ground perception, and concrete evidence on the limitations of state of
the art lattice detection and in-painting algorithms, thus should inspire
further research in both areas.

4.4.4 NRTs for Architectural Images [127, 240]

Algorithms designed specifically for the analysis of different types
of NRTs have appeared in recent computer vision and computer
graphics conferences, for example, for architectural images/models
[127, 185, 207, 233, 234, 240, 266, 283], or for fabric patterns [89].
The two alternative methods for lattice extraction from photos of
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architectural structures, where global perspective distortions represent
the major form of deformation, are detailed below.

4.4.4.1 Lattice Detection for Automatic Geo-tagging
(CVPR 2008) [240]

The results from the affinely skewed symmetry group analysis [156] and
the motif analysis [159] are applied recently for automatic geo-tagging
[240] (Figure 4.18) where each facade of the building (from different
view/time, image or 3D models) is rectified to its ‘canonical’ repre-
sentation and the unique set of motifs are matched without ambigu-
ity (Figure 4.18). From this experimental set of architecture photos of
Atlanta, Georgia, the authors observed that the most frequently occur-
ring symmetry groups among different building facades were pmm and
p4m (Figure 2.4).

The authors of [240] use a variation of the RANSAC-based planar
grouping method introduced in [231] to detect perspectively distorted
lattices of SIFT feature points [176], which allows the identification of
the two basic translation vectors (t1 and t2) of the underlying repeated
wallpaper pattern (Section 2). Given an image of a scene containing
multiple buildings, the goal is to detect all the repeated patterns (or
lattices) present in the image (Figure 4.19).

The main lattice extraction procedure is as follows: (1) clustering
the SIFT features into N groups based on their appearance descriptor;

Fig. 4.18 Figures from [240]. Left: the canonical motifs [156, 159] used for matching. Right:
one of the 3D reconstructed results using the skewed symmetry group idea developed in
[156] to find correspondences from different views of the architectural facades.



130 Near Regular Texture (NRT)

Fig. 4.19 Figure 2.3 of [240]. Multiple lattices on different facades are detected from different
views of the same buildings. These lattices are subsequently matched with each other, and
with a 3D model of the city (rightmost) using skewed symmetry groups as a theoretical and
computational basis (Section 2.2.1).

(2) randomly sampling four points (within each cluster) {a,b,c,d} and
computing the homography lHi which maps these four points from
image space into the lattice basis {(0,0), (1,0), (1,1), (0,1)}; (3) trans-
forming all remaining points from image space into their equivalent
lattice positions via the homography lHi, and count as an inlier each
point whose lattice space coordinates are within some threshold of an
integer position (i, j). This method takes advantage of the repeated
nature of such NRTs. Indeed, if the four chosen points {a,b,c,d} really
do define a tile corresponding to the generating region of a wallpaper
group, the accumulated effect should be reflected by the repetitions of
identical SIFT features.

4.4.4.2 Analysis of Building Textures for Reconstructing
Partially Occluded Facades (ECCV 2008) [127]

The goal of [127] is to understand and manipulate images of build-
ings. The primary motivation is to automatically detect and seamlessly
remove unwanted foreground elements from urban scenes (Figure 4.20).
The authors draw the analogy that building facades are often examples
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Fig. 4.20 Top: Figure 1.1 of [127]. Virtual graffiti removal. (a) Original image; (b) automati-
cally detected foreground pixels; (c) tile-aligned exemplar-based inpainting; (d) Eigenimage
reconstruction. Tiles with >25% outliers were sampled. While there is some loss of detail
in (d), many local characteristics are retained. Bottom: Figure 2.3 of [127]. Foreground
removal by eigenimage reconstruction for tile aligned images (a) and (c).

of Near-Regular Textures, and show that discovering these textures
could provide valuable insight into the rest of the facade. The method
is designed specifically for extracting 2D lattice from building images
using an MRF/MCMC-based approach.

Similar to [153], and given the assumption that the background is
visible in a majority of the tiles, the foreground elements or reflections
are treated as outliers of the building tile pixel values in corresponding
locations. The median absolute deviation (MAD) [49] is used to assess
which pixel values vary enough across the tiles to arouse suspicion of
foreground. The reconstruction of the background is carried out by
tiling sampled from the PCA space [164] as well as using existing in-
painting algorithms. The authors observed that “the more complex
the tile interior is, the less effective inpainting would be in avoiding
geometric and photometric artifacts.”

It is interesting to note that, though both works use the concept
of NRT and both deal with the foreground/background separation
problem from a single photo image, the authors of [127] are trying
to reveal the background that is NRT (Figure 4.20) by NRT texture
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synthesis or inpainting of NRT, while Liu et al. [153] are trying to reveal
the background that is obscured by the foreground, see-through NRT
(Section 4.4.3, Figure 4.17) by inpainting of the cluttered background.
Both works report the insufficiency of state of the art inpainting algo-
rithms for different reasons.

4.5 Dynamic NRTs [147, 148, 150]

A regular 2D periodic pattern can be characterized as a congruent
wallpaper pattern formed by 2D translations of a single tile: given by a
tile T and a pair of translation generators (t1 and t2) (Section 2.1.3). A
near-regular texture (NRT) is a geometric and photometric deformation
from its regular origin, thus the tile T becomes a function of location
T (x,y) (Section 4.1). A dynamic NRT is an NRT under motion and its
tile becomes a function of time t in addition to location (x,y): T (x,y, t)
(Figure 4.21). Lin and Liu [147, 148] point out that: despite various

Fig. 4.21 Figure 1.1 in [148]. Examples of dynamic near-regular textures. These images
illustrate challenges of dynamic NRT tracking: (a, b) ambiguous correspondences; (b, c)
occlusions; (d) appearance (motion blur) and illumination variations. The texture in (d) is
a pattern seen through disturbed water. A remote (long zoom from an air plane) video of
a small group of people marching in formation on a non-straight path (e) exhibits drastic
viewing angle and lighting change.
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forms of dynamic NRTs, they have two common properties:

• Statistical appearance regularity: even though the
geometry and the appearance of individual texels in a
dynamic NRT vary, they bear strong similarity among them-
selves (and across time) that can be considered as statisti-
cally similar, especially neighboring texels.

• Topology invariance: the topological structure of a
dynamic near-regular texture remains invariant during
motion, even though its geometry and appearance may vary
from frame to frame.

4.5.1 Topological Invariant Dynamic NRTs [147, 148]

Lin and Liu [147, 148] propose a lattice-based Markov-Random-Field
(MRF) model for modeling dynamic NRTs in a 3D spatiotemporal
space (top of Figure 4.22). Their dynamic NRT model consists of a
global lattice structure that characterizes the topological constraint
among multiple texels and an image observation model that handles
local geometry and appearance variations. The model behaves like a
network of statistically varied springs. Based on this dynamic NRT
model, they develop a tracking algorithm that can effectively handle
the special challenges of dynamic NRT tracking, including: ambigu-
ous correspondences, occlusions, geometry and illumination variations.
Using the result of dynamic NRT tracking, the authors are able to fur-
ther develop a dynamic NRT manipulation system that can replace new
patterns for the same visual (geometry and photometry) effects, and
superimpose an augmented image on a dynamic NRT in any unknown
scene (Figure 4.22).

Subsequently, Park et al. [205] developed an efficient Mean-Shift
Belief Propagation (MSBP) algorithm and applied it to graphical
model inferencing for dynamic near-regular texture tracking. They
demonstrate the robustness and efficiency of the algorithm on track-
ing low quality marching band videos as a multi-taget tracking prob-
lem, even when the pattern is disturbed by outside targets that
interleave the original target pattern (see video at http://vision.cse.
psu.edu/NRTtracking.html).
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Fig. 4.22 Top: Figure 2.1 of [148] illustrating the temporal lattice-based MRF model, which
consists of (1) a global lattice structure that characterizes the topological constraint among
multiple texels and (2) an image observation model that handles local geometry and appear-
ance variations. Bottom: Figure 2.13 of [148]. dNRT tracking and manipulation: (e) An input
frame. (f) Tracked lattice and visibility map. (g) Extracted lighting. (h) Superimposed text.
For videos, please see http://www.cs.cmu.edu/ wclin/dnrtPAMI/dnrt.html.
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4.5.2 Topological Variant Dynamic NRTs [150]

Recently, Liu and Liu [150] have relaxed the invariant topology condi-
tion used in the dynamic NRT tracking [147, 148, 205] for Multi-Target
Tracking of Time-varying Spatial Patterns. To track multiple targets
that have time-varying spatial patterns, there are two intertwined prob-
lems: (1) pattern perception: to recognize the (dis)appearance of spatial
patterns from target locations; (2) position localization: to utilize the
found pattern constraints for inferring target locations. By treating the
patterns as latent variables that guide the tracking, the authors adopt
an iterative two-step framework similar to the dynamic expectation–
maximization (EM) method [107], addressing both problems simul-
taneously (Figure 4.23). In the first (E-like) step the system detects
possible patterns and evaluate their posterior probabilities based on
previous tracking results. In the second (M-like) step, on a mixture
of MRFs, the tracking algorithm infers optimal target locations under
pattern constraints controlled by posteriors as well as cues from image
observations.

Fig. 4.23 Figure 1.4 from [150]. The proposed multi-target tracking framework. At E-like
step, the algorithm detects patterns and/or evaluate pattern posteriors based on previ-
ous tracking results. At M-like step, the algorithm estimates the best target states given
detected patterns, image observation and motion prior via inference on the mixture of
Markov networks.
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In their work, each potential pattern is specified with a Markov
network enabling both local (short range) and global (long range) rela-
tions among multiple targets. Through inference on such a mixture of
Markov networks, the authors exploit spatial domain information and
its interplay with temporal cues to achieve robust tracking and a high
level of understanding of the underlying, and varying, spatial structures
of the targets being tracked. By treating spatial patterns as Bernoulli
variables, the spatial pattern constraints are adjusted according to their
posterior probability, so that the algorithm can handle pattern transi-
tions softly and adaptively. Experimental results on various challenging
videos demonstrate the effectiveness of the approach (Figure 4.24) and
superior performance of the proposed algorithm over existing methods
(Figure 4.25).

4.5.3 Application of Symmetry in Multiple-View Geometry

In this article, we have mainly surveyed 2D symmetric patterns in 2D
images. We have considered affine projection of these 2D symmetries,
and the associated detection, reconstruction, and synthesis problems.
In a much related line of work, people have also studied how 2D or
3D symmetry interacts with perspective projection. Perspective pro-
jection may significantly distort a symmetric pattern or structure in a
2D image. In this case, in order to correctly recover their geometry, one
must resort to additional constraints offered by multiple-view geome-
try. Interested readers may refer to [102] for a more complete survey
on that subject.

In particular, [102] has provided a clear characterization of the
relationship between 3D symmetric structures and their 2D perspec-
tive images. The key observation there is that the symmetry group
actions associated with any symmetric structure allows us to interpret
a single perspective image of the structure as multiple images, called
“hidden images” in [102], taken from viewpoints related by the same
group actions. Thus, the 3D information about the structure is natu-
rally encoded in the multiple-view geometric constraints among these
(perspectively projected) images, characterized by the multiple-view
rank conditions [180]. Based on these constraints, [102] has derived the
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(A) Marching band video #1

(B) Marching band video #2

(C) Marching band video #3

(D) Parachute video

Fig. 4.24 Figures 5, 6, 7, 8 from [150]. (A) Detection and tracking lattice and reflection
patterns on video #1. Left: 200th frame, middle: 400th frame, right: 650th frame. (B)
Detection and tracking reflection patterns on video #2. Left: 1th frame, middle: 200th
frame, right: 300th frame. (C) Detection and tracking lattice and reflection patterns on
video #3. Left: 100th frame, middle: 200th frame, right: 400th frame. (D) Tracking and
monitoring a breaking away lattice pattern of a parachute video. Left: 230th frame, 81
targets; middle: 400th frame, 49 targets; right: 530th frame, only 36 targets are left. Please
refer to project website for related videos: http://vision.cse.psu.edu/NRTtracking.html.

necessary and sufficient conditions for a unique 3D reconstruction from
all three basic types of Euclidean symmetry: rotation, reflection, and
translation. It has also been shown that with symmetry, the 2D to 3D
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Fig. 4.25 Figure 11 from [150]. Comparison of tracking results (top) and statistics (bottom)
of the method proposed in [150] and that of Lin & Liu’s in PAMI07 [148] during the tracking
of the entire marching band video #3.

reconstruction problem becomes well conditioned and the associated
algorithms are remarkably simple, accurate, and robust.

This unified theory has later seen many important extensions and
applications recently. In [281], Yang et al. has proposed a complete
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Fig. 4.26 An example of photo editing based on symmetric structures. Left: the origi-
nal picture with some symmetric regions registered. Notice that the symmetric structures
are highly distorted by the perspective projection and their precise orientation cannot be
accurately recovered by an affine approximation. Right: a doctored picture. The shadows
of the roof on the frontal wall and the occlusions by the lamp poles are removed using
symmetry-based “copy-and-paste.” Some paintings are pasted on the side walls according
to the correct perspective projection. Additional windows are added on the side walls. All
parts of the resulting photo obeys correct 3D geometry and perspective projection, without
any noticeable distortion.

system pipeline for the detect on and reconstruction of multiple sym-
metric objects from multiple perspective 2D images, which can be read-
ily used for practical applications such as editing photos [104] or map
building for autonomous navigation [280]. Figure 4.26 shows one such
example. This work was later extended to continuous symmetric objects
that do not have discrete features [101]. Symmetry has also been shown
to be an extremely effective cue that helps significantly simplifies dif-
ficult computer vision problems such as image segmentation [282] and
large-baseline feature correspondence [105].



5
Continuous Symmetry

In most of the above mentioned techniques (specifcally, the Global
Methods), symmetry is treated as a binary feature: either it exists or
it does not exist in an object. In general, however, they include some
form of thresholding in order to overcome noise and imprecisions in the
input data. However the notion of quantifying or measuring symme-
try is very limited. In an early work, Grünbaum [82] reviews methods
of geometrically measuring symmetry of convex sets. Yodogawa [287]
has presented an evaluation of symmetry (namely “Symmetropy”) in
single patterns which uses information theory to evaluate the distribu-
tion of symmetries in a pattern. Marola [183] presents a coefficient of
mirror-symmetry with respect to a given axis. Global mirror-symmetry
of an object (image) is found by roughly estimating the axis location
and then fine tuning the location by minimizing the symmetry coef-
ficient. Gilat [73], Hel-Or et al. [97] and Avnir et al. [11] present the
idea of a Measure of Chirality (a measure of deviation from mirror-
symmetry). Similar to Marola, Gilat’s chirality measure is based on
minimizing the volume difference between the object and its reflection
through a varying plane of reflection. Hel-Or et al. present a measure
of chirality for 2D objects based on rotational effects of chiral bodies

140
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on the surroundings. Additional discussion on measuring chirality can
be found in chemistry research and is reviewed in [295]. These symme-
try evaluation methods are each limited to a certain type of symmetry
(mirror or circular symmetry) and are generally of high complexity.

5.1 Measuring Symmetry as a Continuous Feature

The basic assumption that symmetry is a binary feature arises natu-
rally from the exact mathematical definition of symmetry [186, 277].
However, this definition is inadequate when describing symmetric
shapes and objects found in nature. A classic example is that of faces
(Figure 5.1): although considered symmetric, faces actually deviate
from perfect symmetry. Even perfectly symmetric objects lose their
exact symmetry during image acquisition when projected onto the
image plane or the retina due to occlusion, perspective transforma-
tions, digitization, etc. Psychological studies show that our percept of
symmetry as a characteristic of shapes and objects is inherently con-
tinuous [292, 293]. Symmetry as a quantitative measure is naturally
expressed as a relativistic feature. Considering the shapes in Figure 5.2
one would describe Shape ‘a’ as more symmetric than Shape ‘b’ and
that Shape ‘c’ is more rotationally symmetric than mirror symmet-
ric. Studies in natural sciences are continuously demonstrating correla-
tion between the ‘amount’ of symmetry and other characteristics such
as beauty, attraction, natural stability, etc. [78, 128, 192, 239, 306].
Thus, although symmetry is usually considered a binary feature, (i.e.,
an object is either symmetric or it is not symmetric), it would seem

Fig. 5.1 Faces are not perfectly symmetrical. (a) Original image. (b) Left half of original
image and its reflection. (c) Right half of original image and its reflection.
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Fig. 5.2 The quantitative nature of Symmetry: Shape a is more mirror symmetric than
Shape b and Shape c is more rotationally symmetric than mirror symmetric.

more beneficial to view symmetry as a continuous feature where the
amount of symmetry is evaluated.

The concept of symmetry as a continuous feature was introduced in
a series of papers [188, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303,
304, 305] where the notion of a Continuous Symmetry Measure (CSM)
was established. These studies have developed a measure of symme-
try as well as algorithms for applying the measure to various input
structures ranging from sets of points, polygonal shapes, 3d structures,
images, and recently dealing with complex bifurcating structures found
in nature. The continuous nature of the measure allows a comparison
between symmetry characteristics of different shapes and comparison
of different types of symmetries of a single shape (mirror-symmetries,
rotational symmetries, etc.).

5.1.1 CSM — Basics

The underlying mathematics of symmetry relies on the Symmetry
Groups [228, 277] (Section 2). In this section, we define a symmetric
object as a set of points which is invariant under the actions of a sym-
metry group. A point x of an object and all its transformations under
the group members is called an orbit. This implies that an object is
symmetric if it can be partitioned into orbits each of which is invariant
under the operations of the symmetry group. For example, an equi-
lateral triangle in 2D is rotationally symmetric (order 3) and can be
partitioned into orbits containing three points each. The vertices of the
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triangle form one such orbit. One should note that, given a point x,
every point in its orbit is naturally associated with an element of the
symmetry group. For example, in Figure 5.4d, the orbit of point P̂0

consists of the points P̂0, P̂1 and P̂2 which are associated with R0
3,R

1
3

and R2
3, respectively.

The essence of the Continuous Symmetry Measure approach
involves determining the amount of ‘effort’ required to transform a
given shape (composed of orbits) into a symmetric shape. This ‘effort’
is measured by the mean of the square distances each point must move
from its original position in order for the shape to become symmetric.
Note that no a priori symmetric reference shape is assumed. Denote by
Ω the space of all shapes of a given dimension, where each shape P is
represented by a sequence of n points {Pi}n−1

i=0 . A metric d is defined
on this space as follows:

d: Ω × Ω → R

d(P,Q) = d({Pi},{Qi}) =
1
n

n−1∑
i=0

‖Pi − Qi‖2

This metric defines a distance function between any two shapes in Ω.
We define the Symmetry Transform of a shape P as the sym-

metric shape P̂ , closest to P in terms of metric d.
The Continuous Symmetry Measure (CSM) of a shape P is

defined as the distance between P and its Symmetry Transform:

CSM = d(P,P̂ )

This definition of the CSM implicitly implies invariance to rotation
and translation. Normalization of the original shape prior to the trans-
formation additionally allows invariance to scale. An additional feature
of the CSM is that we obtain the symmetric shape which is ‘closest’ to
the given one, enabling visual evaluation (Figure 5.3c).

A geometric algorithm for deriving the Symmetry Transform of a
shape and, accordingly, the CSM value was developed initially in [303].
For a specific symmetry group, the process of evaluating the CSM
involves two steps:
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Fig. 5.3 Calculating the Symmetry Distance of a shape: (a) original shape {P0,P1,P2}.
(b) Normalized shape {P ′

0,P ′
1,P ′

2}, such that maximum distance to the center of mass is
a given constant (10). (c) Applying the symmetry transform to obtain a symmetric shape
{P̂0, P̂1, P̂2}. (d) SD = 1

3 (‖P ′
0 − P̂0‖2 + ‖P ′

1 − P̂1‖2 + ‖P ′
2 − P̂2‖2).

(1) Partitioning the object into orbits, i.e., determining the
points or features of the input that will form each orbit
and associating an element of the symmetry group with each
point.

(2) Evaluating the symmetry transform and CSM value given
the orbits.

Typically, there are numerous possibilities for partitioning the input
points into orbits. The partition that provides the minimal distance
between the original set and its symmetry transform is sought. The
algorithm implementing Step 2 of the above process is referred to as
the Folding–Unfolding Method due to its geometric visualization. Given
an orbit of points {Pi}k−1

i=0 ⊆ {Pi}n−1
i=0 with associated symmetry group

members {gi}k−1
i=0 , the Folding–Unfolding Methods involves the follow-

ing steps:

(1) Fold — apply the inverse symmetry element to each point,
i.e., apply g−1

i to Pi for i = 0, . . . ,k − 1. The folded points
{P̃i}k−1

i=0 are obtained.
(2) Average — if the original points were perfectly symmetric,

then by definition of symmetry, the points {P̃i}k−1
i=0 would
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coincide, however in the general case they do not. Thus, the
folded points {P̃i}k−1

i=0 are averaged obtaining P̂0 = 1
k

∑k−1
i=0 P̃i.

(3) Unfold the average point P̂0 by applying back the symmetry
element gi. The unfolded points {P̂i}k−1

i=0 are obtained where
P̂i = giP̂0.

(4) The former steps are applied independently to each orbit.
The CSM is calculated by averaging the deviation of each
orbit from perfect symmetry: CSM = 1

n

∑n−1
i=0 ‖P ′

i − P̂i‖2.

An example of implementing the algorithm is shown in Figure 5.4,
for a single orbit of the C3 symmetry group, namely the rotational sym-
metry group of order 3. For a collection of orbits, the CSM is calculated
independently for every orbit with the appropriate symmetry operation
applied about the center of mass of all points rather than about the
origin. Proof and details can be found in [303, 296, 300]. Examples of
ST and their associated CSM values are given in Figured 5.5 and 5.6.

5.1.2 CSM Develops

The CSM approach has been implemented and shown to be viable on
structures of increasing complexity. The major impediment in all cases

Fig. 5.4 The Folding–Unfolding algorithm applied to a single orbit. CSM with respect to
rotational symmetry of order three is calculated. The points P0,P1 and P2 are associated
with the rotations R0

3,R1
3 and R2

3 respectively. (a) Original 3 points {Pi}2
i=0. (b) Fold —

apply the inverse symmetry element to each point, i.e., rotate Pi by R−i
3 . Points {P̃i}2

i=0
are obtained. (c) Average — points {P̃i}2

i=0 are averaged obtaining P̂0 = 1
3

∑2
i=0 P̃i. (d)

Unfold — apply the symmetry elements to the average point P̂0 (i.e., rotate by Ri
3)

obtaining points {P̂i}2
i=0. CSM is calculated: CSM = 1

3 (‖P ′
0 − P̂0‖2 + ‖P ′

1 − P̂1‖2 + ‖P ′
2 −

P̂2‖2). The centroid ω is marked by ⊕.



146 Continuous Symmetry

Fig. 5.5 Hexagon and its CSM value and symmetry transform for various symmetry groups.

Fig. 5.6 Objects (top) and their symmetry transform (bottom).

is the determination of the partition into orbits composed of points or
features of the input structure. Without any prior knowledge or con-
straints, determining the optimal division of input points into orbits is
an intractable, highly complex problem (exponential with the number
of points). However, as shown in the series of studies, certain classes
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of structures can easily be dealt with. Connectivity and orderings of
the input can constrain the possible partitioning into orbits and reduce
complexity. For example, shapes and objects defined by polygonal or
continuous closed contours inherently induce constraints on the parti-
tioning into orbits as shown in Figure 5.7 [298, 301, 303, 296]. Higher
dimensional objects such as polytopes and 3D objects induce partial
ordering on the input points as well [294, 296]. This applies also to
images when viewed as intensity elevation above baseline [298, 303]
allowing not only the evaluation of CSM but also the detection of the
optimal mirror symmetry plane and local symmetries (Figure 5.8) [297].
In the general case of objects described as graph structures (vertices
and connecting edges), the connectivity, as well as the degree of each of
the vertices induces constraints on the possible orbits [295]. For exam-
ple, in Figure 5.9a points P2 and P3 cannot be in the same orbit as they
differ in degree. Moreover, points P3 and P6 both of degree 3 cannot

Fig. 5.7 A C3-symmetric configuration of connected points. Orbits are interlaced: each orbit
is differently marked (◦ • �). (a) C3-symmetric and (b) mirror-symmetric.

Fig. 5.8 Images viewed as intensity elevation above baseline allows evaluation of CSM as
well as: (a) detection of the optimal mirror symmetry plane (and rotation of object to
frontal vertical view based on the symmetry plane). (b) Detection of local symmetries in
images.
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Fig. 5.9 Connectivity as in graph structures induce constraints on possible partitioning of
points into orbits.

be in the same orbit since P6 has two connecting points of degree 1
whereas P3 only has one. This reasoning does not terminate at the
second order connectivity (P2 and P7 do not agree in their third order
connectivity) but must be taken to the maximal connectivity of the
configuration. Accordingly, the structure in Figure 5.9b allows only
one possible partition into orbits (up to a permutation of the assigned
symmetry elements).

When input data consists of a collection of indistinguishable points
(graphs with vertices of degree 0) no a priori constraint can be assumed
to direct the division into orbits. In order to evaluate the CSM in
these cases hierarchical symmetry seeking approaches have been used
[297], as well as iterative approaches that approximate the optimal orbit
decomposition of the points [9, 120].

5.1.3 CSM on Real Data

Measured and acquired data cannot be assumed to be noise-free. In
addition to deviation from perfect symmetry, errors may be intro-
duced in the acquisition process itself. Localization errors are specif-
ically of importance in measuring CSM since the measure evaluates
deviation from perfect symmetry as a function of the distances each
point must move from its original position in order for the shape to
become symmetric. This measure is thus strongly affected by measure-
ment errors — namely errors in the location of points in the original
structure. In [295, 302] CSM was developed to deal with localization
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Fig. 5.10 CSM and noise: (a) fuzzy boundaries (left) and normally distributed localization
errors (right) results in a probability distribution of CSM values (bottom). (b) Occluded
flowers (top) and their boundaries (left). The Symmetry Transform of the occluded flowers
(right).

errors modeled as probability distributions associated with point loca-
tions. The outcome is a probability distribution on CSM values. An
example is shown in Figure 5.10a for a fuzzy image of a skin mark
(Melanoma). Boundary points are assumed to have localization errors.

Occlusion of objects is a common artifact in imaging, strongly affect-
ing the perceived symmetry of an object. Estimating the symmetry of a
partially occluded object is challenging. In dealing with occlusion, one
must be careful to ignore the occluding edge when evaluating CSM.
This is performed by excluding outliers in the computation of the aver-
age in Step 2 in the Folding–Unfolding algorithm described above [299].
A search for the optimal center of symmetry improves the results. An
example is shown in Figure 5.10b.

Even perfectly symmetric objects lose their exact symmetry when
projected onto the image plane. This is dealt with in [304, 305] where
CSM is evaluated in 2D projections of 3D objects. Furthermore, the
symmetry transform is shown to improve the reconstruction of 3D
objects from their 2D projections (Figure 5.6c).

5.1.4 CSM in Nature

One of the basic features of shapes and objects in nature is symme-
try. Symmetry is closely associated with the chemical and physical



150 Continuous Symmetry

characteristics of materials whether natural or man-made substances
[10]. The study of symmetry is highly important in chemistry and
physics where the symmetry of molecular structure is shown to cor-
relate with chemical and physical properties [111, 295, 300]. The CSM
has been used in the study of structures ranging from single molecules
[6, 212, 295, 296, 300] through clusters [9, 120] and up to crystals [288].
Correlation has been found between CSM values and nuclear-magnetic
resonance values [254], energy changes along molecular isomeriza-
tions [213], optical rotations [290], pressure and temperature structural
effects [289] as well as enzymatic activity [123] and more [124].

Deviation of organisms or populations in nature, from perfect sym-
metry may provide information regarding both developmental failures
and the success in buffering these deviations. The study of symme-
try, and specifically mirror symmetry, as an indicator for stress and
abnormal growth in plants and animals is widespread (see review in
[77, 128, 192, 201]), as well as the study of correlation of symmetry
with other characteristics such as attractiveness, dominance, natural
selection, etc. [78, 193, 201, 239, 306]. The typical experiment involves
measuring symmetry of a collection of specimens of a certain plant
or animal and evaluating the distribution of symmetry values and/or
correlation with other characteristic of form, of the natural habitat
or of animal behavior. Symmetry evaluation is typically performed by
detecting landmarks in the specimens and evaluating symmetry based
on their location or other measurements evaluated from them [201].
In most cases, specimens are chosen in which landmarks are consistent
(i.e., appearing in all specimens) and are easily detected (Figure 5.11a).
In some cases these landmarks are variable in their number across the
specimens in the experiment (Figure 5.11b). The CSM approach is
easily applicable in these cases since the determination of the orbit
points is consistent over the specimens in the test group and, under the
assumption that topological symmetry is maintained, determination of
orbits can be simplified by introducing constraints on possible match-
ing points. Examples include the evaluation of symmetry of various
molecules [6, 212, 295, 296, 300].

Of greater interest are the experiments involving specimens
that demonstrate variability in their structural elements themselves
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Fig. 5.11 Three types of natural objects for quantification of symmetry. (a) Structures
that show consistency in topology and in number of landmarks. (b) Structures that show
consistency in topology, but vary in number of corresponding landmarks among specimens.
(c) Variable structures, no consistent topology, no quantitative consistency and sometimes
no matching points.

(e.g., leaf veins — Figure 5.11c). In this case, there are no predefined
landmarks, no consistent topology, no quantitative consistency, and at
times missing points or elements (producing incomplete orbits), for
example, a missing secondary vein in a leaf structure (Figure 5.6e).

The main challenge in evaluating symmetry in these cases is in
determining the orbits (or matching points in case of mirror symmetry)
in these structures since neither the number nor location of the match-
ing points can be assumed. Additional constraints or assumptions must
be adopted. In a series of studies on such objects, namely veins of leaves
(Figure 5.11c), the CSM has been shown to be viable. In the case of
bifurcating structures, namely, leaf veins, mirror symmetry evaluation
is based on maintaining the structure rules while allowing topological
and geometrical variations. Since no landmarks can be assumed in these
structures, symmetry evaluation is based on the Biological Growth
model of the structure (leaf) [187, 188]. The measure was used in an
evolution study and has been shown to correctly classify leaves origi-
nating in challenging and non-challenging growth-environments [188].
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This study is currently being extended in a similar manner to other
species and animals including bacteria, beatles, and flowers.

5.1.5 CSM — What Next

The CSM as originally defined by Zabrodsky et al. in [303] can be
implemented for any finite point symmetry group in any dimension.
This implies that orbits of a finite number of elements or points are
found in the input structure. A natural extension of the CSM would
be to non-point symmetry groups including translatory groups and
crystallographic symmetry groups [186, 277]. Theoretically, orbits of
these groups are infinite and the input structure should be spatially
unbounded. In practice, a bounded input structure is typically assumed.
The orbits (or rather the bounded orbits), are accordingly, finite. A
thorough study of patterns expressing these symmetry groups, is devel-
oped in [159] and described in Section 2.

Another direction in which CSM can be extended is in the symmetry
analysis of time-varying systems. For example, measuring symmetry of
moving objects such as molecules (as performed in [6, 10, 111, 123, 124,
212, 213, 254, 289, 290, 294, 295]), bodily movement (gait [158]), limb
movement, facial expressions, etc. On a longer time scale, measuring
symmetry as a function of time along the developmental time-line of
plants and animals is of interest.

Finally, symmetry with respect to CSM is associated with geomet-
rical properties of the input structure being measured. Further stud-
ies will incorporate additional characteristics into the measurement of
CSM. These might include, color, width, weight, local direction and
other features of the structure. Of interest, in these cases, is how to
weight these characteristics against the geometric characteristics.

5.2 Facial Asymmetry as a Biometric [165, 167, 168, 191]

Human facial asymmetry has long been a critical factor for evaluation
of facial attractiveness [258] and expressions [225] in psychology and
anthropology, albeit most studies are carried out qualitatively using
human observers as judges, or locally where features are measured
individually (e.g., length of ears). Asymmetrical faces are considered
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less attractive [258], and it has been reported that facial attractive-
ness for men is inversely related to recognition accuracy [200]. For face
recognition by humans, a small yet statistically significant decrease in
recognition performance is observed when facial asymmetry is removed
from images [260], which suggests that facial asymmetry may play a
role in human identification by humans.

Seitz and Dyer successfully produced believable 3D morphings
of Mona Lisa’s face by assuming that it is bilaterally symmetrical
[243],1 while facial asymmetry is readily observable on individuals
in the general population (Figure 5.1). Asymmetry is a structural
descriptor that cannot be captured by a single local measure (e.g.,
either left or right face alone). In [167, 168] the authors define two
types of multi-dimensional quantified facial asymmetry measures and
use them as candidate discriminative features (biometrics) for human
identification. Following a face normalization process analogous to
[12, 265], three anatomical feature points, the inner canthus of each
eye and the philtrum are the three anchor-points to define an affine
deformation, a face-midline centered vertically in each face image, and
a set of uniform metric coordinates for all faces (Figure 5.12). The
facial asymmetry features are defined as:

Density Difference D-face: D(x,y) = I(x,y) − I ′(x,y)

Edge Orientation Similarity S-face: S(x,y) = cos(φIe(x,y),I′
e(x,y))

where Ie, I ′
e are the respective “edge” images of the normalized face

density image I and its vertically reflected image I ′; φIe(x,y),I′
e(x,y)

is the angle between the two edge orientations of images Ie, I
′
e at

the same pixel point x,y (Figure 5.12A). Using a learning-based fea-
ture selection scheme for human identification, and augmented vari-
ance ratio [167, 168] to measure the discriminative power of sin-
gle features, they found the most discriminative single feature is at
the nose-bridge region (Figure 5.12B). Classification rates show the
power of quantified facial asymmetry using FisherFace as a baseline

1 See the movie at http://www.cs.cmu.edu/∼seitz/vmorph/monas.mpg.
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Fig. 5.12 (A, B) describe the method from [167].

classifier (Figure 5.13C). The authors report: “a synergy is achieved
by combining facial asymmetry information with conventional Eigen-
Face and FisherFace methods. We have assessed the generality of these
findings across two publicly available face databases: Using a random
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(C) Classification errors

(D) AVR values of all facial asymmetry features for human
identity vs expression discrimination.

Fig. 5.13 (C) Classification results from [167]. (D) Part of Figure 1.4 from [191] indicat-
ing the mutual exclusiveness of the automatically selected discriminative facial asymmetry
features (locations) for human identification versus expression classification.
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subset of 110 subjects from the FERET database, a 38% classifica-
tion error reduction rate is obtained. Error reduction rates of 45–100%
are achieved on 55 subjects from the Cohn Kanade AU-Coded Facial
Expression Database. These results suggest that facial asymmetry may
provide complementary discriminative information to human identifi-
cation methods, which has been missing in automatic human identifica-
tion.” Similar types of facial asymmetry measures and discriminative
feature-subset learning method are used for expression classification
of 2D images [191] and gender classification from 3D faces (3D mesh
data) [165]. Interestingly, and logically, the facial asymmetry features
automatically selected for human identification and for expression clas-
sification appear to be mutually exclusive (Figure 5.13(D)).

5.3 Statistical Brain Asymmetry from Volumetric Images
[157, 160, 161, 169, 170, 257]

Human (and animal) brains have an approximate bilateral symme-
try. The imaging technology, especially high resolution, structural MR
images, provides a great data source for computational quantification,
analysis and cross-subject comparison. To compare and compensate
for spatially and anatomically different brain images, the first step
is to bring different images into a common coordinate system (Fig-
ure 5.14(A)). The midsagittal plane (MSP) [157] of the brain serves
as a good landmark for this alignment purpose. Liu et al. developed
one of the first robust 3D (MSP) extraction algorithm that works on
normal brains as well as brains with large lesions, it also works for
CT images with large between slice gaps (up to 8 mm). Figure 5.14(B)
shows the validation results of the MSP extraction algorithm on clinical
and noise/tumor added images [157]. The difference between symme-
try detection and MSP extraction is that the ultimate goal of MSP
extraction is to find where the approximate bilateral symmetry would
have been before the onset of the lesion. The idea is to compute and
locate the peak in the correlation scores of the rotated, reflected image
and its original image, resulting in a set of 3D midlines in space, then
use the statistical robust fit to determine an optimal 3D plane that
has least distance to all 2D mid-lines. Quantitative evaluations of this
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(A) (C)

(D)(B)

Fig. 5.14 (A, B) are figures from [157] which demonstrate a robust midsagittal plane extrac-
tion algorithm. (C), (D) are results from [170] which show how the statistical asymmetry
features are used in learning the most discriminative anatomical features for Alzheimer’s
Disease classification from MR structural images.

method show no statistical difference with the MSPs determined by
human experts (two) from neuroimages [157].

Using the MSPs as a basis, various types of brain asymmetry fea-
tures are computed either directly from the MR/CT images or from the
deformation fields obtained after a deformable registration of all images
of the subject to a reference brain [160, 161, 169, 170, 257]. These fea-
tures are used for 3D pathological image retrieval [160], and for com-
puter aided diagnosis of schizophrenia and Alzheimer’s Disease (AD)
[169, 170]. One example for classification of AD and controls (CTL)
using quantified brain asymmetry features is shown in Figure 5.14(C,
D). Quantified brain asymmetry is also used for age estimation [257]
where the significant difference between genders is observed.



6
Symmetry in Graphics

Symmetry has also found extensive use in the computer graphics world,
particularly in the generation of patterns and textures. Some aspects of
symmetry are so natural and intuitive that they can be found implicitly
in many graphics techniques. Our goal in this section is to survey papers
that make explicit use of symmetry and symmetry groups. We will
focus on kaleidoscopic drawing. Tilings, ornamental design, design in
non-Euclidean geometry, sculptural forms, and chaos and fractals.

6.1 Kaleidoscopes

In the second SIGGRAPH conference, Alexander presented a system
for drawing wallpaper patterns using a pen plotter [4]. He adopted
a straightforward approach to breaking down the drawing problem.
A motif is selected to act as an asymmetrical base for the drawing.
Copies of the motif are composed via rotations and reflections into what
Alexander calls a “medallion”, a figure with cyclic or dihedral symme-
try. The medallion can be used to fill the plane using only translations
and glide reflections. Alexander observes that appropriate choices of
cyclic and dihedral medallions can be combined with translations and
glide reflections to produce pictures in all 17 wallpaper groups.

158
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Loreto et al. developed an interactive, multi-window system for
visualizing wallpaper patterns [174]. Their multiple views permit
side-by-side comparisons of patterns from different symmetry groups,
as well as patterns related through continuous transformations they
offer for exploration purposes.

Several popular software tools exist for creating planar symmetric
drawings. Kali was originally written by Amenta at the Geometry Cen-
ter, and later refined by Weeks and Phillips.1 It can apply finite, frieze,
or wallpaper symmetry to collections of colored line segments. It repli-
cates line segments using a hierarchy of recursive calls bottoming out
in translation: every direct and reflected orientation of a segment is
drawn in every translation before proceeding to the next. (Obviously,
this drawing order would have been inefficient in Alexander’s plotter-
based work.) Another well known tool is Artlandia, a plugin for Adobe
Illustrator.2

6.2 Tilings

In the past 100 years, tiling theory has flourished into a rich topic in
geometry with connections to almost every other branch of Mathemat-
ics. Most modern tiling theory, such as the study of aperiodicity and
substitution systems, is well beyond the scope of this survey. On the
other hand, the tilings used commonly in art (most famously in Escher’s
regular divisions of the plane [237]), design, and ornament rely on the-
ory that is thouroughly investigated and well understood [84].

We will leave most of the formal definitions of tiling theory to the
reader’s intuition, and introduce terminology only as needed to discuss
the papers that follow. A practical introduction to the use of tiling the-
ory within computer graphics can be found in the book by Kaplan [114].
The authoritative reference on tiling theory is still the treatise by
Grünbaum and Shephard [84]. For the purposes of computer-generated
imagery we may usually restrict ourselves to the so-called “normal
tilings” discussed in both of those references, eliminating many patho-
logical cases.

1 http://www.geom.uiuc.edu/java/Kali/.
2 http://www.artlandia.com/.
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A monohedral tiling is one in which all tiles are congruent to a
single shape, called the prototile. Of course, a tiling is a design in the
plane, with an associated symmetry group. We may define the orbit of
a tile as the set of its images under the symmetries of the tiling, and
define a k-isohedral tiling to be one with k distinct orbits. When k = 1,
the symmetries act transitively on the tiles and the tiling is simply
called isohedral.

The isohedral tilings are especially well suited to use in computer
graphics. They are sufficiently versatile to account for a wide range of
commonly used monohedral tilings (all but one of Escher’s monohedral
regular division drawings are isohedral). On the other hand, they have
a simple structure and have been fully classified. They fall into 93
distinct combinatorial types, based on the relationships between a tile
and its neighbors, and admit an efficient software implementation. An
earlier formulation based on the structure of a tile’s edges is due to
Heesch and Kienzle [96, 237]. Each class of “Heesch tiling” corresponds
to a set of related isohedral tiling types (the isohedral types are further
distinguished by the internal symmetries of tiles).

The earliest use of tiling theory in computer graphics was due to
Chow [36, 37]. He observes that in any Heesch tiling, exactly half the
prototile’s boundary is redundant. He created a system in which the
user describes edges that make up half the boundary, and optionally
adds decorative markings. The computer fills in the other half of the
tile and covers a region of the plane with it. See Figure 6.1 for two
examples. Chow’s results are primarily decorative tilings in the style of
Escher, though he also draws connections to manufacturing. He claims
that copies of a part that tiles the plane can be cut from a single sheet
with no waste material.

Several research projects produced tiling software during the 1980s
and 1990s, though they were concerned more with the mathematical
theory than the production of images [50]. In 2000, Akleman et al. pre-
sented a Java-based system for drawing symmetric tilings. Any periodic
tiling has a translational subgroup with a fundamental region isomor-
phic to a torus. Their system is based on interactively editing a planar
graph embedded on a torus.

Also in 2000, Kaplan and Salesin presented Escherization, in which
the computer automatically discovered tilings in the style of Escher’s
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Fig. 6.1 Two tilings created by Chow.

drawings [116]. They show that the isohedral tilings may be parame-
terized in such a way that an optimization algorithm can search the
space of tilings for one whose prototile most closely resembles a user-
supplied goal shape. Candidate tiles are compared to the goal shape
using an efficient least-squares metric. They later extended their tech-
nique to the dihedral (two shape) case and to Penrose tilings [117]. See
Figure 6.2 for examples of monohedral and dihedral tilings produced
via Escherization.

Several software packages are available freely or commercially for
tiling design. They are primarily oriented towards educational use. The
most popular are KaleidoMania! by Lee,3 Tess by Pedagoguery Soft-
ware,4 and KaleidoTile by Weeks.5 The latter two support tilings in
non-Euclidean geometry (see Section 2.3).

6.3 Ornamental Design

Ornamentation has been practiced around the world since before
recorded history. The style of ornament, and the manner in which it is
executed, is often tied to a particular culture and time period [274].

3 http://www.keypress.com/x6173.xml.
4 http://peda.com/tess/Welcome.html.
5 http://www.geometrygames.org/KaleidoTile/.
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Fig. 6.2 Monohedral and dihedral Escherized tilings created by Kaplan and Salesin.

Ornament is usually distinguished from art in part by its tendency
towards structure, repetition, and order. This order need not necessar-
ily be accounted for by symmetry theory; some researchers have dog-
matically taken symmetry as the defining characteristic of ornament,
an attitude referred to by Grünbaum as “the group theory cult” [83].
Though not all-encompassing, the frieze and wallpaper groups are a
powerful set of tools for analyzing and producing symmetric designs in
the plane.

Several researchers in computer graphics have studied the design
and rendering of Islamic geometric patterns (also called Islamic star
patterns). These abstract patterns, found most famously on the walls
of the Alhambra palace in Granada, Spain, are usually highly sym-
metric. They represent an interesting challenge because most of the
original design techniques are lost to history. Researchers are there-
fore forced to “reverse engineer” those techniques, or invent new ones
altogether that account for the structure of the many available histor-
ical examples. Grünbaum and Shephard carry out a group-theoretic
analysis of geometric patterns with p6m symmetry [85]. They show
that tools from group theory, such as the Cayley diagram, can be used
to understand the number and types of distinct strands in a pattern.
Ostromoukhov extends this analysis framework to all the wallpaper
groups [199], providing a valuable framework for ornamental design
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Fig. 6.3 An Islamic star pattern created by Kaplan using the “polygons in contact”
technique.

in computer graphics that extends beyond Islamic art. The straight-
forward replication of Islamic patterns from asymmetric fundamental
regions is carried out by Karam and Nakajima [119], and in the many
examples collected by Abas and Salman [1]. In other work, Kaplan uses
symmetric tilings as a basis for assembling star patterns using a simple
“polygons in contact” technique [113] (Figure 6.3).

Several other forms of symmetric ornament have been investigated
by computer graphics researchers. Kaplan created abstract symmet-
ric designs by computing Voronoi diagrams of symmetric arrange-
ments of points, for example overlapping lattices [112] (Figure 6.4).
Glassner built textures by recursively replacing square tiles with four
scaled copies, transformed according to simple local symmetry rules [76]
(Figure 6.5). The results usually do not have global wallpaper sym-
metry, but contain a high degree of order and usually some cyclic or
dihedral symmetry. Liu et al. analyze the symmetries of Chinese paper-
cut patterns [162]. They extract the cyclic and dihedral portions of a
scanned-in pattern, and then synthesize new instances with different
symmetries (Figure 6.6).
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Fig. 6.4 Two ornamental Voronoi diagrams. The image on the left, by Leys, is formed from
overlapping grids of points. The image on the right, by Kaplan, is the Voronoi diagram of
overlapping circles.

Fig. 6.5 One of Glassner’s “hierarchical textures”.

Kaplan recently demonstrated how to transfer symmetric orna-
mental patterns from the Euclidean plane to an arbitrary mesh
surface [115]. Given a pattern with symmetry group p4, it is possible
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Fig. 6.6 Given a scanned-in papercut-pattern, three types of symmetry structures automat-
ically found by the analysis process of [162]: (A) a region with dihedral symmetry group
D2x4 supported by edges from the outer-ring of the pattern (magenta color); (B) a nested
bilateral symmetry supported by edges from the center pattern; and (C) asymmetry region,
primarily covering the tail of the dragonfly (cyan color). Synthesis results: (D), (E) and
(F) show three of many synthesized new papercut patterns, with dihedral symmetry groups
D2x4,D2x3, and D2x5, respectively, using the motif captured in the input papercut pattern.
A set of fold-then-cut action plans to generate these patterns are also generated accordingly.

Fig. 6.7 Examples of symmetric patterns mapped onto surfaces using the method of
Kaplan [115].

to identify a square region of the pattern that is a union of four fun-
damental regions, with centers of rotation at the corners of the square.
Contemporary mesh parameterization techniques such as Spectral Sur-
face Quadrangulation [51] can subdivide any mesh surface into coarse
square regions, and a copy of the pattern region can be copied into
each square to create a seamless covering of the surface. This techique
extends easily to pattern types p4g and p4m, which contain p4 as a
subgroup, as well as to p6 and p6m, using a triangular surface param-
eterization method such as Globally Smooth Parameterization [125].
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6.4 Non-Euclidean Geometry

In Section 2.3, we introduced the notion of symmetry groups in non-
Euclidean geometry. In this section, we describe some of the techniques
that can be used to draw hyperbolic designs, and survey graphics
research concerned with such drawings.

In a Euclidean wallpaper pattern, the simple structure of the trans-
lational subgroup makes it easy to fill space with copies of a motif.
Replication in hyperbolic symmetry groups is more challenging. Dun-
ham et al. offer a straightforward recursive implementation based on
building layers of motifs outward from the centre of the Poincaré disk,
with motifs being placed relative to the centres of the regular p-gons in
{p,q} tilings [56]. More recently, Epstein et al. developed the theory of
automatic groups [59]. According to this theory, these hyperbolic sym-
metry groups have an automatic structure, a table-driven system that
can generate isometries associated with copies of a fundamental region
in a hyperbolic pattern [142]. The isometries are generated in a fixed
order that grows outward from the centre of the disc, and each one is
produced exactly once.

Over the years, Dunham has created hyperbolic interpretations
of several different styles of ornamental design, including Escher’s
Euclidean drawings [52, 57], Celtic knotwork [53], and Islamic pat-
terns [54] (Figure 6.8). Kaplan and Salesin presented a system that
could draw Islamic star patterns in the Euclidean plane, the hyperbolic

Fig. 6.8 Three hyperbolic designs by Dunham: a rendition of an alternate version of Escher’s
Circle Limit III on the left, an Islamic geometric design in the center, and a Celtic design
of linked rings on the right.
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Fig. 6.9 An Islamic star pattern design interpreted in the Euclidean plane, the surface of a
sphere, and the hyperbolic plane.

plane, and the surface of a sphere [118]. Their algorithm relies on a con-
struction in absolute geometry, in which neither the parallel postulate
nor its negation are taken as true (see Figure 6.9). The construction is
then equally valid in any of the three target planes.

A new paper by von Gagern and Richter-Gebert describes a tech-
nique they call Hyperbolization, a complete solution for transferring
Euclidean symmetric patterns to the hyperbolic plane [273]. They begin
by extracting the necessary information from an image of a symmetric
pattern by detecting the pattern’s Euclidean symmetry group and com-
puting an “average” fundamental region. They use recent computer
graphics work on discrete conformal geometry [252] to compute a low-
deformation conformal mapping of the Euclidean fundamental region
into the hyperbolic plane, and a reverse lookup algorithm for sampling
the colors of the final hyperbolic design. This technique is very gen-
eral, and can handle Euclidean ornaments belonging to every symmetry
group except p1.

6.5 Polyhedra and Sculpture

The polyhedral symmetry groups offer a fertile ground for the creation
of symmetric sculptures in three dimensions. These works of art have a
definite mathematical flavor, and invite the viewer to appreciate what
Hart calls the “geometric aesthetic” [90]. That aesthetic is certainly
evident in the fascination many hobbyists have with the construction
of models of symmetric polyhedra — see, for example, the books by
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Fig. 6.10 Three Escher-like spheres created using the technique of Yen and Séquin and
manufactured by an FDM rapid prototyping machine.

Holden [100] and Wenninger [276]. Blinn shows how the symmetries of
the Platonic solids may be used as a method of drawing them or related
three dimensional shapes [19].

In a few instances, computer graphics research has played a role in
the construction of symmetric sculptures. Yen and Séquin developed a
system for drawing Escher-like tilings on the surface of a sphere [286]
(Figure 6.10). They offer the user a choice of several isohedral tilings
of the sphere, and the ability to modify the boundaries of the tiles
interactively. The user can also specify a set of bas-relief markings for
the interior of the tile. Tiles are then extruded into three-dimensional
models that can be manufactured via rapid prototyping and assembled
into a sphere.

Séquin has also collaborated extensively with artist Brent Collins,
who creates geometric sculptures based on profound intuition rather
than mathematical training. They have described several different
families of sculptures, based on minimal surfaces and curves on
spheres [246]. Most of these sculptures have simple cyclic symmetry,
having been designed as a stack of repeating units bent into a circle.
The geometry is quite complex, and is visualized in an interactive tool
that permits free exploration of spaces of hypothetical sculptures. An
example is shown in Figure 6.11.

Akleman et al. presented a suite of shape modelling tools that collec-
tively enable the creation of many symmetric sculptures [3]. Beginning
with Platonic solids, they interactively add geometry to faces, attach
pieces of the model with handles, carve holes using “rind modelling”,
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Fig. 6.11 A photograph of Brent Collins displaying a symmetric minimal surface sculpture
produced in collaboration with Séquin.

Fig. 6.12 Two symmetric sculptures constructed using the method of Akleman et al.

and smooth the sculpture using surface subdivision. See Figure 6.12 for
examples.

Hart has a long history of building sculptures based on polyhe-
dral symmetry [90, 91]. His recent experiments have involved modular
design of sculptures based on pieces lying in the face planes of polyhe-
dra [93]. In his design software, the user can draw modules on top of a
polyhedron’s stellation diagram, in order to see how it will interact with
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Fig. 6.13 Two symmetric sculptures by Hart. “Compass Points” on the left is assembled
from laser-cut wooden pieces. “Meanders” on the right is made from interlocking pieces of
paper.

symmetric copies of itself. For example, this allows Hart to construct
sculptures out of pieces that interlock at edges of the stellation diagram,
yielding a object that is simultaneously a mathematical model, a work
of art, and a test of manual dexterity and puzzle-solving skills [92].
Figure 6.13 shows two sculptures by Hart.

Other creators of symmetric sculpture use computer graphics reg-
ularly as part of their artistic process. Rinus Roelofs and Bathsheba
Grossman both work this way. Grossman typically begins with a clay
maquette, which she replicates in rough form using 3D modelling
software. She then uses Brakke’s SurfaceEvolver [25] to minimize the
surface area subject to position and symmetry constraints.

6.6 Chaos and Fractals

Images of chaos and fractals have been a popular use of computer
graphics ever since fast computers and raster displays first made it
possible to visualize these complex systems. Their limitless variety,
endless detail and unpredictability make them an open-ended source
of computer-generated imagery.

Some degree of symmetry has always been evident in these images.
Setting aside the “symmetry” of approximate self-similarity, the simple
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equation that governs the Mandelbrot set guarantees that the result will
have bilateral symmetry. Similarly, all of its Julia sets have (at least) c2
symmetry. Fractals derived from Newton iteration can easily be given
any dn symmetry through an appropriate choice of polynomial.

An interesting problem from the point of view of symmetry theory
is to construct chaotic dynamical systems whose attractors exhibit the
symmetries of a desired group. Field and Golubitsky have produced
many drawings of attractors with finite, frieze, and wallpaper symme-
tries [64, 65, 66]. Given a symmetry group G, their technique relies on
iterating “G-equivariant maps”, functions whose action commutes with
the application of elements of G. Suitably chosen G-equivariant maps
will be designs with precisely the symmetries of G. Figure 6.14 shows
three examples of symmetric attractors. A more recent approach to
finding invariant functions and coloring was described by Lu et al. [178].
They also investigated the use of orbit traps (a popular coloring method
in fractal art) to render symmetric attractors [179]. Both techniques are
illustrated in Figure 6.15.

Some work has also been done on rendering fractals in other spaces
or based on other symmetry groups. Adcock et al. build iterated
function systems from isometries in the hyperbolic plane, producing
attractors in the Poincaré disk model with symmetries based on the
standard hyperbolic groups [p,q] [2]. Chung et al. use transformations
of the plane inspired by Escher’s drawings to create images that look
as if they had been rendered in the Poincaré half-plane and disk mod-
els [38]. (Their paper claims to be inspired by Escher’s “Smaller and

Fig. 6.14 A chaotic attractor with finite cyclic symmetry, and two attractors with wallpaper
symmetry. All images were produced by Field.
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Fig. 6.15 Two additional chaotic attractors with wallpaper symmetry, both by Lu et al.
The image on the left demonstrates their technique based on finding invariant functions;
the image on the right is colored using orbit traps.

Fig. 6.16 Two additional fractal images with hyperbolic symmetry. The design on the left
is an iterated function system by Adcock et al., and the one on the right is a “Smaller and
Smaller” design by Chung et al.

Smaller”, though it would be more accurate to point to “Square Limit”
and an untitled woodcut usually referred to as “Regular Division of
the Plane VI” as sources.) Examples based on these two techniques are
shown in Figure 6.16. Ye et al. produce fractal drawings based on the
modular group in two dimensions [285] and the extended Picard group
in three dimensions [284].



7
Summary

Symmetry, or deviation from symmetry, has been a fascinating topic
across many different fields including science, engineering and the arts.
Detection of symmetry, as either a pure intellectual pursuit of pro-
grammable perception or as a practical tool for data compression, has
also fascinated computer scientists for decades, leading to the effort
that we call Computational Symmetry [152]. In this survey, we have pro-
vided the first, up-to-date (albeit partial) account of research activities
in the emerging field of Computational Symmetry in both computer
vision and computer graphics. Beyond continuous groups, we found
great potential in the computational formalism, efficiency and appli-
cations of discrete symmetries and symmetry groups. Recent papers
from related research fields echo this observation (Figure 1.4), and the
following extract from a 2006 SIGGRAPH paper [190] resonates our
appreciation of the importance and relevance of symmetry in the com-
putational sciences:

Symmetry is an essential and ubiquitous concept
in nature, science, and art. For example, in geometry,
the Erlanger program of Felix Klein has fueled for over
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a century mathematicians interest in invariance under
certain group actions as a key principle for understand-
ing geometric spaces. Numerous biological, physical, or
man-made structures exhibit symmetries as a funda-
mental design principle or as an essential aspect of
their function. Whether by evolution or design, symme-
try implies certain economies and efficiencies of struc-
ture that make it universally appealing. Symmetry also
plays an important role in human visual perception and
aesthetics. Arguably much of the understanding of the
world around us is based on the perception and recog-
nition of shared or repeated structures, and so is our
sense of beauty [47].

The state of the art in computational symmetry, although demon-
strating potential in recent years, has yet to reach a level to make fun-
damental contributions to the fields of computer vision and computer
graphics. The progress made has been mostly scattered, un-sustained
and less than systematic. As pointed out in our Introduction (in partic-
ular, Sections 1.2 and 1.3), this is an inherently difficult subfield, chal-
lenged by the alarming discrepancies between the formal elegance of
group theory and the imperfect/noisy/ambiguous/distorted data that
it must be applied to, as well as the limited representation power of
computers. Therefore, to make real progress, we need to be partic-
ularly creative and systematic. Here is an immediate action list for
those of us who are interested in making solid advances in computa-
tional symmetry:

(1) have a consistent and unified taxonomy of symmetry and
symmetry group types;

(2) provide publicly available data sets with ground truth
(e.g., the publicly available PSU NRT image database:
http://vivid.cse.psu.edu/texturedb/gallery/);

(3) make research code or executables publicly available;
(4) establish benchmarks for symmetry detection and analysis

algorithms;
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(5) organize symmetry detection algorithm competitions, work-
shops and tutorials.

Obviously, developing robust symmetry detection algorithms for
various real world data sets tops the list of immediate tasks. Here is a
short list of additional tangible research directions:

• symmetry-based perceptual organization, grouping and
segmentation (although many ideas were suggested in
1970–1980s, few practical algorithms exist);

• symmetry-based registration, especially for biomedical
objects;

• symmetry-based object recognition, an obvious direction
that is hindered by many (computational) obstacles.

Strategies needed for handling real world complexity have to be devel-
oped to deal with:

• hidden structures: distorted, disguised symmetries in noisy
data (Figure 1.5),

• ambiguity: clearly categorized mathematical symmetries
(Figure 2.1) can become incredibly confusing in digitized real
data, and

• symmetry model selection: in particular, the issue of sub-
group relations among symmetry groups, raised by Kanatani
in [110] and addressed only for gait frieze patterns/groups by
Liu et al. [158, 159].

Given the tremendous insights and wisdom that have been gained
from the concept of symmetry throughout the history of science, we are
hopeful that computational symmetry will make a similar impact to the
computational sciences, particularly in computer vision and computer
graphics research.
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[286] J. Yen and C. Séquin, “Escher sphere construction kit,” in I3D ’01: Proceedings
of the 2001 Symposium on Interactive 3D Graphics, pp. 95–98, New York, NY,
USA: ACM Press, 2001.

[287] E. Yodogawa, “Symmetropy, an entropy-like measure of visual symmetry,”
Perception and Psychophysics, vol. 32, no. 3, pp. 230–240, 1982.

[288] D. Yogev-Einot and D. Avnir, “Quantitative symmetry and chirality of the
molecular building blocks of quartz,” Chemistry of Materials, vol. 15, pp. 464–
472, 2003.

[289] D. Yogev-Einot and D. Avnir, “Pressure and temperature effects on the degree
of symmetry and chirality of the molecular building blocks of low quartz,” Acta
Crystallographica, vol. B60, pp. 163–173, 2004.

[290] D. Yogev-Einot and D. Avnir, “The temperature-dependent optical activity
of quartz: from le chatelier to chirality measures,” Tetrahedron: Asymmetry,
vol. 17, pp. 2723–2725, 2006.

[291] S. Y. K. Yuen, “Shape from contour using symmetries,” in European Confer-
ence on Computer Vision, pp. 437–453, Antibes, April 1990.

[292] H. Zabrodsky, “Symmetry — A review,” Technical Report TR-90-16, Dept.
of Computer Science, Hebrew University, Jerusalem, Israel, May 1990.

[293] H. Zabrodsky and D. Algom, “Continuous symmetry: A model for human
figural perception,” Spatial Vision, vol. 8, no. 4, pp. 455–467, 1994.

[294] H. Zabrodsky and D. Avnir, “Measuring symmetry in structural chemistry,” in
Advanced Molecular Structure Research, vol. 1, (I. Hargittai, ed.), Greenwich,
CT: JAI Press, 1993.

[295] H. Zabrodsky and D. Avnir, “Continuous symmetry measures, iv: Chirality,”
Journal of the American Chemical Society, vol. 117, pp. 462–473, 1995.

[296] H. Zabrodsky, S. Peleg, and D. Avnir, “Continuous symmetry measures,”
Journal of the American Chemical Society, vol. 114, pp. 7843–7851, September
1992.

[297] H. Zabrodsky, S. Peleg, and D. Avnir, “Hierarchical symmetry,” in Interna-
tional Conference on Pattern Recognition, vol. C: Image, Speech, and Signal
Analysis, pp. 9–12, The Hague, August–September 1992.

[298] H. Zabrodsky, S. Peleg, and D. Avnir, “A measure of symmetry based on shape
similarity,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 703–706, Champaign, June 1992.

[299] H. Zabrodsky, S. Peleg, and D. Avnir, “Completion of occluded shapes using
symmetry,” in IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 678–679, New York, June 1993.



References 195

[300] H. Zabrodsky, S. Peleg, and D. Avnir, “Continuous symmetry measures II:
Symmetry groups and the tetrahedron,” Journal of the American Chemical
Society, vol. 115, pp. 8278–8289, 1993.

[301] H. Zabrodsky, S. Peleg, and D. Avnir, “Continuous symmetry for shapes,” in
Aspects of Visual Form Processing, (C. Arcelli, L. Cordella, and G. Sanniti
di Baja, eds.), pp. 594–613, World Scientific, 1994. Proceedings of the 2nd
Int. Work. Visual Form, Capri, Italy.

[302] H. Zabrodsky, S. Peleg, and D. Avnir, “Symmetry of fuzzy data,” in Inter-
national Conference on Pattern Recognition, pp. 499–504, Tel-Aviv, Israel,
October 1994.

[303] H. Zabrodsky, S. Peleg, and D. Avnir, “Symmetry as a continuous feature,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17,
no. 12, pp. 1154–1165, December 1995.

[304] H. Zabrodsky and D. Weinshall, “3D symmetry from 2D data,” in European
Conference on Computer Vision, Stockholm, Sweden, May 1994.

[305] H. Zabrodsky and D. Weinshall, “Using bilateral symmetry to improve 3D
reconstruction from image sequences,” Computer Vision and Image Under-
standing, vol. 67, no. 1, pp. 48–57, 1997.

[306] D. W. Zaidel, S. M. Aarde, and K. Baig, “Appearance of symmetry, beauty,
and health in human faces,” Brain and Cognition, vol. 57, no. 3, pp. 261–263,
2005.

[307] T. Zielke, M. Brauckmann, and W. von Seelen, “Intensity and edge-based sym-
metry detection applied to car-following,” in European Conference on Com-
puter Vision, pp. 865–873, Santa Margherita, May 1992.

[308] S. W. Zucker, “Toward a model of texture,” CGIP, vol. 5, no. 2, pp. 190–202,
June 1976.


