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Abstract

We study a form of the pursuit-evasion problem, in which one
or more searchers must move through a given environment
S0 as to guarantee detection of any and all evaders, which
can move arbitrarily fast. Our goal is to develop techniques
for coordinating teams of robots to execute this task in ap-
plication domains such as clearing a building, for reasons of
security or safety. To this end, we introduce a new class of
searcher, the ¢-searcher, which can be readily instantiated
as a physical mobile robot. We present a detailed analysis
of the pursuit-evasion problem using ¢-searchers. We show
that computing the minimum number of ¢-searchers required
to search a given environment is NP-hard, and present the
first complete search algorithm for a single ¢-searcher. We
show how this algorithm can be extended to handle multiple
searchers, and give examples of computed trajectories.

Introduction

In this paper we address a form of the problem known as
pursuit-evasion. The goal of this problem is to direct the ac-
tions of one or more searchers through a given environment
in such a way as to guarantee that any evaders present in
the environment will be found. As an example, consider the
problem of closing a museum for the night. In order to be
sure that no thieves or other malcontents remain inside after
closing, the guards must perform a thorough search of the
building. They must keep in mind that any intruders may try
to avoid the guards. For example, if a guard is checking each
room along a hall, an intruder might sneak behind the guard
while he is checking one room and hide in a room that was
already checked. In this case, one solution might be to use
two guards, with one always keeping watch on the hall.

Our goal is to derive strategies for robots that allow them
to play the role of guard. In particular, we are interested
in scalable techniques for coordinating the actions of teams
of robots to clear entire buildings. In this paper, we estab-
lish an analytical foundation for studying this problem by
introducing the concept of a ¢-searcher, which is a robot
equipped with a ¢-radian field of view (FOV) sensor for
detecting evaders. The ¢-searcher reflects the realities of
physical robots, most of which have limited FOV sensors,
and thus the techniques we develop can be applied to robots.
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Furthermore, the ¢-searcher is a qualitatively different kind
of searcher from those previously studied in pursuit-evasion
scenarios, and so warrants the fresh analysis that we present
here.

After proving that computing the minimum number of ¢-
searchers required to search an environment is NP-hard, we
present the first complete search algorithm for the case of
one ¢-searcher in a known environment. We show how this
algorithm can be extended to handle multiple robots (albeit
at a loss of completeness). We have implemented and tested
this algorithm in a variety of environments and present ex-
ample solution trajectories.

Background and related work

The first rigorous formulation of the pursuit-evasion prob-
lem is due to Parsons (1976), who restricted his study to the
case in which the environment is a discrete graph. Nothing is
known about the location or motion of the evader, who is as-
sumed to be able to move arbitrarily fast through the graph.
The evader can occupy any edge in the graph; to find the
evader, a searcher must walk along the edge occupied by the
evader and “touch” the evader. The entire graph is initially
contaminated, which means that the evader could be any-
where. As the search progresses, an edge is cleared when
it is no longer possible for the evader to occupy that edge.
Should it later happen that the evader could have moved
back to a previously clear edge, that edge is said to be recon-
taminated. Using this terminology, the goal of the problem
can be restated as follows: find a trajectory for each searcher
such that the entire graph is cleared.

A visibility-based version of the pursuit-evasion prob-
lem was introduced by Suzuki & Yamashita (1992), who
changed the domain from discrete graphs to continuous
polygonal free spaces and coined the term k-searcher. In
this formulation, in order to find an evader, a k-searcher
need not touch the evader, but can instead “see” the evader
from a distance. The k-searcher is equipped with £ infinitely
thin “flashlights” with which it can search the environ-
ment. These flashlights have unlimited range (but cannot see
through walls) and can be freely rotated about the searcher
at bounded speed and independently of the searcher’s mo-
tion. Commonly studied are the cases when &k = 1, k = 2,
and £ = oo (LaValle et al. 1997; Guibas et al. 1999;
Lee, Park, & Chwa 2002). The oco-searcher can see in all



directions at once.

In addition to such analytical study, there has recently
been some work on forms of pursuit-evasion with physical
robots. Roy & Gordon (2002) model the single-robot action-
selection problem as a POMDP, which is made tractable by
compression of the sparse belief space. A similar prob-
abilistic framework is employed by Vidal et al. (2002),
who use heuristic search to find strategies for coordinat-
ing teams of air and ground vehicles to search an unknown
outdoor environment. More distantly related is the large
body of work on cooperative tracking of moving targets with
fixed sensors and/or mobile robots (Werger & Matari¢ 2001;
Stroupe 2003; Spletzer & Taylor 2003).

The ¢-searcher

The existing body of analytical work on visibility-based
pursuit-evasion is concerned with some form of the k-
searcher, and is not readily applicable to physical robots, few
of which are equipped with movable flashlights or omnidi-
rectional sensing. Since our target domain is teams of phys-
ical robots, we introduce a new class of searcher, which to
our knowledge has not yet been studied, and which we call
the ¢-searcher. The ¢-searcher is a holonomic (i.e., omni-
directional drive) mobile robot with a limited FOV sensor
having angular aperture ¢ € (0,2x]. The sensor has un-
limited range, but cannot penetrate obstacles. This robot
can move (i.e., rotate and/or translate) at bounded speed.
When ¢ = 2w, we have an oo-searcher. For ¢ < 2,
however, we have a different kind of searcher, with signifi-
cantly diminished capabilities. Since the sensor’s FOV can
be freely rotated about the searcher at bounded speed and in-
dependently of the searcher’s motion (this follows from the
holomonicity of the robot), the capabilities of the ¢-searcher
lie somewhere between those of a 1-searcher and those of a
2-searcher. Shown in Figure 1 is an example of a ¢-searcher,
for ¢ = .

Given a connected polygonal free space F, the pursuit-
evasion problem is to find a trajectory through F' (called a
search schedule) for ¢-searchers that guarantees detection
of an arbitrarily fast evader, whose trajectory and initial lo-
cation are unknown.* Analogously to the graph search prob-
lem, any part of F' where the evader can be hiding is called
contaminated and any part of ' where the evader cannot be
hiding is called clear. Whenever there exists a path between
contaminated space and clear space, that clear space is said
to be recontaminated. The space F is initially contaminated
and the goal is to clear it.

It is known that for the discrete graph search problem,
establishing the minimum number of searchers required to
search a given graph, known as the search number of the
graph, is NP-hard (Megiddo et al. 1988). For the visibility-
based version, establishing the minimum number of oo-

L1t may be the case with physical robots that the available map,
having been acquired from sensor data, is grid-based, rather than
polygonal. If so, then the first step is to generate an approximate
polygonal representation of the grid-based map, either automati-
cally (e.g., via smoothing and line-fitting) or manually (e.g., with
the aid of an architectural floorplan).

searchers required to search a given polygonal free space is
also NP-hard (Guibas et al. 1999). We have a similar result
for ¢-searchers:

Theorem 1. Computing the minimum number of ¢-
searchers required to search a given polygonal free space
Fis NP-hard.

Proof. We use the same reduction as Guibas et al. (1999):
any planar graph G can be mapped onto an equivalent polyg-
onal free space F' by making vertices into convex rooms and
edges into “kinked” hallways. Each hallway has a kink, or
bend, in the middle, such that the searcher cannot see from
one end of the hall to the other. As a result, to clear a hall,
the searcher must walk its entire length, just as with an edge
in G. The kink removes all advantages of visibility, and
thus has the same effect on the ¢-searcher as it does on the
oo-searcher. Since any planar graph can be mapped onto
an equivalent polygonal free space, and since computing the
search number of a planar graph with maximum vertex de-
gree 3 is NP-hard (Monien & Sudborough 1988), comput-
ing the minimum number of ¢-searchers required to search
a polygonal free space is also NP-hard. O

A complete algorithm for a single ¢-searcher

Since, by Theorem 1, we cannot easily determine the mini-
mum number of ¢-searchers required to search a given envi-
ronment, we focus initially on the case of controlling a sin-
gle ¢-searcher. In this section, we present a complete search
algorithm for the case of a single ¢-searcher. That is, we
are interested in finding a trajectory for a single ¢-searcher
that will search a given polygonal free space F, under the
assumption that such a trajectory exists. We address the ex-
tension to multiple searchers later.

We take inspiration in the design of our algorithm from
the work of Guibas et al. (1999), who have previously given
a complete algorithm for the case of a single oco-searcher.
Their algorithm does not suffice for a ¢-searcher with ¢ <
2m, because it does not account for the searcher’s limited
FOV. However, we borrow from their work in several ways.

The basic steps of our algorithm are: (i) by a series of par-
titions, retract the given free space into a network of curves
that represent the visibility constraints induced by the envi-
ronment and the searcher’s FOV; (ii) construct an informa-
tion graph that encodes the possible information states of the
problem as the searcher moves, using the network of inter-
secting curves as a roadmap; then (iii) search this graph for a
goal state, and read the desired trajectory out from the result-
ing path. The key to this algorithm is identifying the critical
points in the environment; it is only by moving through these
points that the searcher will change the information state of
the problem.

Identifying critical changesin information state

The area visible to a ¢-searcher when it is positioned at a
point p with orientation 8 in F' is called its visibility poly-
gon, Vy(F,p, ), abbreviated to V, when F', p, and 6 are
clear from the context. When a point ¢ lies within V,,, we
say that ¢ is in view (Figure 1(c)). The visibility polygon is
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Figure 1: Introduction to the ¢-searcher Shownin (a) is an example of a 7-searcher positioned at a point p with orientation ¢ in a polygonal
free space F. The shaded region is the searcher’s visibility polygon, V: (F, p, 6). Shown as dashed lines in (b) are the induced gap edges for
the w-searcher, which partition the free space into 4 regions. Shown in (c) are examples of vertices that are in view, visible, and/or ¢-visible,

for ¢ = 3.

defined by a set of line segments, some of which lie on the
boundary of F' and some of which do not. The latter seg-
ments, which cross through the interior of F', are called gap
edges (Figure 1(b)). These edges, combined with the edges
of F', form a planar map that partitions the free space of F’
into a set of faces, which we call regions. We can attach to
each region a binary label that indicates whether it is clear
(“0”) or contaminated (“1”).

We model the information state of the problem as
(p,0, B(p,0)), where (p,0) is the searcher’s pose and
B(p, 0) is the list of binary labels on the regions induced
by its gap edges. To monitor progress, we need only take
notice when this information state changes combinatorially;
that is, when the set of regions or region labels changes. A
combinatorial, or critical, change in information state corre-
sponds to a move of the searcher that changes the topology
of contaminated space. During such a move, one or more
gap edges will: disappear, split, or merge (it can also hap-
pen that a new gap edge appears during a move, but new gap
edges always border clear space, and so such a move does
not change the topology of the contaminated space).

Other moves can deform the contaminated space of F,
but do not change its topology. We can characterize critical
changes in information state with the following necessary
(though not sufficient) condition:

Lemma 1. Given a single ¢-searcher in a polygonal free
space F, there can be a change in the topology of the con-
taminated space in F' only if there is a change in the set of
vertices of F' that lie in V.

Proof. We treat the three cases separately:

1. Edge disappearance. For a gap edge e to disappear, one
of two events must occur. Either the concave vertex of F'
that induced e moves out of Vj;, or e becomes coincident
with the boundary of F' and terminates at a previously
non-visible convex vertex of F'. In the first case, e disap-
pears because it falls out of view (and thus is no longer
part of Vy); in the second case, e disappears because it
becomes part of the boundary of F' (and thus is no longer

a gap edge).

2. Edge splitting. A gap edge e can be split only if a previ-
ously non-visible concave vertex of F', say v, moves into
Vg such that v lies on e. The gap edge e will then split
into two new edges, with the first terminating at v and the
second originating at v.

3. Edge merging. Merging is simply the reverse of splitting.
Two gap edges el and e2 can merge only if el terminates
at the same concave vertex of F, say v, from which e2
originates, and v moves out of V. The result is a single
new edge, having the same origin as el.

In each case, at least one vertex of F' moves into or out of
V. O

This lemma tells us that any critical change in information
state will be accompanied by (actually, caused by) a change
in the set of vertices of F" that lie within V. So we need to
identify the points at which there can be a change in the set
of vertices that are in view.

Before continuing, we define two notions of visibility
from a point p € F' (Figure 1(c)). We say that two points
p and ¢ are mutually visible if the line segment between p
and ¢ does not cross the boundary of F' (this is the tradi-
tional geometric notion of visibility). Equivalently, we may
say that p is visible from ¢ or that ¢ is visible from p. We
say that a pair of points (p, ¢) is ¢-visible from a point s if
there exists an orientation, say 6, for a ¢-searcher located at
s such that both p and ¢ lie within V;;, with p and ¢ ordered
counterclockwise about s. That is, if we rotate a sweep line
counterclockwise about s through the FOV of a searcher po-
sitioned at s with orientation 6, we encounter both p and g,
with p coming before ¢ (angular ties are broken by distance
from s). Clearly, if (p, q) is ¢1-visible from s, then (p, q) is
also ¢o-visible from s for any ¢o > 1. Thus, if the pair
(p,q) is ¢-visible from s, then p and ¢ are also both visible
from s (traditional visibility is just 2z-visibility).

Partitioning the environment

We now partition F into a set of regions R. Our goal is that
the following condition hold for each region r € R: given
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Figure 2: Shown in (a) isthe partition P (F') for a space F con-
sisting of a square containing a triangular hole. Shownin (b) isthe
partition P, (F) for a square free space F', with ¢ = 2<. In both
cases, the dashed lines are the segments used in the construction
of the partition (the boundaries of the square and/or triangle are
also included). Either visibility (a) or ¢-visibility (b) of boundary
verticesis constant across the resulting regions.

a ¢-searcher located anywhere in r, the set of ¢-visible ver-
tex pairs does not change. First, we ensure that there is no
change in the set of visible vertices. For each pair of mutu-
ally visible vertices v, and v, of F' (including when v, and
vo are endpoints of the same segment of F'), we construct
the segment v, vs, then extend this segment in either direc-
tion as far as possible without crossing the boundary of F'.
The intersections of the resulting segments form a partition
of F into a set of convex regions. The intuition behind this
technique is that we identify all places where the set of vis-
ible vertices can change due to occlusion (Figure 2(a)). The
resulting partition, P, (F'), has the following property:

Lemma 2. Given any region r from the partition P, (F') of
a polygonal free space F', the set of visible vertices of F' is
the same for all points in the interior of r.

Proof. Assume by contradiction that some vertex v, of F'is
visible from a point p and not visible from another point g,
with both p and ¢ in the interior of ». Consider any continu-
ous path ~ from p to ¢ such that ~ is contained in the interior
of . Then there is some point along -, say s (possibly equal
to ¢), where vy disappears from view. For this to occur, there
must be another vertex of F', say vs, that occludes v;. The
three points vy, v, and s will be collinear; v; and v, will be
mutually visible; and v2 and s will be mutually visible. Then
in the construction of P, the extension of the segment v, vs
would pass through s, which means that s does not lie in the
interior of ». Thus there is no path between p and ¢ that re-
mains in the interior of r, which contradicts the assumption
that both p and ¢ lie in the interior of r. O

So we know that the set of visible vertices cannot change
within a region r € P (F). However, for ¢ < 2, it is still
possible for the set of ¢-visible vertex pairs to change within
a region. We want to refine the partition P, (F') so that there
is no change in ¢-visibility of vertices as a ¢-searcher moves
within a single region. For this purpose, we introduce visi-
bility curves:

Definition (Visibility curve). Given 0 < ¢ < =« and
two distinct points v; and v, the visibility curve, denoted
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Figure 3: Thevisibility curve Cy (v1, v2) for two pointsvy and vs.
Shownin (a) isthecasewhen ¢ = % thesearcsarethe closest that
a 3 -searcher can come to the midpoint of v1v2, while maintaining
visibility of both points. Shown in (b) is the case when ¢ = %”;
these arcs are the farthest that a %"-searcher can move after cross-
ing v1v2 While maintaining visibility of both points. Three example
poses along each curve are shown, with the relevant portions of the
visihility polygons shaded.

A

$ C(viv2)
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Figure 4: An example of how ¢-visibility changes when crossing
avisibility curve, for ¢ = 7. Asthe searcher crosses C'z (v1, v2),
it must lose sight of at least one of v; and vs.

Cy(v1,v2), is the locus of ¢-searcher positions closest to
the midpoint of the segment v,v5 such that an appropriate
orientation of the searcher will place both v, and v in V.
Form < ¢ < 27, Cy = Clar_g). The curve Cy is undefined
for ¢ = 2.

As can be seen in Figure 3(a), the visibility curve for 0 <
¢ <  is composed of two arcs. Each arc is part of a circle
defined by the locus of points from which the segment v, v,
subtends the angle ¢ (the segment v, v, is always a chord in
each circle; when ¢ = 7 the two circles are the same and the
segment vy v9 is a diameter). To maintain visibility of both
vertices from a point along this curve, the searcher must be
oriented toward the midpoint of v;v5. AS ¢ approaches m,
these arcs flatten, until they meet to form a single line when
¢ = =. In this case, a w-searcher positioned on the line
must be oriented orthogonal to the line in order to maintain
visibility of v; and v2. As shown in Figure 3(b), form < ¢ <
2, the visibility curve is composed of the same two arcs as
for 2 — ¢, but the orientation of the searcher is rotated by
.

The importance of the visibility curve is that it makes con-
crete the constraints induced by the requirement to main-
tain visibility of a given pair of vertices with a ¢-searcher.
For 0 < ¢ < m, the visibility curve is the closest that a ¢-
searcher can approach two vertices while keeping them both



in view (Figure 4). If the searcher moves forward from a
point on this curve, it will necessarily lose visibility of at
least one vertex. For m < ¢ < 2m, the interpretation is
slightly different: if two vertices are currently in view and
a ¢-searcher passes between them, the visibility curve is the
farthest that the searcher can travel while keeping both ver-
tices in view. When the searcher reaches a point on the visi-
bility curve, its blind spot becomes wedged between the two
vertices; any further forward motion will cause at least one
vertex to fall out of view.

We now refine our partition of " with a set of visibility
curves. For every pair of vertices v, and vy of F' (including
when v; and vy are endpoints of the same segment of F)
for which there exists some point on the curve Cy(vy, v2)
that lies in the free space of F' and from which (vq,v2)
and/or (v, v1) is ¢-visible , we add Cy(vi,v2) to F. The
intuition behind this step is that we need only include those
curves that represent visibility changes that can actually oc-
cur for a searcher moving through F'. For example, if the
searcher can never simultaneously see two vertices, then the
visibility curve between them is not a meaningful constraint
on the searcher’s motion. For the same reason, we discard
from each curve any portion that lies outside F'. It is possi-
ble to further prune the visibility curves by removing from
Cy(v1, v2) any portion from which one or both of v and v,
is not visible. This further pruning would speed up trajec-
tory planning, but has no effect on the completeness of our
algorithm.

Note that when ¢ = , the addition of visibility curves
is redundant: the existence of a third point on C(v1, v2)
from which v; and v, are ¢-visible is equivalent to v, and vo
being mutual visible, and C;(v1, v2) is just the line through
vy and v, which was included in the coarser partition (hence
the name P, (F)).

The intersections of the resulting arrangement of curves
and lines form a partition of F' into a set of (not necessarily
convex) regions (Figure 2(b)). This partition, P,(F), has
the following two properties:

Lemma 3. Given any region r from the partition Py (F’) of
a polygonal free space F', the set of ¢-visible vertices is the
same for all points in the interior of r.

Proof. Since Py(F) is a refinement of P.(F'), » must be
contained within a single region, say r,, of P.(F). As the
set of visible vertices cannot change within r, (Lemma 2),
the set of visible vertices likewise cannot change within 7.
So we are left to show that, among the (constant) set of
visible vertices, the set of ¢-visible vertices does not change.
Assume by contradiction that this condition does not hold.
In particular, assume that the vertex pair (v1, v2) is ¢-visible
from some point p and not ¢-visible from some other point
g, with both p and ¢ in the interior of r. Since (v1,v2) is
¢-visible from p, both v; and vy must also be visible from
p. And since the set of visible vertices is the same for both
p and g (because they are both in r), v; and v must also be
visible from ¢. Then, by the definition of a visibility curve,
p and ¢ must lie on opposite sides of C,(v1, v2), which con-
tradicts the assumption that p and ¢ lie in the same region
. O

Lemma 4. Given any region r from the partition P, (F') of
a polygonal free space F’, any vertex pair that is ¢-visible
from the interior of r is also ¢-visible from the boundary of
r.

Proof. Assume by contradiction that the vertex pair (v1, v2)
is ¢-visible from some point p in the interior of r (by
Lemma 3, the particular choice of p makes no difference),
and not ¢-visible from some point ¢ on the boundary of 7.
It is clear that, since v; and v are visible from p, they must
also be visible from ¢. Then, by the definition of a visibil-
ity curve, p and ¢ must lie on opposite sides of Cy(v1,v2),
which contradicts the assumption that ¢ is on the boundary
of the region containing p. O

These lemmas tell us that a ¢-searcher that is positioned
within a region » can move onto the boundary of r with-
out losing visibility of any vertices (it may gain visibility of
some vertices). At this point, to avoid possible ambiguity,
it will be necessary to order to the set of vertices that are
in view.? For a ¢-searcher positioned at p with orientation
6, we denote by S, (F, p, ) the ordered set of vertices of F
that are in view (i.e., in V4(F,p,6)), sorted counterclock-
wise about the searcher (angular ties are broken by distance
from the searcher). For brevity we may abbreviate this set
as S4. We now show that a searcher positioned in the inte-
rior of a region can move to the region’s boundary without
removing or reordering any vertices that are initially in view:

Lemma 5. Given any region r from the partition Py (F") of
a polygonal free space F', and a ¢-searcher with pose (p, 0)
such that p lies in the interior of r, the searcher can move
to any point ¢ on the boundary of r without removing or
reordering any vertices in Sg.

Proof. Consider any continuous path ~ from p to ¢ such that
v\ g is contained in the interior of r and ¢ is visited exactly
once (i.e., the path ~ intersects the boundary of » only at g,
where it terminates). Each vertex pair that is in S4(F, p, 0)
must be ¢-visible from p and so, by Lemmas 3 & 4, also be
¢-visible from all other points on -y (since ~y is confined to r).
So it is possible for the searcher to move continuously along
~ without losing sight of any vertices. Furthermore, because
¢-visibility guarantees an ordering on each vertex pair, it
is possible for the searcher to move continuously along ~
such that no vertex pair in .Sy, is reordered. As a result, the
searcher can move from p to ¢ without removing or reorder-
ing any vertices in S. O

This lemma tells us that we can move a searcher from the
interior of a region to its boundary, with the only change in
S, being the addition of vertices of £. To put it another way,
a searcher that is positioned in the interior of a region may as
well move to the region’s boundary, for at the worst its ver-
tex coverage will remain the same. As a result, without loss

2When ¢ > m, it may be possible to change the information
state without changing the set of vertices that are view, by wedg-
ing the searcher’s blind spot between different vertex pairs. In this
case, only the order of the in-view vertices will change, and so we
must keep track of this order to be able to distinguish among these
information states.



of generality we can restrict our attention to the boundaries
of the regions of P4 (F’), and ignore their interiors. Further-
more, no vertices Sy will be removed or reordered as the
searcher moves along a single component (i.e., segment or
arc) of the boundary of a region; such a change can only
occur at the intersection of two components. By moving
to an intersection, the searcher is in fact moving from the
interior to the boundary of a larger region that would exist
if the boundary component along which it is traveling were
excluded from the partition. So we can further focus our
attention on the intersections of region boundaries.

Of course, the searcher may have to rotate as it moves; ¢-
visibility only guarantees that it is possible for the searcher
to simultaneously see a given pair of vertices. In general, for
a point p that is an intersection of one or more region bound-
aries, there will be an interval of orientation for which the set
of vertices in V,, will remain unchanged. Equivalently, there
is an interval of orientation for which each ¢-visible vertex
pair is in V4. By intersecting all such intervals, we can parti-
tion the space of possible searcher orientations, [0, 27). The
intervals produced by this partition, ©4(F, p), have the fol-
lowing property: the set of vertices in V is the same for any
two orientations in the same interval.

So all orientations in a given interval, say i, of ©4(F, p)
are equivalent, in the sense that there can be no critical
change in information as a ¢-searcher, positioned at p, ro-
tates within 4. We can identify each orientation interval by
a pair of vertices (vf;rst, Viast), Which are, respectively, the
first and last vertices in view, according to the order in which
each vertex is encountered by rotating a sweep line coun-
terclockwise through the searcher’s FOV. Without loss of
generality, we can assume that a ¢-searcher that is oriented
within an interval (vsirse, viast) 1S always oriented such that
either its minimum FOV boundary intersects v ;s or its
maximum FOV boundary intersects v;q;.

Building theinformation graph

We now have the roadmap along which the searcher will
travel as it moves through F', and we can build a directed
information graph, Gy, that encodes all possible critical
changes in the information state. For each point p that is the
intersection of two or more components of region bound-
aries in P, (F"), compute the orientation intervals ©,(F, p).
We add to Gy a node for each possible region labeling that
can result from placing the searcher at p and rotating it
through each orientation interval in ©,(F, p).

We complete the construction of G; by adding edges that
correspond to the feasible changes in information state. First
we must define the actions that are allowed for the searcher.
Assume the searcher is positioned at a point p that is the in-
tersection of two or more region boundary components, and
oriented within an interval defined by (vfipst, vigst). This
searcher can:

1. Rotate into any adjacent orientation interval.

2. Translate along the length of any boundary compo-
nent ¢ incident to p such that the orientation interval
(vrirst, Viast) 1S valid at the opposite end of c¢. During
the move the searcher servos its rotation so as to maintain

visibility of both v;,.s; and vy, (and thus all vertices in
between).

For each node n in G7, we determine the information states
that would result from taking each allowable action at the
configuration that n represents, and add edges from n to the
nodes that encode these new states.

Given an information state from which to start, we can
then search G for a goal state, which represents all of F
being clear. In a start state, all in-view regions are clear and
all others are contaminated. In a goal state, all regions are
clear. Given a feasible path through G from start to goal,
we can read from it the required searcher trajectory, as a
series of in-place rotations and constrained translations. We
now establish the completeness of this approach:

Theorem 2. An algorithm that will find any path to a goal
vertex from a start vertex in Gy is complete for the visibility-
based pursuit-evasion problem with a single ¢-searcher.

Proof. Given a polygonal free space F' and a single ¢-
searcher, take any solution trajectory, say =. Our goal is
to map 7 onto an equivalent path in G;. That is, we wish
to show that 7 can be transformed into an equivalent tra-
jectory along the curves that make up the roadmap used in
constructing G;.

Denote by (p, #) the searcher’s pose at the start of 7. If p
lies in the interior of a region  in P, (F) then, by Lemma 5,
we can move the searcher to any point on the boundary of
r, without losing or reordering any in-view vertices of F.
In particular, we can move the searcher to any intersection
along the boundary of r. If p already lies on a region bound-
ary, then we can slide the searcher along that boundary to
the nearest intersection, again without losing or reordering
any in-view vertices.

As T progresses, we can replicate its moves within our
roadmap in the following way. While 7 remains in the inte-
rior of a region r, we keep the searcher at an intersection, say
q, on the boundary of r, and achieve any necessary changes
in vertex visibility by simply rotating the searcher through
its orientation intervals. If 7 crosses into an adjacent region
r’ such that ¢ is also on the boundary of r’, we can con-
tinue to rotate the searcher in place. If, on the other hand,
q is not on the boundary of r/, we move the searcher along
any boundary component that is incident to both ¢ and some
other intersection, say s, that does lie on the boundary of 7.
During this translation, the searcher’s rotation is controlled
S0 as to remain within its current orientation interval and not
lose or reorder any in-view vertices (Lemma 5 guarantees
that this is possible).

In this way, we create a new trajectory 7’ that moves along
the roadmap and is at as least as good as 7. That is, Sy at
each point on 7’ is a superset of S, at the corresponding
point on 7. Compared to 7, a searcher moving along 7’ may
see additional vertices, but it will never miss any, nor will it
see them in a different order. As we can construct a solution
7/ given any solution 7, the algorithm is complete. O

Multiple searchers

One way to extend this algorithm to handle multiple
searchers is to include in the construction of GG the joint in-



formation and action spaces of all searchers. Unfortunately,
this approach is not complete. The reason is that the visibil-
ity polygons of multiple searchers can interact and overlap
in such a way that the information state can change without
any searcher crossing a region boundary in Py.

A more serious drawback to extending our algorithm to
multiple searchers in this way is that the joint informa-
tion and actions space grow exponentially in the number of
searchers. Even in simple environments and with only two
searchers, the information graph G requires a prohibitively
large amount of memory to store and a correspondingly long
time to search. Nevertheless, we have implemented this ex-
tension, and show in the next section that it computes valid
clearing trajectories.

Implementation and computed examples

We have implemented and tested the algorithm described
above, using the CGAL computational geometry library
(Burnikel et al. 1999). For reasons of efficiency and con-
venience, our implementation thus far computes trajectories
only for the special case of ¢ = . In this case, the roadmap
in P, (F") consists only of linear objects, and so the underly-
ing geometric computation can be done with rational num-
bers. For ¢ # , circular arcs are introduced, and the exact
computation of their intersections requires the use of arbi-
trary precision real numbers, which are far slower to work
with than rationals. Efficiency concerns aside, the case of
¢ = m is of particular interest and value to roboticists, be-
cause a sensor that is commonly found on robots today is a
scanning laser range-finder with a 180° FOV (e.g., the SICK
LMS). So trajectories computed by our implementation can
be executed directly on holonomic robots that are equipped
with such sensors.

We now present a few computed examples. In all the
figures, light gray (or yellow) areas are currently in view
(and thus clear), white areas are clear (but not in view), and
dark gray areas are contaminated. For reasons of space, not
all steps in each trajectory are shown. For clarity of pre-
sentation, the searcher’s approximate trajectory is shown in
the last frame. Shown in Figure 5 is an office-like environ-
ment composed of a hallway connecting two rooms. Shown
in Figure 7 is a more complex environment, for which the
computed trajectory had 42 steps. Figure 6 shows a sim-
ple environment that requires two searchers to clear (a sin-
gle ¢-searcher is incapable of clearing any loops, even when
¢ = 2m). We used the multi-searcher extension mentioned
above to compute this solution, in which two searchers work
together to clear the environment.

Summary

We have presented a novel form of the visibility-based
pursuit-evasion problem by introducing a new class of
searcher, the ¢-searcher, which we chose because it can
readily be instantiated as a physical maobile robot. Because
the ¢-searcher is qualitatively different from the previously
studied k-searcher, existing motion-planning techniques do
not suffice. As part of a detailed analysis of this new kind
of searcher, we showed that computing the minimum num-

Figure 5: A computed clearing trajectory for a w-searcher. In this
case the searcher clears the environment by moving backward out
of the upper room, down the hall, and into the left room.

ber of ¢-searchers required to search a given environment
is NP-hard and derived the first complete search algorithm
for a single ¢-searcher. We showed how this algorithm can
be extended to find strategies for multiple searchers by plan-
ning in their joint action space, and gave examples of com-
puted trajectories for single searchers and for teams of two
searchers.

Planning in the joint action space of all searchers is clearly
not the best approach, as it is centralized and scales badly as
the number of searchers increases. We are currently design-
ing more parsimonious techniques for coordinating multi-
ple searchers, such as distributed negotiation. For example,
if a searcher encounters a hallway with many contaminated
rooms, it may ask of another searcher, “Watch my back from
the end of the hall while I clear these rooms.” It is interesting
to note that this kind of cooperative mini-strategy arises nat-
urally in the joint action space plans. We are investigating
the possibility of learning from these plans such higher-level
primitives as “watch my back” and “guard this intersection.”
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Figure 7: In this more complicated example, the 7-searcher fi rst
clearstheleft hand side fromtop to bottom, then moves through the
horizontal hallway to clear the right hand side, from top to bottom.



