
A Novel Graphical Model Approach to Segmenting
Cell Images

Shann-Ching Chen∗, Ting Zhao∗, Geoffrey J. Gordon† and Robert F. Murphy∗†‡
Center for Bioimage Informatics, ∗Department of Biomedical Engineering, †Department of Machine Learning and

‡Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract— Successful biological image analysis usually requires
satisfactory segmentations to identify regions of interest as an
intermediate step. Here we present a novel graphical model
approach for segmentation of multi-cell yeast images acquired by
fluorescence microscopy. Yeast cells are often clustered together,
so they are hard to segment by conventional techniques. Our
approach assumes that two parallel images are available for each
field: an image containing information about the nuclear positions
(such as an image of a DNA probe) and an image containing
information about the cell boundaries (such as a differential
interference contrast, or DIC, image). The nuclear information
provides an initial assignment of whether each pixel belongs to
the background or one of the cells. The boundary information
is used to estimate the probability that any two pixels in the
graph are separated by a cell boundary. From these two kinds
of information, we construct a graph that links nearby pairs of
pixels, and seek to infer a good segmentation from this graph.
We pose this problem as inference in a Bayes network, and use a
fast approximation approach to iteratively improve the estimated
probability of each class for each pixel. The resulting algorithm
can efficiently generate segmentation masks which are highly
consistent with hand-labeled data, and results suggest that the
work will be of particular use for large scale determination of
protein location patterns by automated microscopy.

I. INTRODUCTION

The first step in biological image analysis is often to seg-
ment each image into regions of interest. For example, in order
to carry out automated analysis of protein subcellular location
patterns [1], it is desirable to segment images into single cell
regions. However, the variations of image patterns resulting
from different specimen types and imaging techniques make
segmentation a very difficult task [2]. In the cell segmentation
problem, different types of segmentation methods can be
applied, such as thresholding, region growing, edge-based
segmentation, and seeded watershed segmentation [2].

When only an image of a nuclear marker is available,
Voronoi segmentation is widely used to define cell regions
[3]. However, the resulting segmentation masks could crop
pieces off of individual cells when the cells are close to
one another. When evidence about both cell centers and cell
boundaries is available (such as from nuclear staining and
staining of total protein or plasma membrane proteins), the
seeded watershed algorithm [4] usually provides good cell
boundaries [5]. However, this algorithm usually produces loose
contours which cover irrelevant background regions in addition
to the cell bodies [6]. In addition, it can be tricky to compute
a good initial seeding for the watershed algorithm, and poor
seeding can produce unsatisfactory results. Another class of

methods is active contours, which numerically optimize an
energy function which measures both the quality of the current
boundary and the difference between image features inside and
outside the contour [6][7]. This type of segmentation method
can have excellent performance on images whose foreground
and background regions have different statistical properties,
but it can be quite computationally expensive.

In this paper, we propose a novel graphical model approach
to tackle the cell segmentation problem. Graphical models
have been extensively applied to many classification problems,
such as hypertext classification [8] and image segmentation
[9], where we need to infer values for many interdependent
random variables. Our proposed graphical models are undi-
rected Bayes nets, also called Markov networks or Markov
random fields. The relationships between the random variables
in these models are described by potential functions associ-
ated with groups of nodes called cliques. A classic potential
function is the Potts potential [10], which is a 2-way (pair-
wise) potential and can be used to represent multiplicative
influences between random variables (e.g., each additional
neighbor of the background class multiplies my odds of
being a background pixel by 1.2). Here we instead use a
voting potential [11], which is a k-way potential function that
integrates information in an additive way (e.g., if two thirds
of my neighbors are background pixels, my odds of being
background go up by 50%). For inference we use the factor
graph representation and the sum-product algorithm [12]; since
our graphs contain cycles, this combination is often called
loopy belief propagation. A similar voting potential has been
demonstrated to significantly improve performance on a multi-
cell image classification problem [13].

This paper is organized as follows. In Section II, we
briefly explain the relationship between Bayes Net and the
factor graph representation using different potential functions.
We demonstrate two approximate inference algorithms based
on the voting potential function and the factor graph rep-
resentation. In Section III, we provide the derivations of
message calculation in belief propagation using DNA and edge
potentials. In Section IV, we compare our algorithm to the
seeded watershed method on a collection of yeast cell images
[14]. Finally, in Section V we discuss conclusions and future
work.

1-4244-0623-4/06/$20.00 c©2006 IEEE

f1

f3

f2

x1

x3

x2

Fig. 1. A collection of three random variables x1, x2, x3 arranged in a graph.
Each circle represents the random variable xi, and each square represents the
feature vector fi of the random variable xi. An edge connecting two nodes
means that their values are directly related to one another.

II. GRAPHICAL MODEL REPRESENTATION

A. Problem Statement

We formalize the problem by assuming that two sources of
information of the multi-cell image are available. One source
describes the DNA content at each pixel; the other source
provides an initial guess of the cell outlines. Each pixel in
the image is considered as a random variable of either the
background or foreground labels. We observe that one pixel
is likely to belong to the foreground if its DNA intensity is
relatively high. In addition, two neighboring pixels are likely
to have the same labels if there is no edge between them. The
segmentation task is: given an image of a field containing a
number of cells with the above information, assign each pixel
either to the background environment or to the foreground
belonging to a specific cell in the field.

B. Bayes network

A Bayes net is composed of nodes and edges. Nodes
represent random variables, and edges between nodes indicate
the dependence between the random variables. We can arrange
three random variables x1, x2, x3 with associated feature
vectors f1, f2, f3 in a Bayes net as shown in Fig. 1.

The feature vector f can provide a probability distribution
P (x) over possible labels x as the observed evidence of
the random variable. To encourage the labels of connecting
random variables to be the same, we can use the following
pairwise potential function:

ϕ(xi, xj) =
{

ω xi = xj

1 otherwise

where ω > 1 is a free parameter which expresses how
strongly we believe that xi and xj have the same label. The
overall probability of a vector of labels x is:

P (x) =
1
Z

∏
nodes i

ϕloc(xi)
∏

edges i,j

ϕ(xi, xj) (1)

where Z is a normalizing constant and ϕloc(xi) represents
the evidence (derived from the feature vector fi) of node i for
every possible label. The above potential is called the Potts
potential, and the Bayes net with this potential is called the
Potts model [10] or Ising model [15].

 ϕ(x1,x2)x1

 ϕ (x1)
loc

x2

 ϕ (x2)
loc

 ϕ(x2,x3)
x3

 ϕ (x3)
loc

Fig. 2. Three random variables x1,x2 and x3 in a Bayes net using the factor
graph representation with pairwise potential function.

C. Potts Potential and Voting Potential

Although the Potts model can represent the dependence of
the random variables in a simple and intuitive way, it does not
perfectly capture the property about inference from labels of
neighboring classes. The problem is that, in Eq. 1, the evidence
combines several pair-wise potentials multiplicatively. While
the evidence from different neighbors acts through separate
potentials, an exponential dependence between the number
of neighbors of a given class and the probability of that
class results. If one use a partially ordered Markov model
(POMM) [16], which is a directed version of the Potts model,
the estimation of parameters and sampling from the model
are easier than they would be for an undirected model.
However, for inference, POMMs suffer from exactly the same
problem that the Potts model does: the evidence combines the
neighborhood potential functions multiplicatively. When this is
not desirable, we can instead use an approach which combines
the evidence from the neighboring variables additively. For
example, one more intuitive model is to update the posterior
probability of the random variable according to the proportion
of its neighbors of each class:

ϕj(x1, x2, . . . , xk) = 1 +
k∑

i=1,i �=j

αI(xi, xj)(1 − ϕboundary(i))

+
k∑

i=1,i �=j

βI(xi, xk)ϕboundary(i)

where xj is the pixel of interest and ϕj is the potential
function centered at xj . x1, x2,. . . xk are xj’s neighbors,
ϕboundary(i) is proportional to the probability of the existence
of a boundary between two neighboring pixels xj and xi.
I is an indicator function which is 1 when xi=xj and 0
otherwise. The voting potential consists of two important
terms which encourage different types of behavior. The first
is when two pixels have the same labels I(xi, xj) and low
likelihood of a boundary between them (1 − ϕboundary(i)).
This behavior is represented in the first summation term. The
second summation term encourages differently labeled pixels
if they have high boundary potential between them. α and β
are scale factors for these two terms, and the larger they are the
more strongly xj’s neighbors will influence its classification.
This voting potential function combines the evidence from all

 ϕ(x1,x2)
x1

x1

 ϕ (x1)
loc

 ϕ(x1,x2,x3)
x2

x2

 ϕ (x2)
loc

 ϕ(x2,x3)
x3

x3

 ϕ (x3)
loc

(a)

(b)

Fig. 3. Three random variables x1,x2 and x3 in a Bayes net using the factor
graph representation with voting potential function. (a)Message passing from a
variable to a factor node. (b)Message passing from a factor node to a variable.

of node xj’s neighbors into a summary vote to influence its
classification. The voting potential is defined in such a way
that the message passing can be calculated efficiently by the
sum-product algorithm described next.

D. Factor Graphs and Belief Propagation

A factor graph is a graph representation which can split a
complicated global function of many variables into a product
of several local functions, each of which only depends on a
subset of the variables [12]. To calculate the posterior distri-
bution of the random variables, a message passing procedure
called the sum-product algorithm is used in a factor graph.
A wide variety of algorithms based on the graphical model
representation can be derived as the instances of the sum-
product algorithm. The Bayes net in Fig. 1 can be represented
as a factor graph with the pairwise potential function (Fig. 2).

In a factor graph, the circle nodes represent random vari-
ables and the square nodes represent the factor nodes. For
example, ϕ(x1, x2) is a factor node, a pairwise potential
function of two random variables x1 and x2. ϕloc(xi) is the
local evidence from the observation, which is only a function
of the variable itself and is usually derived from some set of
features describing the object represented by the variable.

The same Bayes net can be represented as another factor
graph using the voting potential (Fig. 3). For each variable,
we define an affiliated factor node associated with the random
variable. This affiliated factor node connects to the centered
variable and all the neighbors of the centered variable. We
use a bar above the random variable to denote the affiliated
factor node. For example, x̄2 connects to x2 as well as x1

and x3 (all the neighbors). This factor node can be explained
by collecting the message from the neighbors of x2, and it is
exactly the voting potential function ϕ2(x1, x2, x3) centered
at x2. We termed x2 as the centered variable and all other xi

as non-centered variables in all the following descriptions.
There are two types of messages we have to calculate: from

a variable to a factor node and from a factor node to a variable.
The message calculation from a variable to a factor node is
simple. As shown in Fig. 3(a), we just collect all the messages
from the neighboring factors (except the one we are sending

to) and use the component-wise dot product to combine them
with the local evidence. (In the usual implementation of this
approach, the messages are initially set to equal probability
for all classes.) Generally, the message from a variable xj to
a factor node x̄i can be calculated as:

mj→i(xj) = ϕloc(xj)
k∏

l=1,l �=i

ml→j(xj) (2)

The message calculation of the other type of message,
from a factor node to a variable, is slightly more compli-
cated (Fig. 3(b)). We have to collect messages from all the
neighboring variables (except the one we are sending to)
and marginalize out all the variables except the one are we
interested in. In general, the message from a factor node x̄j

to a variable xi can be calculated as:

mj→i(xi) =
∑
∼{xi}

ϕj(x1, . . . , xk)
k∏

l=1,l �=i

ml→j(xl) (3)

where
∑

∼{xi} means that we marginalized out all the
variables except xi to calculate the marginal distribution of xi.
All these messages can be calculated very quickly by the sum-
product algorithm [12], which decomposes the whole joint
distribution into several smaller joint distributions of subsets of
random variables so that the marginalization can be calculated
easily. When the message passing converges, the belief of a
random variable can be calculated in Eq. 4. All the message
passing procedures are termed belief propagation (BP).

belief(xj) = ϕloc(xj)
k∏

l=1

ml→j(xj) (4)

E. Loopy Belief Propagation and Prior Updating

BP can calculate the exact posterior distribution of the
random variables on a graph with no loops in linear time.
The same algorithm can work if there are loops, but each
message may have to be updated several times before the
network converges. The procedure to apply the standard belief
propagation rules to a graph with loops is called Loopy Belief
Propagation (LBP), an approximate inference method to BP.

We can run loopy belief propagation on a factor graph
that includes voting potentials. However, we might expect
the message from a factor to a non-centered variable to
be fairly weak: this suggests an even simpler algorithm for
inference: we can run LBP but ignore all of the messages from
factors to non-centered variables. (Ignoring a message means
considering it to be uniform.) We will call this algorithm
Prior Updating (PU) with Voting Potential. The name PU
comes from the usage of the current classifications of a node’s
neighbors to update the prior for the node’s own classification
[13]. PU has shown good approximate inference performance
in the cell image classification problem [11]. PU will be
noticeably faster than LBP, since there will usually be many
more non-centered variables than there are centered ones in
each factor. We therefore used PU for the work described here.

m
j→k

(xk)

=
∑

∼{xk}

(
1 +

k−1∑
i=1

αI(xi, xk)(1 − ϕboundary(i)) + βI(xi, xk)ϕboundary(i)

)
k−1∏
i′=1

m
i′→j

(xi′)

=
∑

∼{xk}

k−1∏
i′=1

m
i′→j

(xi′) +
∑

∼{xk}

k−1∑
i=1

αI(xi, xk)(1 − ϕboundary(i))

k−1∏
i′=1

m
i′→j

(xi′) +
∑

∼{xk}

k−1∑
i=1

βI(xi, xk)ϕboundary(i)

k−1∏
i′=1

m
i′→j

(xi′)

= 1 +

k−1∑
i=1

∑
∼{xk}

αI(xi, xk)(1 − ϕboundary(i))

k−1∏
i′=1

m
i′→j

(xi′) +

k−1∑
i=1

∑
∼{xk}

βI(xi, xk)ϕboundary(i)

k−1∏
i′=1

m
i′→j

(xi′)

= 1 +

k−1∑
i=1

∑
∼{xk}

αI(xi, xk)(1 − ϕboundary(i)) · m
i→j

(xi)

k−1∏
i′=1,i′ �=i

m
i′→j

(xi′)

+

k−1∑
i=1

∑
∼{xk}

βI(xi, xk)ϕboundary(i) · m
i→j

(xi)

k−1∏
i′=1,i′ �=i

m
i′→j

(xi′)

= 1 +

k−1∑
i=1

∑
xi

αI(xi, xk)(1 − ϕboundary(i)) · m
i→j

(xi) +

k−1∑
i=1

∑
xi

βI(xi, xk)ϕboundary(i) · m
i→j

(xi)

= 1 +

k−1∑
i=1

α(1 − ϕboundary(i)) · m
i→j

(xk) +

k−1∑
i=1

βϕboundary(i) · (1 − m
i→j

(xk)) (5)

To calculate the voting potential, the messages from the
variables to the factor nodes can be calculated easily using
Eq. 2. Eq. 5 shows how we can calculate the messages from
a factor node to the centered variable. In the derivation, we
permute the index of the random variables in the potential
function ϕj in Eq. 3 so that the index of the centered variable is
k at the right hand side of the equation. We further assume that
the message ml→j(xl) is normalized so that

∑
xl

ml→j(xl) =
1. The first equation is the definition of the desired message.
The second equation distributes multiplication over addition.
The third equation uses the fact that all terms in the product∏k−1

i′=1 mi′→j(xi′) are independent, along with our assumption∑
xi′

mi′→j(xi′) = 1, to compute the summation. The fourth
equation factors mi→j(xi) out of the product. The fifth
equation uses again the facts that all terms in the product are
independent and

∑
xi′

mi′→j(xi′) = 1. The last line uses the
fact that I(xi, xk) is nonzero iff xi = xk. All the computation
only involves summation and dot product between two vectors.

III. SEGMENTATION USING VOTING POTENTIAL

A. Dataset

To test our approach, we have used a collection of images
of yeast cells [14]. It contains images of proteins encoded by
more than four thousand open reading frames (ORFs). A three
channel image was acquired for each ORF, consisting of DIC
(differential-interference contrast), GFP (green fluorescence
protein), and DAPI (a DNA dye) channels. Each image has
around 20 to 50 cells, often clustered together. These ORFs
have been categorized into 23 location patterns by visual
examination. Automated segmentation of these images into
single cell regions will faciliate automated analyzis of the

location patterns. We selected a small subset of the images
for our experiments.

B. DNA potential and boundary potential

We defined two potential functions, DNA potential and
boundary potential, which can be derived from a DNA content
image and an image with noisy information about the positions
of cell boundaries. From the DNA intensity at each image
pixel, we define a DNA potential, the local evidence that each
pixel is likely to be in the foreground or background. The
DNA potential is a column vector of dimension n + 1, where
n is the number of possible foreground labels (e.g., different
cells). A pixel with a high DNA intensity is more likely to
belong to the foreground, so its foreground potential should
be set high (and background potential should be set low). We
use a sigmoid function to transform each DNA intensity value
to a value for the background potential, and set the potential
for each foreground class to equal shares of the difference
between the background potential and one. The threshold and
slope of the sigmoid function are automatically chosen using
two reference points in the image: a pixel with the 95th

percentile of the DNA intensity (which should have very low
background potential), and a pixel on the initial cell outline
(which should have about equal foreground and background
potential). The second pixel was chosen as the pixel with
the median DNA intensity out of all pixels on the initial cell
outline. The potentials for the two references points were set
to 0.11 and 0.273, respectively. The second value was chosen
empirically as providing better results than using one-third
(i.e., equal probabilities for background and two foreground
classes).

Images such as total protein images, membrane protein

Fig. 4. An example of a boundary contour superimiposed on the DNA
potential of the foreground label.

images, and DIC images usually have good information about
cell boundaries. From these images, an initial cell contour
can be extracted using basic image processing procedures,
such as edge-finding or morphological operations. In our
experiments, we first converted the DIC image into an edge
image based on the assumption that where an edge is located
usually has high intensity variance in the image. The variance
of an image I at a certain position (x, y) is calculated as
follows: V (x, y) =

∑
i

∑
j g(i − x, i − y)[I(i, j) − µ(i, j)]2,

where g is a bivariate Gaussian distribution with standard
deviation σ and µ(x, y) =

∑
i

∑
j g(i − x, i − y)I(i, j). We

tried different values for σ and found that σ = 2 gave
the best results. Because the local variance is dependent on
the average local intensities in the images, we normalized

the edge image as s(x, y) =
√

V (x,y)

µ(x,y) , which is much less
sensitive to the average local intensities. We further applied
the Ridler-Calvard thresholding [17], morphological thinning,
and low-pass filtering with a 7 × 7 gaussian window to the
edge image. For each pixel xi in the edge image, we define
the neighborhood using a W×W square window, where xi

is at the center. For each pair of pixels xi and xj in the
neighborhood, we calculated the sum of the intensity values
of the pixels between xi and xj in the blurred images, then
converted the sum to a contour potential by a sigmoid function
(with empirically chosen slope of 1 and threshold of 5). The
contour potential describes the probability of existence of a
contour between two neighboring pixels. Pixels are likely
to have different labels if there is a contour between them.
An example of a contour image superimposed on the DNA
potential of the foreground label is shown in Fig. 4.

C. Segmentation procedures

Each image in the dataset consists of 512×535 pixels. Each
pixel is assigned a DNA potential ϕloc(xi) and a boundary
image is generated by applying a basic edge finding algorithm
to the DIC image. The DIC images were also used to identify
sub-regions containing whole cells or separated cell clusters
by finding connected regions in the blurred DIC image. For
computational feasibility, a reasonable size for a sub-region is
at most 100000 pixels; sub-regions of larger size were ignored.

In order to save memory and be able to operate on larger
image regions, an iterative process is designed so that only one

cell region will be identified at each iteration. To do this, we
defined three classes, background, the foreground class of the
current cell, and the foreground of all other cells. At the end
of the first iteration, we simply separate all of the foreground
pixels from the background pixels. The local evidence of the
background pixels are set to be [1, 0, 0], and the one pixel with
the highest foreground confidence is selected. We set the local
evidence of this pixel to be [0, 1, 0] and run belief propagation
again until convergence. All of the foreground pixels with the
highest belief in the second class are segmented as one cell.
The segmented cell is stored and all of its pixels are considered
as background by setting their local evidence to be [1, 0, 0].
We iterate the process of picking the most confident pixels in
the foreground and segment out the cells one by one until the
segmented region is too small to be considered as a cell.

The choice of W is also important because the memory
requirement is quadratic to W . W should be large enough so
that enough information from the neighbors can be incorpo-
rated, but it should be small enough to save computations. We
evaluated different W s and found that W = 7 gives the best
accuracy and efficiency tradeoff.

IV. EXPERIMENTS

In this section, we compare experimental results for graph-
ical model segmentation and seeded watershed segmentation.
We randomly selected 13 images from the yeast image dataset,
and manually segmented these images into 434 single cell
regions using the DIC image as a guide. An example of a
portion of a DIC image and a corresponding hand-labeled
mask are shown Fig. 5 and Fig. 6, respectively.

A. Evaluation measurement

Assuming that the hand-labeled regions were correct, we
calculated cell-level and pixel-level recall, precision, and F
measures to compare the two segmentation methods. We
define the area overlap for a hand-labeled mask (HM) as the
the number of overlapping pixels between a machine mask
(MM) and the HM divided by the total number of pixels in
that HM . So that incomplete segmentation can be recognized,
we permit only one MM to match with a given HM . Since
there may be more than one MM overlapping with a HM ,
the one with largest area overlap is matched to that HM ,
and the other MMs are only permitted to match other HMs
(some MMs may not end up matched). We further define
an area overlap threshold T to distinguish between correctly
and incorrectly segmented cells. A MM is considered as a
true positive (cTP) if its area overlap with its corresponding
HM is greater than T , and considered a false positvie (cFP)
otherwise. (We chose a fairly stringent criterion of T = 80%
in anticipation of the need for nearly complete cell regions
for automated pattern classification.) The cell-level recall and
precision can be calculated as cTP/(number of HMs) and
cTP/(cTP + cFP), respectively. The cell-level F measure
can be calculated as 2 × Recall × Precision/(Recall +
Precision);

Based on the correspondence between MM and HM , we
can similarly define the pixel-level true positve (pTP) and
false positive (pFP). pTP is defined as the number of pixels
in all MMs that overlap with the corresponding HM and
pFP is defined as the number of pixels in all MM that overlap
with all other HM . Note that by this definition pixels in a
MM that do not overlap with any MM are ignored. This is
donoe to avoid penalizing the watershed method for including
additional surrounding background pixels in a mask. The
pixel-level F measure is calculated as defined above. The cell-
level measurement indicates the ability of the segmentation
method to find correct masks, and the pixel-level measurement
assesses the quality of the found masks.

B. Seeded Watershed Segmentation

The seeded watershed algorithm uses the nuclei as seeds
and splits the reference image into regions equivalent to the
drainage regions of the image landscape. Here we used the
DNA image both for seeding and as the reference image. An
example of a DNA image is shown in Fig. 8. The initial seed-
ing plays a very crucial step for the final segmentation results.
Our previously work [5] suggested that proper thresholding
after background substraction could usually provide a good
seeding. An example image by seeded watershed algorithm is
shown in Fig. 9.

C. Comparision

We applied our graphical model segmentation on 13 yeast
cell images with 434 hand-labeled single cell regions. An
example resulting segmentation is shown in Fig. 10. We can
see that there is a very high consisitency between the hand-
labeled masks and the graphical model segmentation masks.
We also applied the seeded watershed algorithm on the same
images, using the DNA image as both seeding and reference
image. Given the importance of the threshold to the seeding
process, we used various factors of the automated threshold
chosen by the Ridler-Calvard method [17]. The results with
the highest cell-level F measure are reported. As shown in
Table I, graphical model segmentation clearly outperformed
seeded watershed segmentation. The pixel-level measurements
indicated the quality of the generated masks, and the cell-
level precision represent the ability of the algorithm to retrieve
masks. We consider the latter to be the most important
important metric to compare the two algorithms. We calculated
the 95% confidence interval of the cell-level precisions: the
average precision of the graphical model segmentation falls
within (71.9%, 80.0%) and that of the seeded watershed
algorithm falls within (58.2%, 67.3%). The non-overlapping
confidence intervals confirmed that the graphical model seg-
mentation outperformed the seeded watershed segmentation.
(Because the seeded watershed segmentation assigns all pixels
to a mask, the pixel-level precision, recall, and F measure are
all the same.)

D. Post Processing

Although most of the masks generated by the graphical
model approach are of good quality, some unsatisfactory

TABLE I

EVALUATION OF TWO SEGMENTATION METHODS.

Seeded Watershed Graphical Model
Cell-Recall 62.9% 75.1%
Cell-Precision 62.8% 76.0%
Cell-F measure 62.8% 75.6%
Pixel-Recall 69.3% 82.9%
Pixel-Precision 69.3% 94.6%
Pixel-F measure 69.3% 88.4%

TABLE II

FEATURES USED FOR POST PROCESSING.

Feature Name Description
eccentricity The eccentricity of the mask
area fraction The area ratio of the mask and fitted ellipse
total pixel Total number of pixels
DNA per pixel Average DNA intensity per pixel in the mask
total DNA Total number of DNA intensity
synthesized Square of each feature above

masks need to be screened out. To do this, we can rank the
resulting masks by some measurements and pick a threshold to
select masks which are ranked higher. We extracted a set of
features which are considered as good descriptions of good
masks. The features are summarized in Table II. The first
two features are related to the principal components of the
mask. The eccentricity is calculated using the first two major
components of the mask, and a good mask should have a low
eccentricity value. The area fraction is defined as the ratio of
the mask area and area of a fitted ellipse. The fitted ellipse can
be found by first finding the two major principal components
of the mask, and then set the length of the major axis to be
of the largest Mahalanobis distance of all the pixels in the
mask. The resulting ellipse would cover all the pixels within
the mask. This area fraction is expected to be high for good
masks. The next three features are related to the size and the
DNA content of the cell. We also synthesized five additional
features by taking the squares of each features. For each cell,
10 features were extracted and used for training the weights
of logistic ridge regression classifier to identify good masks.

We used a leave-one-out cross validation approach: at each
fold of cross-validation, one image is selected as the testing set
and the remaining are used as the training set. All the machine
generated masks in the training set were divided into positive
and negative examples according to their area overlaps with
hand-labeled masks and the area overlap threshold T . We also

TABLE III

EVALUATION OF POST PROCESSING.

Watershed Graphical Model Post Processing
Cell-Recall 61.4% 74.9% 55.3%
Cell-Precision 65.5% 75.9% 89.5%
Cell-F measure 62.6% 75.3% 65.5%
Pixel-Recall 67.4% 83.6% 60.4%
Pixel-Precision 67.4% 94.8% 96.7%
Pixel-F measure 67.4% 88.8% 72.0%

Fig. 5. An example of the DIC image. The DIC image usually gives good
information about the cell boundary. The right upper cell is an out of focus
cell.

Fig. 6. An example of the hand segmentation mask.

Fig. 7. An example of 80% cell overlap between the hand label data (deep
gray) and the machine generated mask (light gray). The overlap pixels are in
white color.

Fig. 8. An example of a region of a DNA image. The pixel belonging to
the foreground usually has higher DNA intensity.

Fig. 9. An example of the masks resulting from seeded watershed segmen-
tation.

Fig. 10. An example of the masks resulting from automated segmentation
using the prior updating algorithm with voting potential.

added the hand-labeled masks from the training set as positive
examples to have a bigger training set. A weight vector is
learned from the training set, and this vector is used to classify
the masks in the testing set. A score threshold for testing set is
learned from the value which gives the largest cell-level F mea-
sure in the training set. This score threshold is then used in the
testing set. The masks with scores greater than the threshold
are classified as positive images. Results for all methods with
leave-one-out cross validation are shown in Table III. In these
results, we also tuned the ridge parameter in the logistic ridge
regression so that the cell-level Precision can be maximized.
The ridge term corresponds to the prior of the coefficient in
the logistic regression. The post processing results in a much
larger cell-level precision but a lower cell-level recall. Since
there are on average more than 25 cells of the same location
pattern in the GFP channel, high quality masks are preferable
for automated pattern analysis even if some cells are lost.
After post processing, the cell-level precision is increased from
75.9% to 89.5%. We performed the one-sided paired t-test on
the cell-level precision between the masks with and without
post processing, and the p-value (0.0015) suggests that post
processing can statistically significantly improve the cell-level
precision. The p-value between masks of post processing and
watershed is even smaller (0.0002).

V. CONCLUSION

Graphical model segmentation is a fast and accurate seg-
mentation method, and it is especially useful for segmenting
a field containing cells that are touching each other, as is
often the case with yeast images. It also has the advantage
of not requiring the explicit seeds which the seeded watershed
algorithm and level set based methods do. When the seeding is
proper, seeded watershed algorithm can usually achieve robust
segmentation results. However, the segmentation results are
very sensitive to the thresholds and different regions may need
different thresholds to achieve good results. A high threshold
will result in over-segmentation and a low threshold will result
in under-segmentation. If there is a good source of seeding
available, such as for 3D stack of images, we can find the
initial seeding by overlapping the DNA images over stacks.
In other cases, when the initial seeding is tricky, graphical
model segmentation is an good alternative.

There is still room for improvement on the quality of the
masks, both in the parameter learning in the loopy belief prop-
agation and the features and procedures in the post processing.
Another important issue is the detection of out-of-focus cells.
As we examined our incorrect masks carefully, a lot of false
positives came from out-of-focus cells. Our results could be
improved further by removing these cells.

It is worth noting that the computational requirements for
these methods are quite different. While the time needed
for seeded watershed is within a second, a MATLAB im-
plementation of our graphical model segmentation and post
processing took around 6 minutes per image. While this is
much slower, it is small compared to the time required to
tag and image each yeast protein and faster than some other

methods (such as some implementations of active contours).
Segmentation is such a hard problem that there is no universal
method for segmenting all kinds of images. However, we
expect our algorithm to perform well on a large range of
fluorescent microscopy images. We hope that the graphical
model segmentation can be useful as the first step in an
automated analysis of protein subcellular location patterns in
multi-cell images, especially for high throughput fluorescent
microscopy images.

ACKNOWLEDGMENT

We thank Adam Carroll and Erin O’Shea for providing the
yeast images. This work was supported in part by NSF grant
EF-0331657.

REFERENCES

[1] X. Chen, M. Velliste, and R. F. Murphy, “Automated interpretation
of subcellular patterns in fluorescence microscope images for location
proteomics,” Cytometry A., vol. 69A, no. 7, pp. 631–640, 2006.

[2] E. Bengtsson, C. Wählby, and J. Lindblad, “Robust cell image segmen-
tation methods,” Pattern Recognition and Image Analysis, vol. 14, no. 2,
pp. 157–167, 2004.

[3] K. Rodenacker and P. Bischoff, “Quantification of tissue sections: Graph
theory and topology as modelling tools,” Pattern Recogn Lett, vol. 11,
pp. 275–284, 1990.

[4] R. Lotufo and A. Falcao, The ordered queue and the optimality of the
watershed approaches. In: Mathematical Morphology and its Appli-
cation to Image and Signal Processing, Kluwer Academic Publishers,
2000, pp. 341–350.

[5] M. Velliste and R. F. Murphy, “Automated determination of protein
subcellular locations from 3D fluorescence microscope images,” in
Proc. Intl. Symp. on Biomedical Imaging (ISBI), 2002, pp. 867–870.

[6] L. Coulot, H. Kirschner, A. Chebira, J. M. F. Moura, J. Kovacevic, E. G.
Osuna, and R. F. Murphy, “Topology preserving STACS segmentation of
protein subcellular location images,” in Proc. Intl. Symp. on Biomedical
Imaging (ISBI), 2006, pp. 566–569.

[7] C. O. de Solorzano, R. Malladi, S. A. Lelievre, and S. J. Lockett,
“Segmentation of nuclei and cells using membrane related protein
markers,” Journal of Microscopy, vol. 201, no. 3, pp. 404–415, 2001.

[8] B. Taskar, A. Pieter, and D. Koller, “Discriminative probabilistic models
for relational data,” in Proceedings of the 18th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-02). Morgan Kaufmann,
2002, pp. 485–49.

[9] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief propagation
for early vision,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 1, 2004, pp. 261–268.

[10] R. Potts, “Some generalized order-disorder transformations,” in
Proc. Cambridge Philosophical Soc., vol. 48, 1952, pp. 106–109.

[11] S.-C. Chen, G. J. Gordon, and R. F. Murphy, “A novel approximate
inference approach to automated classification of protein subcellular lo-
cation patterns in multi-cell images,” in Proc. Intl. Symp. on Biomedical
Imaging (ISBI), 2006, pp. 558–561.

[12] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, 2001.

[13] S.-C. Chen and R. F. Murphy, “A graphical model approach to auto-
mated classification of protein subcellular location patterns in multi-cell
images,” BMC Bioinformatics, vol. 7, pp. 90–102, 2006.

[14] W. K. Huh, J. V. Falvo, L. C. Gerke, A. S. Carroll, R. W. Howson, J. S.
Weissman, and E. K. O’Shea, “Global analysis of protein localization
in budding yeast,” Nature, vol. 425, no. 6959, pp. 686–691, 2003.

[15] B. A. Cipra, “An introduction to the ising model,” vol. 94, pp. 937–959,
1987.

[16] N. Cressie and J. L. Davidson, “Image analysis with partially ordered
markov models,” Computational Statistics and Data Analysis, vol. 29,
no. 1, pp. 1–26, 1998.

[17] T. Ridler and S. Calvard, “Picture thresholding using an iterative
selection method,” IEEE transactions on Systems, Man and Cybernetics,
vol. 8, pp. 630–632, 1978.

