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Abstract

We introduce the Generalized2 Linear2 Model, a statistical estima-
tor which combines features of nonlinear regression and factor anal-
ysis. A (GL)2M approximately decomposes a rectangular matrix
X into a simpler representation f(g(A)h(B)). Here A and B are
low-rank matrices, while f , g, and h are link functions. (GL)2Ms
include many useful models as special cases, including principal
components analysis, exponential-family PCA, the infomax formu-
lation of independent components analysis, linear regression, and
generalized linear models. They also include new and interesting
special cases, one of which we describe below. We also present an
iterative procedure which optimizes the parameters of a (GL)2M.
This procedure reduces to well-known algorithms for some of the
special cases listed above; for other special cases, it is new.

1 Introduction

Let the m×n matrix X contain an independent sample from some unknown distri-
bution. Each column of X represents a training example, and each row represents a
measured feature of the examples. It is often reasonable to assume that some of the
features are redundant, that is, that there exists a reduced set of l features which
contains all or most of the information in X.

If the reduced features are linear functions of the original features and the distri-
butions of the elements of X are Gaussian, redundancy means we can write X as
the product of two smaller matrices U and V with small sum of squared errors.
This factorization is essentially a singular value decomposition: U must span the
first l dimensions of the left principal subspace of X, while V T must span the first
l dimensions of the right principal subspace. (Since the above requirements do not
uniquely determine U and V , the SVD traditionally imposes additional restrictions
which we will ignore in this paper.)

The SVD has a long list of successes in machine learning, including information
retrieval applications such as latent semantic analysis [1] and link analysis [2]; pat-
tern recognition applications such as “eigenfaces” [3]; structure from motion al-
gorithms [4]; and data compression tools [5]. Unfortunately, the SVD makes two
assumptions which can limit its accuracy as a learning tool.

The first assumption is the use of the sum of squared errors between X and UV as
a loss function. Squared error loss means that predicting 1000 when the answer is
1010 is as bad as saying -7 when the answer is 3. The second assumption is that



the reduced features are linear functions of the original features. Instead, X might
be a nonlinear function of UV , and U and V might be nonlinear functions of some
other matrices A and B. To address these shortcomings, we propose the model

X̄ = f(g(A)h(B)) (1)

for the expected value of X. We also propose allowing non-quadratic loss functions
for the error (X − X̄) and the parameter matrices A and B. The fixed functions

f : R
m×n 7→ R

m×n g : R
m×l 7→ R

m×l h : R
l×n 7→ R

l×n

are called link functions. By analogy to generalized linear models [6], we call equa-
tion (1) a Generalized2 Linear2 Model: generalized2 because it uses link functions
for the parameters A and B as well as the prediction X̄, and linear2 because like
the SVD it is bilinear.

As long as we choose link and loss functions that match each other (see below for the
definition of matching link and loss), there will exist efficient algorithms for finding
A and B given X, f , g, and h. Because (1) is a generalization of the SVD, (GL)2Ms
are drop-in replacements for SVDs in all of the applications mentioned above, with
better reconstruction performance when the SVD’s error model is inaccurate. In
addition, they open up new applications (see section 7 for one) where an SVD would
have been unable to provide a sufficiently accurate reconstruction.

2 Matching link and loss functions

Whenever we try to optimize the predictions of a nonlinear model, we need to worry
about getting stuck in local minima. One example of this problem is when we try
to fit a single sigmoid unit with parameters θ ∈ R

d to training inputs xi ∈ R
d and

target outputs yi ∈ R under squared error loss:

L =
∑

i(yi − ŷi)
2 ŷi = logit(zi) zi = xi · θ logit(z) = (1 + e−z)−1

Even for small training sets, the number of local minima of L can grow exponentially
with the dimension d [7]. On the other hand, if we optimize the same predictions
ŷi under the logarithmic loss function

∑

i[yi log ŷi + (1− yi) log(1 − ŷi)] instead of
squared error, our optimization problem is convex. Because the logistic link works
with the log loss to produce a convex optimization problem, we say they match each
other [7]. Matching link-loss pairs are important because minimizing a convex loss
function is usually far easier than minimizing a nonconvex one.

We can use any convex function F (z) to generate a matching pair of link and loss
functions. The loss function which corresponds to F is

DF (z | y) ≡
∑

i[F (zi)− yizi + F ∗(yi)] (2)

where F ∗(y) is defined so that minz DF (z | y) = 0. (F ∗ is the convex dual of F [8],
and DF is the generalized Bregman divergence from z to y [9].)

Expression (2) is nonnegative, and it is globally convex in all of the zis (and therefore
also in θ since each zi is a linear function of θ). If we write f for the gradient of F ,
the derivative of (2) with respect to zi is f(zi)− yi. So, (2) will be zero if and only
if yi = f(zi) for all i; in other words, using the loss (2) implies that ŷi = f(zi) is
our best prediction of yi, and f is therefore our matching link function.

We will need two facts about convex duals below. The first is that F ∗ is always
convex, and the second is that the gradient of F ∗ is equal to f−1. (Also, convex
duality is defined even when F , G, and H aren’t differentiable. If they are not,
replace derivatives by subgradients below.)



3 Loss functions for (GL)2Ms

In (GL)2Ms, matching loss functions will be particularly important because we need
to deal with three separate nonlinear link functions. We will usually not be able
to avoid local minima entirely; instead, the overall loss function will be convex in
some groups of parameters if we hold the remaining parameters fixed.

We will specify a (GL)2M by picking three link functions and their matching loss
functions. We can then combine these individual loss functions into an overall loss
function as described in section 4; fitting a (GL)2M will then reduce to minimizing
the overall loss function with respect to our parameters. Each choice of links results
in a different (GL)2M and therefore potentially a different decomposition of X.

The choice of link functions is where we should inject our domain knowledge about
what sort of noise there is in X and what parameter matrices A and B are a priori
most likely. Useful link functions include f(x) = x (corresponding to squared error
and Gaussian noise), f(x) = log x (unnormalized KL-divergence and Poisson noise),
and f(x) = (1 + e−x)−1 (log-loss and Bernoulli noise).

The loss functions themselves are only necessary for the analysis; all of our algo-
rithms need only the link functions and (in some cases) their derivatives. So, we
can pick the loss functions and differentiate to get the matching link functions; or,
we can pick the link functions directly and not worry about the corresponding loss
functions. In order for our analysis to apply, the link functions must be derivatives
of some (possibly unknown) convex functions.

Our loss functions are DF , DG, and DH where

F : R
m×n 7→ R G : R

m×l 7→ R H : R
l×n 7→ R

are convex functions. We will abuse notation and call F , G, and H loss functions as
well: F is the prediction loss, and its derivative f is the prediction link; it provides
our model of the noise in X. G and H are the parameter losses, and their derivatives
g and h are the parameter links; they tell us which values of A and B are a priori
most likely. By convention, since F takes an m × n matrix argument, we will say
that the input and output to f are also m× n matrices (similarly for g and h).

4 The model and its fixed point equations

We will define a (GL)2M by specifying an overall loss function which relates the
parameter matrices A and B to the data matrix X. If we write U = g(A) and
V = h(B), the (GL)2M loss function is

L(U, V ) = F (UV )−X ◦ UV + G∗(U) + H∗(V ) (3)

Here A ◦B is the “matrix dot product,” often written tr(ATB).

Expression (3) is a sum of three Bregman divergences, ignoring terms which don’t
depend on U and V : it is DF (UV | X)+DG(0 | U)+DH(0 | V ). The F -divergence
tends to pull UV towards X, while the G- and H-divergences favor small U and V .

To further justify (3), we can examine what happens when we compute its deriva-
tives with respect to U and V and set them to 0. The result is a set of fixed-point
equations that the optimal parameter settings must satisfy:

UT(X − f(UV )) = B (4)

(X − f(UV ))V T = A (5)



To understand these equations, we can consider two special cases. First, if we let
G∗ go to zero (so there is no pressure to keep U and V small), (4) becomes

UT(X − f(UV )) = 0 (6)

which tells us that each column of the error matrix must be orthogonal to each
column of U . Second, if we set the prediction link to be f(UV ) = UV , (6) becomes

UTUV = UTX

which tells us that for a given U , we must choose V so that UV reconstructs X
with the smallest possible sum of squared errors.

5 Algorithms for fitting (GL)2Ms

We could solve equations (4–5) with any of several different algorithms. For exam-
ple, we could use gradient descent on either U, V or A,B. Or, we could use the
generalized gradient descent [9] update rule (with learning rate α):

A←α (X − f(UV ))V T B ←α UT(X − f(UV ))

The advantage of these algorithms is that they are simple to implement and don’t
require additional assumptions on F , G, and H. They can even work when F , G,
and H are nondifferentiable by using subgradients.

In this paper, though, we will focus on a different algorithm. Our algorithm is based
on Newton’s method, and it reduces to well-known algorithms for several special
cases of (GL)2Ms. Of course, since the end goal is solving (4–5), this algorithm will
not always be the method of choice; instead, any given implementation of a (GL)2M
should use the simplest algorithm that works.

For our Newton algorithm we will need to place some restrictions on the prediction
and parameter loss functions. (These restrictions are only necessary for the Newton
algorithm; more general loss functions still give valid (GL)2Ms, but require different
algorithms.) First, we will require (4–5) to be differentiable. Second, we will restrict

F (Z) =
∑

ij

Fij(Zij) G(A) =
∑

i

Gi(Ai·) H(B) =
∑

j

Hj(B·j)

These definitions fix most of the second derivatives of L(U, V ) to be zero, simplifying
and speeding up computation. Write fij , gi, and hj for the respective derivatives.

With these restrictions, we can linearize (4) and (5) around our current guess at
the parameters, then solve the resulting equations to find updated parameters. To
simplify notation, we can think of (4) as j separate equations, one for each column
of V . Linearizing with respect to V·j gives:

(UTDjU + Hj)(V
new

·j − V·j) = UT(X·j − f·j(UV·j))−B·j

where the l× l matrix Hj is the Hessian of H∗

j at V·j , or equivalently the inverse of
the Hessian of Hj at B·j ; and the m ×m diagonal matrix Dj contains the second
derivatives of F with respect to the jth column of its argument. That is,

Hj =
(

d

dV
·j

)2

H∗

j (V·j) = [h′

j(B·j)]
−1 Dj = diag(f ′

·j(UV·j))

Now, collecting terms involving V new
·j yields:

(UTDjU + Hj)V
new

·j = UTDj(UV·j + D−1

j (X·j − f·j(UV·j))) + HjV·j −B·j (7)



We can recognize (7) as a weighted least squares problem with weights
√

Dj , prior

precision Hj , prior mean V·j + H−1

j B·j , and target outputs

UV·j + D−1

j (X·j − f(UV·j))

Similarly, we can linearize with respect to rows of U to find the equation

Unew

i· (V DiV
T + Gi) = ((Xi· − fi·(Ui·V ))D−1

i + Ui·V )DiV
T + Ui·Gi −Ai· (8)

where Gi is the Hessian of G∗

i and Di contains the second derivatives of F with
respect to the ith row of its argument.

We can solve one copy of (7) simultaneously for each column of V , then replace V
by V new. Next we can solve one copy of (8) simultaneously for each row of U , then
replace U by Unew. Alternating between these two updates will tend to reduce (3).1

6 Related models

There are many important special cases of (GL)2Ms. We derive two in this section;
others include principal components analysis, “sensible” PCA, linear regression,
generalized linear models, and the weighted majority algorithm. (Our Newton al-
gorithm turns into power iteration for PCA and iteratively-reweighted least squares
for GLMs.) (GL)2Ms are related to generalized bilinear models; the latter include
some of the above special cases, but not ICA, weighted majority, or the example of
section 7. There are natural generalizations of (GL)2Ms to multilinear interactions.
Finally, some models such as non-negative matrix factorization [10] and general-
ized low-rank approximation [11] are cousins of (GL)2Ms: they use a loss function
which is convex in either factor with the other fixed but which is not a Bregman
divergence.

6.1 Independent components analysis

In ICA, we assume that there is a hidden matrix V (the same size as X) of inde-
pendent random variables, and that X was generated from V by applying a square
matrix U . We seek to recover the mixing matrix U and the sources V ; in other
words, we want to decompose X = UV so that the elements of V are as nearly
independent as possible.

The infomax algorithm for ICA assumes that the elements of V follow distributions
with heavy tails (i.e., high kurtosis). This assumption helps us find independent
components because the sum of two heavy-tailed random variables tends to have
lighter tails, so we can search for U by trying to make the elements of V follow a
heavy-tailed distribution.

In our notation, the fixed point of the infomax algorithm for ICA is

−UT = tanh(V )XT (9)

(see, e.g., equation (11) or (13) of [12]). To reproduce (9), we will let the prediction
link f be the identity, and we will let the duals of the parameter loss functions be

G∗(U) = −ε log det U

H∗(V ) = ε
∑

ij

log cosh vij

1To guarantee convergence, we can check that (3) decreases and reduce our step size if
we encounter problems. (Since U

T
DjU , Hj , V DiV

T, and Gi are all positive definite, the
Newton update directions are descent directions; so, there always exists a small enough
step size.) We have not found this check necessary in practice.



where ε is a small positive real number. Then equations (4) and (5) become

UT(X − UV ) = ε tanh(V ) (10)

(X − UV )V T = −εU−T (11)

since the derivative of log cosh v is tanh v and the derivative of log det U is U−T.

Right-multiplying (10) by (UV )T and substituting in (11) yields

−UT = tanh(V )(UV )T (12)

Now since UV → X as ε→ 0, (12) is equivalent to (9) in the limit of vanishing ε.

6.2 Exponential family PCA

To duplicate exponential family PCA [13], we can set the prediction link f arbi-
trarily and let the parameter links g and h be large multiples of the identity. Our
Newton algorithm is applicable under the assumptions of [13], and (7) becomes

UTDjUV new

·j = UTDj(UV·j + D−1

j (X·j − f·j(UV·j))) (13)

Equation (13) along with the corresponding modification of (8) should provide a
much faster algorithm than the one proposed in [13], which updates only part of U
or V at a time and keeps updating the same part until convergence before moving
on to the next one.

7 Example: robot belief states

Figure 1 shows a map of a corridor in the CMU CS building. A robot navigating
in this corridor can sense both side walls and compute an accurate estimate of its
lateral position. Unless it is near an observable feature such the lab door near the
middle of the corridor, however, it can’t accurately resolve its position along the
corridor and it can’t tell whether it is pointing left or right.

In order to plan to achieve a goal in this environment, the robot must maintain
a belief state (a probability distribution representing its best information about
the unobserved state variables). The map shows the robot’s starting belief state:
it is at one end of the corridor facing in, but it doesn’t know which end. We
collected a training set of 400 belief states by driving the robot along the corridor and
feeding its sensor readings to a belief tracker [14]. To simulate a larger environment
with greater uncertainty, we artificially reduced sensor range and increased error.
Figure 1 shows two of the collected beliefs.

Planning is difficult because belief states are high-dimensional: even in this simple
world there are 550 states (275 positions at 10cm intervals along the corridor × 2
orientations), so a belief is a vector in R

550. Fortunately, the robot never encounters
most belief states. This regularity can make planning tractable: if we can identify
a few features which extract the important information from belief states, we can
plan in low-dimensional feature space instead of high-dimensional belief space.

We factored the matrix of belief states using feature space ranks l = 3, 4, 5. For the
prediction link f(Z) we used exp(Z) (componentwise); this link ensures that the
predicted beliefs are positive, and treats errors in small probabilities as proportion-
ally more important than errors in large ones. (The matching loss for f is a Poisson
log-likelihood or unnormalized KL-divergence.) For the parameter link h we used
1012I, corresponding to H∗ = 10−12‖V ‖2/2 (a weak bias towards small V ).
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Figure 1: Belief states. Left panel: overhead map of corridor with initial belief b1;
belief state b80 (just before robot finds out which direction it’s pointing); belief b90

(just after finding out). Right panel: reconstruction of b80 with 3, 4, and 5 features.

We set G∗ = 10−12‖U‖2/2+∆(U), where ∆ is 0 when the first column of U contains
all 1s and ∞ otherwise. This loss function fixes the first column of U , representing
our knowledge that one feature should be a normalizing constant so that each belief
sums to 1. The subgradient of G∗ is 10−12U + [k, 0], so equation (5) becomes

(X − exp(UV ))V T = 10−12U + [k, 0]

Here [k, 0] is a matrix with an arbitrary first column and all other elements 0; this
matrix has enough degrees of freedom to compensate for the constraints on U .

Our Newton algorithm handles this modified fixed point equation without difficulty.
So, this (GL)2M is a principled and efficient way to decompose a matrix of prob-
ability distributions. So far as we know this model and algorithm have not been
described in the literature.

Figure 1 shows our reconstructions of a representative belief state using l = 3, 4, 5
features (one of which is a normalizing constant that can be discarded for planning).
The l = 5 reconstruction is consistently good across all 400 beliefs, while the l = 4
reconstruction has minor artifacts for some beliefs. A small number of restarts is
required to achieve good decompositions for l = 3 where the optimization problem
is most constrained. For comparison, a traditional SVD requires a matrix of rank
about 25 to achieve the same mean-squared reconstruction error as our rank-3
decomposition. It requires rank about 85 to match our rank-5 decomposition.

Examination of the learned U matrix (not shown) for l = 4 reveals that the cor-
ridor is mapped into two smooth curves in feature space, one for each orientation.
Corresponding states with opposite orientations are mapped into similar feature
vectors for one half of the corridor (where the training beliefs were sometimes con-
fused about orientation) but not the other (where there were no training beliefs
that indicated any connection between orientations). Reconstruction artifacts occur
when a curve nearly self-intersects and causes confusion between states. This self-
intersection happens because of local minima in the loss function; with more flexi-
bility (l = 5) the optimizer is able to untangle the curves and avoid self-intersection.

Our success in compressing the belief state translates directly into success in plan-
ning; see [15] for details. By comparison, traditional SVD on either the beliefs or
the log beliefs produces feature sets which are unusable for planning because they
do not achieve sufficiently good reconstruction with few enough features.



8 Discussion

We have introduced a new general class of nonlinear regression and factor analysis
model, presenting a derivation and algorithm, reductions to previously-known spe-
cial cases, and a practical example. The model is a drop-in replacement for PCA,
but can provide much better reconstruction performance in cases where the PCA
error model is inaccurate. Future research includes online algorithms for parameter
adjustment; extensions for missing data; and exploration of new link functions.
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