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Abstract

Shoham et al. [1] identify several important agendas which can help direct
research in multi-agent learning. We propose two additional agendas—
called “modelling” and “design”—which cover the problems we need to
consider before our agents can start learning. We then consider research
goals for modelling, design, and learning, and identify the problem of find-
ing learning algorithms that guarantee convergence to Pareto-dominant
equilibria against a wide range of opponents. Finally, we conclude with
an example: starting from an informally-specified multi-agent learning
problem, we illustrate how one might formalize and solve it by stepping
through the tasks of modelling, design, and learning. This report is an ex-
tended version of a paper which will appear in a special issue of Artificial
Intelligence Journal [2]; in addition to the topics covered in that paper,
this report contains several appendices providing extra details on various
algorithms, definitions, and examples.
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1 Introduction

Shoham et al. [1] propose several agendas for research into multi-agent learning,
which we briefly summarize: the computational agenda is to design algorithms
which iteratively compute properties of games such as their Nash equilibria. The
descriptive agenda is to determine how natural agents such as humans make
decisions, and predict what those decisions will be. The normative agenda is to
determine which learning algorithms are in equilibrium with which other learn-
ing algorithms, and under what circumstances. And, the prescriptive agenda
is to design learning algorithms which allow agents to achieve high reward in
practice. Shoham et al. split the prescriptive agenda into cooperative and
non-cooperative flavors, depending on whether the underlying environment
gives all agents identical rewards.

To these five agendas, we propose adding two more:

Modelling Determine how best to use the formal tools of multi-agent learning
to describe real environments in which we wish to act. What aspects of
the environment are safe to ignore or simplify? When can we fall back on
simpler tools such as probabilistic inference, convex optimization, or com-
binatorial optimization to describe parts of the decision-making problem
without losing the essential properties of the multi-agent interaction?

Design Often we have some flexibility in setting up the problem to solve. For
example, we might be able to give some of the agents the ability to send
messages to other agents, or to enter into some kinds of binding contracts.
How can we best use this flexibility to optimize criteria such as ease of
learning, uniqueness of the final learned policies, or predicted welfare of
one or more of the agents?

Modelling and design are connected to all of Shoham et al.’s agendas. For
example, if we want to predict the behavior of a human playing a game, it
will help if our formal model of the environment is similar to whatever internal
model the human uses. In this paper, though, we will focus on the connection
to the prescriptive agendas: to build a practical multi-agent system, we must
model the world accurately and design away unnecessary complexity.

While there are few AI papers which specifically discuss modelling or design,
any research which uses multi-agent learning tools to solve a real problem must
address both questions at least implicitly. For example, these problems are
covered to varying degrees in research on poker [3, 4], robotic hide and seek
and laser tag [5,6], distributed planning [7], RoboCup [8,9], the Trading Agent
Competition [10–12], and economic modelling [13].

In the remainder of this article, we will start by fleshing out the modelling
and design agendas in more detail. Then we will consider possible goals for
research into modelling, design, and learning. Finally, we will conclude with
an example: we will start from an informal specification of a learning problem
and illustrate the steps one might use to arrive at a detailed description of a
multi-agent learning system.
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2 Modelling and Design

When writing software to help real agents decide how to act, we often have a
fair amount of flexibility in how to model the problem: we can decide which
parts of the problem, and at what granularity, to treat as possible sources of
interesting interactions among agents. For example, suppose we are designing a
team of robots to play Capture the Flag. We could discretize the physical state
space finely and represent the whole problem as one large partially-observable
stochastic game. In such a game, a player’s observations might be raw laser
rangefinder readings, and its actions might be to apply specified torques to its
motors for specified amounts of time. Alternately, we could define high-level
abstract behaviors like “patrol” or “chase,” and have the players reason about
their actions only at the level of behaviors and behavior parameters. In principle,
the most accurate description of the environment is the finely-discretized low-
level model. But, it is nearly impossible to work with such a detailed model
using today’s computers and algorithms; so, it is likely that a team based on
the higher-level model would perform better in practice.

Unfortunately, there are few general techniques for partitioning the world
into “decisions for which we really should pay attention to the other agents”
and “decisions where it doesn’t matter so much if we pretend the other agents
don’t exist.” (And in fact the distinction is not even so black and white as this:
there are decisions for which we will want to reason about a simplified model
of another player, rather than a full model or no model.) So, we identify as an
agenda the problem of modelling: the discovery of engineering principles which
allow us to determine when it is safe to simplify or abstract away properties of
the world or capabilities of other agents.

In addition to the flexibility we have in modelling, in real environments we
can often influence the rules of the game. For example, in the Capture the Flag
example from above, we could equip the robots with wireless ethernet cards and
let them send messages to one another during the game, or we could accomplish
a similar purpose with signal lights or noisemakers. We could also tell the
players useful information ahead of time, such as tie-breaking rules or dispute
resolution procedures. Even if we are building only a single robot which will
play in pick-up games with unknown teammates, we can try to design signals
that our teammates will be able to learn to understand and take advantage of.
So, we identify the agenda of design: deciding how best to set up the playing
field so that agents will be able to learn to interact with one another in desired
ways, or to encourage agents to adopt some behaviors and avoid others.

3 Research goals

As mentioned above, we are particularly interested in modelling and design as
they relate to the prescriptive agendas. So, by doing a good job of modelling
and design, we hope to make it easier for our agents to learn to achieve high
rewards.
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Unfortunately, the current state of the art for testing whether we have done
a good job is to hand our model to some learning agents and see how much
reward they can earn. This sort of test isn’t a good way to draw general con-
clusions: if the agents do poorly, we might have made bad modelling and design
decisions, or we might just have used bad learning algorithms. And even if one
configuration of learning algorithms does well, we can’t say whether its success
would generalize to another configuration.

In order to generalize better, we need to rely on performance properties of
classes of learning algorithms rather than of individual algorithms. For example,
a no-regret learner always achieves at least its safety value in a repeated game.
So, if we are able to ensure that all agents’ safety values are high, we can say
that our model works well for any set of no-regret learners. (And in fact we will
use no-regret learners for this reason in the example of Section 4 below.)

Unfortunately, the performance guarantees for common classes of learning
algorithms are too weak to make this approach work well in many cases. So,
we believe that an important research goal—which will advance at least the
modelling, design, and prescriptive agendas—is to identify learning algorithms
that have stronger performance guarantees against larger classes of opponents.

In particular, we believe that the most useful guarantee is one that is not very
widely used: convergence to a Pareto-dominant (or nearly Pareto-dominant)
subgame-perfect Nash equilibrium. We believe that this guarantee deserves fur-
ther research, both because it intuitively corresponds to what we might expect
from a learning algorithm and because it allows us to make specific predictions
about the outcome of learning.

3.1 Performance guarantees

Various researchers have designed learning algorithms with different types of
performance guarantees. For example, Shoham et al. describe rational learning,
originally defined by Kalai and Lehrer [14]. When two rational learners play each
other, if their priors are mutually absolutely continuous (a strong assumption),
they are guaranteed to converge to a Nash equilibrium.

For another example, Shoham et al. describe no-regret algorithms for re-
peated matrix games. These algorithms bound how much they will wish they
had played a constant action ai when looking back on past plays. This regret
bound implies, among other things, that no-regret learners achieve nearly their
safety value in a repeated game no matter what strategy their opponent follows.

For a final example, no-internal-regret algorithms [15] place guarantees on
how much they will want to substitute action ai for action aj when looking
back on the history of past plays. No-internal-regret learners have all the same
guarantees that plain no-regret learners have; in addition, a set of no-internal-
regret learners will always converge to the play frequencies and payoffs of some
correlated equilibrium in a repeated game.

Unfortunately, these and other similar guarantees are too weak for our pur-
poses. To see why, consider the game illustrated in Figure 1, called repeated
Battle of the Sexes or RBoS . RBoS is a repeated matrix game that models the
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Figure 1: Illustration of feasible values, safety values, equilibria, Pareto domi-
nance, and the Folk Theorem for RBoS.

problem facing two people who go out to an event every weekend, either the
opera (O) or football (F ). One person prefers opera, the other prefers football,
but they both prefer to go together: the one-step reward function is

O F
O 3, 4 0, 0
F 0, 0 4, 3

Player p wants to maximize her expected total discounted future value Vp; we
discount rewards t steps in the future by γt = 0.99t. Figure 1 displays the
expected value vector (E(V1), E(V2)) for a variety of situations.

The shaded triangle in Figure 1, blue where color is available, is the set
of feasible expected-value vectors. Each of the points in this triangle is the
expected-value vector of some joint policy (not necessarily an equilibrium).

The single-round Battle of the Sexes game has three Nash equilibria. Re-
peatedly playing any one of these equilibria yields an equilibrium of RBoS, and
the resulting expected-value vectors are marked with circles in Figure 1. Some
learning algorithms guarantee convergence of average payoffs to one of these
points in self-play. For example, one such algorithm is gradient descent in the
space of an agent’s mixed strategies, since RBoS is a 2× 2 repeated game [16].

Other algorithms, such as the no-regret learners mentioned above, guarantee
that they will achieve at least the safety value of the game. The safety values
for the two players are shown as horizontal and vertical thin dashed lines. So,
two such algorithms playing against each other will arrive at a value vector
somewhere inside the dashed pentagon (cyan where color is available).

The Folk Theorem tells us that RBoS has a Nash equilibrium for every point
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inside this pentagon—that is, for every feasible and individually rational value
vector.1 So, algorithms which guarantee convergence to a Nash equilibrium of
the overall game will also end up inside the pentagon. For example, two rational
learners with mutually-absolutely-continuous priors yield this guarantee.

Finally, some combinations of algorithms, such as two no-internal-regret
learners playing against one another, guarantee that they will converge to the
per-step payoffs of a correlated equilibrium of the one-step game. In Battle of
the Sexes, there is a correlated equilibrium for each point in the dashed pentagon
in Figure 1.

In RBoS, every one of the above guarantees leads to the same conclusion:
each player is guaranteed a total expected discounted payoff not much worse
than her safety value of 166.67. And, it might be the case that no player gets
much more than 166.67.

We claim that the values (166.67, 166.67) cannot reasonably be called a suc-
cessful outcome of learning: to achieve this level of payoff, the players can only
wind up at the same event slightly less than half of the time, worse than if they
picked which event to go to uniformly at random. Instead, a truly successful
outcome would be something like the following: the players always go to an
event together, alternating which event every weekend. This outcome is much
better both in terms of social welfare (the sum of expected values, 700 for the
turn-taking solution vs. 333.33 for the safety values) and individual expected
value for each agent ((350.25, 349.75) vs. (166.67, 166.67), if the first player gets
her preferred event on the first weekend).

3.2 Pareto dominance

We will say that an equilibrium, A, Pareto dominates another equilibrium, B,
if all players achieve at least as high a value in A as they do in B, and if at least
one player does strictly better in A. The Pareto frontier is the set of equilibria
which are not Pareto dominated. The frontier for RBoS is the upper right edge
of the dashed pentagon in Figure 1, marked in red where color is available.

If we can guarantee convergence to a point on or near the Pareto frontier,
we can usually say much more about the agents’ payoffs than we could with the
weaker guarantees mentioned above. For example, in RBoS, every equilibrium
on the Pareto frontier gives each agent a total discounted payoff of at least 300,
almost twice as much as the guarantee from the safety values.

More importantly, the Pareto frontier captures an important part of our
intuition about what it means to learn successfully: at a Pareto-dominant point,
there are no “missed opportunities” which would allow one agent to achieve a
higher payoff without hurting the others. Different points on the frontier might
be better or worse for an agent, but we can explain these differences as results of
the agent’s skill or lack of skill at negotiation, rather than as failures of learning.

1In fact, it guarantees something stronger: every feasible and strictly individually rational
value vector corresponds to a subgame perfect Nash equilibrium. In such an equilibrium all
threats are credible: no agent wishes to deviate from her stated policy, even at states which
can only be reached after a deviation.
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For example, if the football lover negotiates well, the players might choose (F, F )
often; but if they regularly chose (F,O) or (O,F ) we would say that they hadn’t
learned very well.

There are a few examples in the literature of algorithms that guarantee they
will reach a Pareto-dominant equilibrium if all agents use them. For example,
Powers and Shoham’s Metastrategy [17] guarantees that it will reach a point
on the Pareto frontier in self-play in a repeated game, as does the modified
no regret learning algorithm described in the Appendix. (See also [18].) Both
of the above algorithms depend on the assumption that the environment is a
repeated matrix game; there is no easy way to extend them to more general
environments such as stochastic games.

For another example, Brafman and Tennenholtz [19] define an “efficient
learning equilibrium,” in which each agent specifies a learning algorithm before
seeing the game, and no agent would benefit very much by switching learning
algorithms after finding out the other players’ choices.2 They show the exis-
tence of a “Pareto ELE” for repeated matrix games: that is, they give an ELE
in which the players always choose a nearly Pareto-dominant equilibrium. And,
they extend the Pareto ELE result to stochastic games. However, their Pareto
ELE can require the agents to make side payments to one another, which is
not practical in some environments (and which makes the problem of agreeing
on a Pareto-dominant equilibrium much easier). And, their equilibrium is not
subgame perfect, which suggests that rational agents might be motivated to
deviate from it.

Finally, Murray and Gordon [20] describe a family of algorithms that guaran-
tee that they will reach nearly Pareto-dominant equilibria in stochastic games.
These algorithms do not need side payments, but they do need “cheap talk,”
i.e., non-binding communication among agents. The resulting equilibria are
subgame perfect, but in order to achieve subgame perfection the algorithms as-
sume that suitable punishment policies are provided as input (although a newer,
unpublished version of the algorithm relaxes this requirement).

3.3 Possible refinements

While the algorithms of Section 3.2 achieve better guarantees than many other
multi-agent learners, these guarantees are still weaker in some ways than we
might like. First, their bargaining style is inflexible: they essentially make a
single take-it-or-leave-it offer at the beginning of the game and then try to stick
to it until the other player capitulates. They achieve equilibrium in self-play
simply because all players are designed to make the same offer. We would
rather see a learning algorithm which can accept ideas from other players in
a back-and-forth negotiation (while still, of course, avoiding Pareto-dominated

2Brafman and Tennenholtz consider a setting in which not only the behaviors of the other
agents but also the payoffs of the underlying game are initially unknown and must be learned.
However, this setting is equivalent to the one considered here: we can augment the game with
an extra player, “Nature,” whose initially-unknown but fixed strategy determines the payoffs
of the other agents.
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outcomes).
Second, the Pareto frontier can be a big place. In a joint strategy on the

Pareto frontier, some agents might only receive their safety values. So, from
an individual agent’s perspective, the guarantee of Pareto dominance doesn’t
always translate into a better lower bound on reward than do other guarantees
such as no regret. (By contrast, from a team’s perspective, the Pareto dom-
inance guarantee is better than other bounds: unless the set of equilibria is
trivial, the social welfare of an outcome on the Pareto frontier is always better
than the sum of the players’ safety values.)

Finally, the algorithms of Section 3.2 only guarantee Pareto dominance when
playing against themselves or other very similar learning algorithms. Since we
don’t necessarily control the learning algorithms used by the other players, it
would be much better if we could find algorithms that needed only weak condi-
tions on the other players to guarantee a Pareto-dominant outcome. Unfortu-
nately it is not clear what sorts of assumptions about the other players would
allow us to prove this stronger sort of guarantee.

4 An example

To illustrate the problems which arise in design and modelling, in this section we
will work out an extended example of a multi-agent learning problem and discuss
the tradeoffs that result from various design and modelling decisions. We will
demonstrate techniques for modularization, factorization, and simplification,
including:

• Engineering what the agents know about one another, to minimize the
effect of partial observability while leaving communication and planning
problems manageable;

• Designing markets and negotiation systems to help resolve disputes; and

• Taking advantage of no-regret techniques to provide better guarantees for
the learning and planning components of an agent.

And, we will recommend different ways the agents can learn about one another.
Our example is one of supply chain management. A manufacturer has built

its factory next to a set of warehouses run by its suppliers. The manufacturer
can build several different types of products in its factory; each of these prod-
ucts is built from different parts and requires different machinery. Some of the
machinery is permanently installed in the factory, while other machinery re-
quires setup time and cost to bring online, and may incur teardown time and
cost when no longer needed.

To save money, the manufacturer has no long-term storage space at its fac-
tory. Instead, it depends on the suppliers to deliver parts directly to its assembly
lines as they are needed. To facilitate this just-in-time delivery, the manufac-
turer is willing to provide information about its operations to the suppliers.
The exact nature of this information is a question of design: we should provide
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enough information to allow the suppliers to choose good plans, but not so much
as to be unwieldy or to violate the manufacturer’s privacy.

To move parts around the complex, each supplier operates a fleet of robotic
trucks. These trucks drive back and forth among the warehouses and assembly
lines, picking up parts and delivering them. Each supplier owns several ware-
houses which stock various parts at various costs, and each part may be stocked
at several warehouses. Suppliers may or may not be willing to sell parts to their
competitors. The part prices may fluctuate over time, but the suppliers always
know the current prices.

In this domain, learning is crucial: there are many equilibria with widely
varying payoffs, so if the agents don’t learn to cooperate with one another they
may lose lots of money. For example, depending on how we set up the problem,
there can be an equilibrium which leaves the factory and all the trucks idle.

4.1 Assumptions about the Manufacturer

If we were to try to model this problem exactly, its description would be very
large: for example, the problem state would include the locations and contents
of all of the trucks, the manufacturer’s projected demand from its customers, the
setup of the manufacturer’s machinery, and the state of each partially assembled
product in the factory. Worse, most players would not know every bit of this
information, and so would have to worry about making forecasts and guessing
what the other players’ forecasts are.

Instead, we will make a series of modelling assumptions and design decisions
to simplify the problem while retaining its essential features. If we make these
decisions well, the problem will become much easier to solve. While we don’t
claim that our choices here are perfect, they illustrate one approach to making
planning and learning tractable.

Our first assumption is that the manufacturer is not demand-limited: it can
sell as many of its products as it can build, at prices which are enough higher
than the cost of materials to cover the players’ operating costs. This assumption
means, first, that the manufacturer doesn’t just want to shut down the factory,
and second, that the manufacturer’s demand forecasts are no longer important
hidden state.

Our second assumption is that the process of manufacturing each product
can be described by a graph like the one shown in Figure 2. To build this
product, the manufacturer must start with part A. It can then continue by
adding either B or C. Once both B and C are in place, it can attach parts
D and E in that order. Each of the parts is relatively bulky and expensive,
and takes some time to install. So, the manufacturer does not want to take
delivery of a part unless it is ready to use it; for the product of Figure 2, the
manufacturer would not buy part D unless it had a partial assembly containing
A, B, and C already.
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Figure 2: Left: a directed acyclic graph describing one of the manufacturer’s
products. Right: a simplified problem instance, with only two suppliers, each
supplier’s warehouses laid out along a line, only one part type per warehouse,
capacity for only one part in each truck, and only one product under construc-
tion at the factory. The product currently has parts A, B, and C installed, and
the first supplier is about to deliver D.

4.2 A parts market

We are now in a position to make some design decisions about how the manu-
facturer interacts with the suppliers. The goal of these decisions is to break the
overall planning problem into separate, tractable pieces.

Our first design decision is to treat each robotic truck as a separate agent,
whose goal is to make profit for its owner. We will charge a truck when it
picks up a part from a warehouse, and credit it when it delivers the part to the
manufacturer (or returns the part to a warehouse, should it decide it needs to
switch cargoes). We will give each truck the ability to communicate with all the
other trucks in a common language, so that they can coordinate their deliveries.

Treating every truck as a separate agent risks the possibility that two trucks
belonging to the same manufacturer will unknowingly sabotage one another.
This sort of destructive interaction might happen either because the trucks
failed to learn well (which we hope to avoid by using smart learning algorithms)
or because one truck might achieve an advantage for itself by hurting another
truck (which we hope to avoid by designing our market well).

Our next design decision is how to let the manufacturer communicate with
the suppliers so that it can buy the parts it needs. Our goal here is to design a
market that avoids the planning inefficiencies that can happen when the agents
lack necessary information about one another.

In order to design this market, we will make an additional modelling as-
sumption. If the prices that the warehouses pay for parts and the prices that
the manufacturer receives for finished products were constant, the agents could
follow an open-loop plan for all time. If instead these prices change slowly, there
will be an open-loop plan which the agents will be happy to follow for many
steps into the future. So, we will assume that prices change slowly enough that
the agents don’t lose much welfare by committing to an open-loop plan fairly
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far into the future. (The agents can always, by mutual consent, edit the plan
if prices do change enough to make it worthwhile.) Then, we will say that the
manufacturer and suppliers negotiate by jointly specifying an open-loop plan.

The agents can specify an open-loop plan by describing a delivery schedule
for each truck along with the prices that the manufacturer will pay for each
delivery. (We’ll assume the manufacturer’s price must at least cover the part’s
cost, to avoid various sorts of shady dealings.) The full plan contains much
more detail than this, but from the schedule and prices each agent can plan
independently and fill in how it needs to act: the manufacturer can optimize its
assembly operations, and each truck can optimize its delivery route.

4.3 Negotiation

With the above design decisions, we have greatly simplified the agents’ planning
problems. For a fixed schedule and prices, the agents are completely decoupled:
the manufacturer can optimize its assembly schedule using something similar
to a job-shop scheduler, and the trucks can optimize their delivery routes using
something similar to a travelling-salesman planner.

We can also greatly simplify the agents’ learning problems: we will design
our market so that, instead of needing to predict the other agents’ behavior in
every possible state of the world, an agent only needs to predict which schedules
and price lists the other agents will agree to. In particular, we will design an
alternating offers bargaining game of the sort proposed by Rubinstein [21].

In our game, the players will take turns proposing agreements, with each
agreement comprising a schedule and a price list. After hearing a proposal, each
player can compute a plan to achieve the proposed schedule, and decide whether
she wants to accept or reject the proposal. If any player rejects the proposal,
that player proposes another agreement, and the process repeats. If the players
continue to reject each others’ proposals, our rules will tell them to give up at
some point and follow a predefined default plan called the disagreement point ;
as designers, we can pick this plan arbitrarily and tell the players what it is.

By specifying the details appropriately (see the Appendix or the similar
algorithm in [20]), we can guarantee that the unique equilibrium of this game
is the Nash bargaining point, a point on the Pareto frontier which Nash [22]
suggested as a reasonable outcome of this sort of bargaining game. But even for
boundedly rational players, there is never an incentive to insist on an agreement
that’s not on the Pareto frontier: while a computation-limited agent might not
be able to come up with a proposal on the Pareto frontier, it can at least
recognize when one proposal Pareto dominates another.

Another nice feature of our game for agents with limited computation is
that it is comparatively easy for an agent to propose a delivery schedule that
it can comply with. So, a limited agent can run its planner for however long it
can afford, and make proposals based on the best schedule it finds. It can even
incorporate ideas from schedules previously proposed by other agents. Further-
more, learning can whittle down the set of schedules that each agent needs to
consider: for example, if one agent’s cost to supply part A is much higher than
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another’s, that agent should be able to learn that it doesn’t need to consider
schedules where it supplies many copies of part A.

4.4 Optimization

To conclude our example, we will consider one last possible opportunity for
learning. As mentioned above, a fixed schedule and price list allow the agents
to plan independently and arbitrarily far into the future. But in reality, the
agents may realize at some point that they want to change their plans: some
part prices may go up or down, or some agent may discover a delivery schedule
that leaves everyone better off.

We have assumed that the agents are free to renegotiate in such a circum-
stance. But, if this sort of renegotiation happens frequently, the agents may
regret planning under the assumption of a fixed schedule: for example, a truck
might be willing to pay a little bit more in order to avoid risks such as carrying
expensive parts for long intervals or driving to inconvenient locations.

To learn which sorts of plans are likely to work well even in the face of
changing goals and costs, we can represent an agent’s planning problem as an
online convex program. For example, a simplified version of a truck’s planning
problem is a repeated travelling salesman problem with unknown edge costs: for
each delivery the truck leaves the manufacturer, picks up parts from some pre-
determined set of warehouses, and returns to drop them off at the manufacturer.
(A more fully detailed version of the planning problem, including uncertainty
about the next delivery deadline, uncertainty about the cost for each part at
each warehouse, and flexibility about where to pick up parts, is described in the
Appendix.)

If we represent a tour with one indicator variable ei for each edge i ∈ E,
then we can write X ⊆ {0, 1}|E| for the finite set of feasible tours. If c ∈ R|E| is
the (unknown) vector of edge costs, then the cost of a tour x ∈ X is c · x. And,
if we pick a tour at random from some distribution P (x), the expected cost of
our tour is EP (c · x) = c · EP (x) = c · x̄, where x̄ ∈ convX is the mean of the
distribution P .

Since we don’t know c ahead of time, we can try to learn a good distribution
P (x) by observing samples of c: we plan and execute a tour, observe how much it
actually would have cost to traverse each edge on this round, and then plan our
next tour. Since the only property of P (x) that matters is its mean x̄ ∈ convX ,
and since our payoffs are linear in x̄, choosing the best x̄ is an online convex
program. (Randomization serves two purposes here: first, it assigns a meaning
to interior points of convX , and second (and more importantly), it allows us
to avoid oscillations caused by feedback among multiple learners whose actions
influence each others’ costs.)

To solve this OCP, we can use any of a number of algorithms, such as
Generalized Gradient Descent [23], GIGA [24], Lagrangian Hedging [25], or
Follow the Predicted Leader [26]. In this case FPL is particularly convenient
and simple to describe: we keep track of the sum of all past cost vectors cT =
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∑T−1
t=1 ct, and on iteration T we choose

x̄T = arg min
x∈X̄

(cT + εT ) · x (1)

where εT is a random vector from an appropriate distribution. Finding the
arg min in Equation 1 is an ordinary travelling salesman problem with known
costs; we can solve this problem using any of the many search algorithms that
have been proposed for TSPs.

By learning which tour to take using a no-regret algorithm, we have guar-
anteed that our tours will cost not much more than if we had known the true
average edge costs ahead of time and chosen the best fixed tour. This guaran-
tee means that we can feel safe allowing the agents to renegotiate their plans
frequently: individual agents will learn what sorts of plans are risky, and act as
if those plans are more costly when negotiating.

5 Discussion

We proposed the agendas of “modelling” and “design” to complement the five
agendas identified by Shoham et al. [1]. We then identified a research goal which
could advance the modelling, design, and prescriptive agendas: find learning
algorithms that converge to a Pareto-dominant subgame-perfect equilibrium
against a wide range of opponents. Finally, we illustrated our ideas through an
extended example. This example demonstrated several ways to achieve near-
Pareto-dominance with current algorithms: first, we factored our model so that
the agents can conduct the most important part of their negotiations up front
and with negligible uncertainty. Second, we set up our negotiation problem so
that an agent’s best response to any reasonable opposing strategy is always on
the Pareto frontier. And finally, we handled residual uncertainty using no-regret
learning.
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Appendix

This appendix contains additional definitions and details which could not be
included in the published version of the article [2] due to space concerns.

A Algorithms that achieve Pareto dominance

An algorithm of Powers and Shoham, called MetaStrategy [17], guarantees that
it will reach a point on the Pareto frontier in self-play in a repeated game.
It also guarantees to learn a near-best response against a stationary opponent,
and never to do much worse than its safety value against an arbitrary opponent.
MetaStrategy, as one might expect from its name, achieves its guarantees by
selecting from several base strategies: first it attempts to “teach” the other
player to play a particular joint strategy on the Pareto frontier by repeatedly
playing its part of that strategy. If the other player doesn’t seem to be learning
after a while, it tries to play either a best response to what it has seen so far,
or a safe strategy which limits its loss.

A similar idea, developed independently and somewhat later [18], is to use
the extra degrees of freedom provided by some no-regret algorithms to try to
teach the other player a favorable strategy. The advantage of this approach is
that it results in an algorithm with an extremely simple proof of correctness.

To demonstrate this approach we can use a common no-regret algorithm
called external regret matching [27]. ERM works as follows: if there are d
actions, initialize the vector S ∈ Rd arbitrarily. On each turn, play an action
according to the distribution

P (a) =
max(Sa, 0)∑
a′ max(Sa′ , 0)

(2)

Then, if we select action a and the other player selects b, update

Sa′ ← Sa′ + R(a′, b)−R(a, b)

for each action a′. If Sa ≤ 0 for all a, the denominator in Equation 2 is zero,
and ERM is free to play arbitrarily.

It is traditional to initialize S to 0 in ERM. But, if we initialize S so that its
components are all negative, ERM can choose its initial plays arbitrarily. The
penalty for this nontraditional initialization is only a delay in the time at which
ERM is guaranteed to fall below a given per-play regret target.

For example, in RBoS, suppose we initialize Sa to −40 for all a and always
play O when we have a choice. We will play O for at least the first 10 rounds,
since each Sa can increase by at most 4 per round. If in this interval the other
player learns to play O all the time, the players will continue playing (O,O)
forever; if not, the algorithm will eventually start to randomize its plays to
avoid suffering high regret.

This algorithm, call it “delayed ERM,” achieves guarantees similar to Meta-
Strategy: in self-play it will always reach a joint action on the Pareto frontier
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(namely (O,O)); against a stationary opponent its play frequency will converge
to a best response; and against an arbitrary opponent it will never do much
worse than its safety value. (The first statement is obvious, while the second
two are known properties of no-regret algorithms.)

More generally, while no regret algorithms clearly do not solve the whole
problem of multi-agent learning, we believe that they are an excellent building
block for more complex algorithms. Known techniques to measure and control
regret, such as those based on potential functions [28], seem sufficiently flexible
that we believe they can be combined with other, as yet unknown techniques
to achieve tighter guarantees. In this way, an algorithm could provide a “safety
net” to keep a player’s loss from going much below her safety value, and at the
same time attempt to reach a more favorable outcome if the other players are
willing to cooperate.

B Rubinstein’s Game and the Nash Bargaining
Point

In a famous paper, Nash [22] studied an idealized bargaining problem. This
problem, illustrated in Figure 3, is defined by a compact convex set of fea-
sible utility vectors S ⊂ R2 and a disagreement point d = (d1, d2) ∈ S. S
represents the possible agreements that the players could make: an agreement
u = (u1, u2) ∈ S means that player 1 gets utility u1 and player 2 gets utility u2.
If the players fail to come to an agreement, then player 1 gets d1 and player 2
gets d2.

For example, one way that such a bargaining problem might arise is from
an underlying matrix game. If we let S contain all convex combinations of
expected-value vectors for equilibria of the game, then the bargaining problem
is to select a distribution over equilibria for the players to implement. In this
case d is usually thought of as representing the status quo, the way that players
“customarily” play this game or have “typically” played it in the past. (This
information might not be available, in which case it can be difficult to justify
any one choice of d over another. This difficulty can be a significant problem
for practical application of the Nash bargaining model.)

Nash was interested in the outcome of this bargaining problem; he wanted
to predict which agreement will be selected by rational bargainers. To this end
he suggested a set of four axioms that the outcome u∗ = (u∗1, u

∗
2) should satisfy:

Optimality The outcome should be efficient. That is, u∗ should be on the
Pareto frontier.

Scale invariance Scaling and shifting S and d should scale and shift u∗ pro-
portionally. That is, for a1, a2 > 0 and b1, b2 ∈ R, if we define

Sscaled = { (a1u1 + b1, a2u2 + b2) | (u1, u2) ∈ S }
dscaled = (a1d1 + b1, a2d2 + b2)
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Figure 3: The Nash bargaining problem. Players must agree on a payoff vector
in S. If they fail to agree their payoffs are given by the disagreement point d,
in this case the origin. The Pareto frontier of S is marked in red where color is
available.

then u∗scaled = (a1u
∗
1 + b1, a2u

∗
2 + b2) should be the outcome of the bar-

gaining problem (Sscaled, dscaled). (Since the players aren’t allowed to make
side payments to one another in this bargaining model, their utilities are
only defined up to an arbitrary shift and positive scaling. So, it would
be unnatural for this sort of transformation to change the outcome of
bargaining.)

Symmetry If S and d are symmetric about the line u1 = u2, then u∗1 = u∗2.

Independence of irrelevant alternatives If S′ ⊂ S but d ∈ S′ and u∗ ∈ S′,
then u∗ is the outcome for the problem (S′, d) as well. This last axiom is
the most controversial of the set, and many researchers have investigated
alternatives for it.

These four axioms are enough to identify a unique outcome u∗ for each (S, d)
pair: it is the point which maximizes the product of the amounts of utility that
the players gain by cooperating,

u∗ = arg max
u∈S

(u1 − d1)(u2 − d2)

Nash did not model the process of negotiation by which the players might
agree on a bargaining solution. To address this question, Rubinstein [21] con-
sidered a slightly simpler situation: suppose two players want to divide a slice of
pie. If they can agree on a division x, y (with x, y ≥ 0 and x + y ≤ 1) then they
can implement it, while if they cannot agree, neither player gets any pie. Player
p’s utility for receiving a fraction x is Up(x). Up is assumed to be nonnegative,
concave, and increasing, with Up(0) = 0.

The shaded set in Figure 4 shows, for one instance of this game, the utility
vectors corresponding to feasible divisions of the pie. That is, it shows the set
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Figure 4: Equilibria of a Rubinstein game with γ = 0.8. Shaded area shows
feasible value vectors (U1(x), U2(y)) where x, y is a feasible division of the pie.
Circles show equilibria: right-hand circle corresponds to equilibrium when player
1 moves first, left-hand circle to equilibrium when player 2 moves first. Nash
bargaining point is indicated by 3. To find the equilibria geometrically, draw
two similar rectangles which touch each other as shown, with a size ratio of
γ : (1− γ), and with the outer rectangle’s corners on the Pareto frontier.

S of vectors (U1(x), U2(y)) for x, y ≥ 0 and x + y ≤ 1. The Pareto-dominant
outcomes (the upper-right surface of the feasible set, shown in red where color
is available) are the divisions which leave no pie on the table: x + y = 1. The
disagreement point is d = (0, 0): no pie for anyone.

Rubinstein defined an alternating offers bargaining game for dividing the
pie. In this game, the first player offers a division x, y to the second; the second
player either accepts the division, or refuses and offers her own division x, y. The
process repeats until some player accepts an offer or until either player gives up.
Rubinstein considered several models for how players’ utilities decrease with
time; perhaps the most interesting is when p’s utility for fraction x at time t is

Up(x, t) = γtUp(x)

for a discount factor 0 ≤ γ < 1.
Rubinstein showed that, with this utility function, rational players will im-

mediately agree on a division near the Nash bargaining point. That is, there
is a unique subgame-perfect Nash equilibrium of the Rubinstein game; in this
equilibrium, the first player immediately proposes a division near the Nash bar-
gaining point and the second player accepts. How near depends on the discount
factor γ: as γ ↑ 1, the equilibrium will approach the Nash point more and more
closely. See Figure 4 for an illustration.

For three or more players, we can extend the definition of the Nash bargain-
ing point in an obvious way by maximizing the product of all players’ excess
utilities. It is not as obvious how to extend the Rubinstein game: how should
the players take turns making offers, what format should these offers take, and
what if some players want to accept an offer while other players do not? But,
it turns out that there is an extension of the Rubinstein game which preserves
most of its properties.

19



In the multi-player Rubinstein game [20, 29], agents take turns proposing
multi-way divisions of the pie: for example, Alice might propose that she and
Bob each get 40% of the pie, while Charles gets 20%. After each proposal,
all agents other than the proposer decide independently whether to accept or
reject. If all agents accept, the proposal is implemented. Otherwise, any agents
who accepted have their shares fixed at the proposed level and are removed from
further play; the next remaining agent then proposes a division of the remaining
pie. In the above example, if Bob accepts Alice’s proposal but Charles does not,
then Bob gets 40% of the pie, and Charles proposes a division of the remaining
60% between himself and Alice. As in the two-player game, there is a unique
subgame-perfect equilibrium which approaches the Nash point as γ ↑ 1.

Dividing a pie is a special case of Nash’s bargaining problem, since the shape
of S is restricted: it is always feasible to give a player her disagreement value
no matter what we give the other players. We will call sets like this downward
closed. That is, S is downward closed with respect to d if, for all u and u′ with
d ≤ u′ ≤ u, u ∈ S ⇒ u′ ∈ S.

The two-player version of Rubinstein’s game works for arbitrary S, but the
multi-player version only works if S is downward closed: without this property,
if we assign a share of the pie to one player, we might guarantee another player
more than her disagreement value. That guarantee would give the second player
extra leverage, allowing her to demand a larger share of the pie. We will say
more below about how to ensure that S is downward closed.

C Tools

In this section we will describe and comment on a number of the tools that are
available to help with the problems of modelling and design.

Abstractions In the behavior-based system mentioned in Section 2, a domain
expert decides on some useful policy fragments and implements them by hand.
In addition to such hand-implemented abstractions, there are many domains
where researchers have picked out subproblems that can be solved automatically
with non-learning optimization methods, or with learning methods that are not
safe for multiple agents. Useful methods include combinatorial optimization
(e.g., facility location), tree or graph search (e.g., path planning), and linear
and convex optimization (e.g., regression and support vector machines).

Cheap talk We can allow the players to send each other non-binding messages
during the game. This ability is called “cheap talk,” to distinguish it from
binding contracts. It is usual to assume that cheap talk happens between rounds
of action selection, without delaying the underlying game; the players have no
trouble understanding one another; and they do not have to pay to send or
receive a message. We can use cheap talk for a number of purposes. For example,
it can add useful equilibria to a game with incomplete information [30], and it
can aid in simulating a moderator (see below).
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Moderator To implement a correlated equilibrium, the players need to select
joint actions from a known distribution and reveal to each player only her part
of the joint actions. This joint randomization can be difficult for the players to
achieve by themselves: there may be no communication between players, and
even if there is, there may be no one player who can be trusted to randomize
honestly. So, we can often give the players additional capability by adding a
trusted moderator who can observe the game and send messages to each player.

The moderator is an important enough construct that researchers have in-
vestigated in some detail how to build one. If there are at least four players,
Barany [31] shows how to simulate a moderator. Dodis et al. [32] demonstrate
how to simulate a moderator using only two communicating players, but only if
some cryptographic hardness assumptions hold. And Izmalkov et al. [33] sug-
gest a way that players can use physical devices like nested envelopes and a
“ballot box” (which randomizes the order of a set of envelopes) to simulate a
moderator. All of these constructions may require modifying the game in some
way, by adding cheap talk or extra players or by providing envelopes and ballot
boxes.

Binding contracts A binding contract is a way for a player to agree to have
her own utility lowered under certain circumstances. By entering into such
contracts, players can rule out undesireable outcomes.

Transferable utility If we provide a common currency, then one player can
pay another to take a favorable course of action. If the players can be trusted
to make promised payments (for example, because of a trusted outside party
who holds the money, or because a player who fails to pay can later be punished
within the rules of the game), then transferable utility simplifies bargaining: for
a set of feasible utility vectors S, let usw ∈ S be a point which maximizes social
welfare. That is, let

usw = arg max
u∈S

1 · u

where 1 = (1, 1, . . . , 1)T. Similarly, let usw ∈ S be a point which minimizes
social welfare. Adding transferable utility effectively replaces S with the set

{u | usw · 1 ≤ u · 1 ≤ usw · 1}

So, the Pareto frontier becomes a plane with normal 1 which passes through usw,
and the Nash bargaining point will be d + k1 for some k. Bargaining therefore
reduces to picking a course of action that maximizes social utility and deciding
how to split the excess utility among players; the Nash point splits excess utility
evenly.

Transferable utility can simplify planning as well: the players all want to
maximize social welfare in order to make the pot of money they divide as large
as possible. To do so, they can use a cooperative planning algorithm instead of
worrying about incentives. (Or at least, they can do so if the domain is simple
enough that cooperative planning is possible.)
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Markets If we can create markets where agents can buy and sell constrained
resources, the agents may be able to achieve a higher social welfare. Traditional
resources include coal, pork bellies, or electricity; less traditional resources might
include the right to pass over a congested bridge at a specified time, or the right
to require another agent to come to a specified place and help with a specified
task within a specified interval.

Altering payoffs Perhaps we can, via some choice during the setup of the
game, affect the costs of some courses of action. Doing so can change the
available equilibria. For example, by altering payoffs we can provide:

Punishments We can let one player unilaterally reduce another player’s util-
ity by some defined amount; or, we can let a group of players acting together
do so. We can even let players punish themselves, if we can guarantee that
they are motivated to do so. This ability can provide a valuable enforcement
tool: players can take actions which might otherwise let a cheater take advan-
tage of them, secure in the knowledge that the cheater will be scared of future
punishment.

D Example

In this section we provide additional details about the issues that arise in our
extended example, as well as more information about how we might address
them.

D.1 Consequences of assigning one agent per truck

We decided above to assign a separate agent to each truck, rather than one
per supplier. This decision could hurt us in two ways: first, some asymmetry of
the problem might give one truck bargaining leverage over the other, forcing the
outcome of bargaining away from the solution which maximizes the sum of their
payoffs. Second, making the trucks independent might rule out some desireable
equilibria: for example, one truck might have an incentive to underbid another
truck from the same supplier.

The first possibility (asymmetry) is unlikely to be much of a problem in our
example: the only asymmetry between trucks from the same supplier is their
current state (position and cargo), which should change rapidly enough that
any bargaining advantages are fleeting. The second problem (bad incentives) is
examined in more detail in the following sections.

D.2 Examining Incentives

Once we have fixed the prices and the delivery schedule, we need to worry
whether any agent has an incentive to deviate. A supplier can deviate by failing
to deliver a promised part (perhaps because this particular delivery doesn’t
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yield enough profit) or by delivering a part when it’s not supposed to (say,
in an attempt to undercut another supplier). The manufacturer can deviate
by refusing to pay the promised price for some delivery, or by giving an extra
payment to some supplier.

To test whether there is an incentive to deviate, we must specify punishments
for each deviation and show that every punishment deters its crime. We will say
that the manufacturer punishes a deviating supplier by refusing to deal with it
in the future. Similarly, the suppliers as a group can punish the manufacturer
by refusing to deal with it.

These punishments are expensive for their recipients: even if there are out-
side buyers it can deal with, an ostracized supplier will not be able to sell very
many parts, and will still need to pay fixed costs on its trucks and warehouses.
Similarly, the manufacturer will not be able to build products nearly as quickly
if it has to ship in parts from far-away alternate suppliers, and must also pay
fixed costs on its factory and equipment. So, we will assume that the expected
discounted value for an agent which is being punished is large and negative.

On the other hand, we have assumed that good delivery schedules result in
enough production to cover everyone’s fixed costs. So, any such schedule (com-
bined with appropriate prices) will correspond to a Nash equilibrium: agents
will not want to deviate, since the large cost of a punishment will more than
offset the short-term gain.

D.3 Subgame Perfection

We have shown that a good delivery schedule yields a Nash equilibrium. We
want something stronger than a Nash equilibrium, though: if our punishments
aren’t credible, they will not deter agents from deviating. Normally we would
rule out incredible threats by showing that our equilibrium is subgame perfect,
that is, that the punishment policies are themselves equilibria (perhaps contain-
ing their own punishments which are also equilibria, and so forth). However,
subgame perfection is not very satisfying here: in each punishment policy, no
transactions are supposed to take place among some subset of the agents. To
improve the payoffs, we would need deviations by two agents, a buyer and a
seller. So, no single deviation is worthwhile, and we get subgame perfection for
free.

With a couple of additional assumptions, we can prove a more satisfying re-
sult: any single deviating transaction (composed of simultaneous deviations by
a buyer and a seller) will strictly lower the payoff to at least one of the deviating
parties. To make this statement precise, we need to specify punishments within
the punishment policies. We will say that, within the punish-manufacturer pol-
icy, if supplier i sells to the manufacturer, the other agents will all switch to the
punish-supplier-i policy. Similarly, within punish-supplier-i, if the manufacturer
deviates and buys from i, the suppliers will all switch to the punish-manufacturer
policy; and if supplier j deviates, everyone will switch to punish-supplier-j. In
other words, the punishments form a state machine: once anyone deviates, ev-
eryone always punishes someone who participated in the most recent deviation.
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Now the manufacturer knows that dealing with an ostracized supplier will
result in an inability to buy parts in the future. So, as long as the manufacturer
can still run its factory without the ostracized supplier, the punish-manufacturer
policy will be a strict deterrent. Therefore, we will assume that no crucial part
has just a single feasible supplier.

To rule out deviations from the punish-manufacturer policy, we will assume
that the punish-supplier-i policy yields significantly lower payoff for supplier i
than punish-manufacturer does (perhaps because it reduces opportunities for i
to sell to outside manufacturers as well). Then no supplier will want to break
the embargo: it will gain by selling one part, but it will condemn itself to
being ostracized thereafter. (For concreteness, we will split a supplier’s fixed
costs and its revenues from outside sales evenly among its trucks. So, no single
truck from supplier i will want to sell a part and condemn itself to suffer the
punish-supplier-i policy thereafter.)

With these assumptions, we have guaranteed that any desireable delivery
schedule can be supported in an equilibrium, and that all threats used to sus-
tain this equilibrium are credible. This guarantee justifies our decision to use
the schedule and prices to specify an agreement among the agents. It also jus-
tifies our decision to treat each truck as a separate agent: since any sufficiently
profitable schedule corresponds to an equilibrium, we haven’t lost any useful
equilibria by doing so.

D.4 Bargaining

As suggested in Section 4.3, we imagine enumerating every possible delivery and
payment schedule. (This set is infinite, but we can approximate it arbitrarily
well with finite representations.) We then pick some easily-implemented joint
strategy—say, the punish-manufacturer strategy from above—as a disagreement
point.

Having done so, our market becomes a Nash bargaining problem like the one
in Figure 3. For a given proposed agreement, we can calculate the resulting total
discounted payoff to every agent (once all of the agents fill in the details with
their separate planners). The feasible set S is the set of these payoff vectors,
while the disagreement point d is the payoff vector for punish-manufacturer.
Given the bargaining problem (S, d), we can set up a negotiation system like the
multi-player Rubinstein game to encourage the players to agree on a mutually
beneficial schedule; the details of this game are presented in Section D.5.

There are couple of questions we need to answer before proceeding, though.
First, we need to say why the agents should pick one disagreement point over
another: if the agents can’t agree on the effect of disagreement, the Nash bar-
gaining problem is undefined. We will answer this question by saying that, as
designers, we can inform the agents what the disagreement strategy is. Such a
statement is self-fulfilling: because of it, each agent will expect that the others
will follow the prescribed disagreement strategy if negotiations break down, and
so it will follow the prescribed strategy as well.

Second, we need to deal with the possibility that the set S is not downward
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sched ← ∅
repeat

done ← true
for each agent i

choose(i)
i says “pass”
i adds a schedule or fragment to sched; done ← false

end choose
end for
With probability ε, done ← true

until done

Figure 5: Phase I of the negotiation protocol.

closed; as noted in Section B, the multi-player Rubinstein game only makes sense
for downward-closed utility sets. To get around this difficulty, we will again
exercise our license as designers and give each agent the ability to voluntarily
punish itself. In such a punishment, the agent gives up any desired amount of
utility without affecting any other agent. This modification ensures that S is
downward closed. (Self-punishment was put to a similar use in [20].)

We would not expect self-punishment to be needed in practice, since any
strategy that includes it is Pareto-dominated. However, the mere possibility of
self-punishment lets us implement the multi-player Rubinstein game. At the
end of negotiation, if agent i has not accepted any proposal, the final plan can
let i earn more than her disagreement value but require her to give up all or
almost all of the excess. (This requirement is enforced by the threat that the
other agents will switch to the punish-i policy.) The possibility of getting only
her disagreement value is what motivates i to accept reasonable offers during
negotiation.

D.5 Market protocol

Above, we left unspecified the exact protocol for making and accepting offers
of delivery and payment schedules. In this section we suggest a more detailed
protocol based on the one described in [20]. This protocol is intended to make
it easier to analyze how agents should negotiate with one another: after the first
phase of the protocol, even computation-limited agents can describe all of the
possible equilibria.

Our protocol proceeds in two phases. In the first phase, any agent can
broadcast schedules or fragments of schedules to the others. The others can
then use these schedules or fragments as starting points for their own further
planning. In the second phase, the agents pick from the complete schedules
proposed in the first phase in a Rubinstein-like game.
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for each agent i
utility[i] ← di

accepted[i] ← false
end for
repeat

for each agent i
if accepted[i] then continue
i proposes a distribution s over complete schedules from sched
done ← true
for each agent j 6= i

if accepted[j] then continue
u ← utility of s to j
choose(j)

j says “accept”; utility[j] ← u; accepted[j] ← true
j says “reject”; done ← false

end choose
end for
if done then

utility[i] ← utility of s to i
return

end if
end for
With probability ε, done ← true

until done

Figure 6: Phase II of the negotiation protocol.
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Pseudocode for the two phases appears in Figures 5 and 6. The choose(i)
statement marks a place in the protocol where agent i gets to choose one of
several alternatives: i picks which of the lines inside the choose/end pair will
execute. The parameter ε is an arbitrary small positive number which deter-
mines whether we force a phase to end early; it should be small enough that
there is little risk of the protocol ending before the agents want it to, but large
enough that the agents feel pressure to arrive at an agreement rather than
stalling forever. At the end of Phase I, the set sched contains the schedules
which the agents will bargain over in Phase II. At the end of Phase II, the
utility[i] array contains the agreed utilities for each agent. We can choose any
schedule or distribution over schedules which attains these utilities, so long as
we tell the agents ahead of time how to break ties. In general we may need to
use self-punishment to achieve the desired utilities.

Just like the multi-player Rubinstein game, Phase II has a unique subgame-
perfect equilibrium, near the Nash bargaining point of the set of utilities of the
complete schedules that are in sched at the end of Phase I. Finding the Nash
point is a convex optimization problem, and can therefore be solved efficiently;3

so, even computation-limited agents can figure out how they should play in
Phase II.

Because of the unique, easy-to-compute equilibrium in Phase II, we can
give a coarse description of how the agents should play in Phase I: they should
nominate schedules that give themselves high payoffs, to try to steer the outcome
in their favor; but, they will also want to nominate schedules that give high
payoffs to other agents, because such schedules are more likely to eventually be
incorporated into the plan accepted by the group as a whole.

D.6 Optimization

As noted above, our design decisions have given each agent a number of smaller
planning problems which it must solve repeatedly. For example, the manufac-
turer must decide how to set up its factory and how to use each part as it is
delivered. The trucks must plan tours of the warehouses, with each tour span-
ning the interval from one dropoff at the factory to the next. And, within each
tour, a truck must repeatedly plan a path from one warehouse to the next. (For
even more examples of similar planning problems, see the descriptions of the
players from recent Trading Agent Competitions [11].)

Also as noted above, there may be uncertainty in the problem data for these
planning problems. For example, there may be traffic congestion on the path
from one warehouse to another, the price of a part may change between the
time a truck starts its tour and the time it reaches the warehouse, or the agents
may agree on a change to the delivery schedule which forces changes in their
individual plans.

3It is easy to see that the feasible region is convex, since it is the convex hull of the utility
vectors specified in Phase I. The objective is to maximize the product of excess utilities; while
this product is not generally a convex function, it is equivalent to maximize the sum of the
logs of the excess utilities, which is convex.
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Figure 7: An instance of one of the planning problems which a truck needs to
solve. The truck starts at the shop, and must deliver parts b and e by visiting
a subset of the warehouses and returning to the shop. For ease of display, this
instance has perfectly-known parameters.

In principle the agents could look for opportunities for cooperation arising
from such variation: for example, a truck could agree to change its route slightly
in order to reduce the amount of congestion on a road which some other truck
needs. Our factorization of the problem means that we have given up on trying
to find such opportunities for cooperation. We are willing to do so because we
believe such opportunities do not greatly affect the overall payoff.4

Even though we have given up on cooperation in these areas, we don’t want
to ignore the behavior of the other agents altogether: if we assume that we
know the problem data for each optimization exactly, we risk making plans
which are brittle to changes in the data. This brittleness could result in poor
overall performance.

To illustrate this problem, in this section we will describe a more detailed
version of the planning problem facing an individual truck. The less detailed
version, described in Section 4.4, is a travelling salesman problem with uncertain
costs.

Our planning problem is illustrated in Figure 7. Starting at the factory,
the truck must drive to some of the warehouses, pick up a specified set of
parts, and return to the factory to deliver them before a specified deadline. A
plan is therefore a tour connecting the shop with a subset of the warehouses,
augmented with labels for each visited warehouse saying which parts the truck
will buy there. For example, to buy parts b and e with deadline t = 7, the
truck could take the tour BCECA, buying part b at warehouse B and part e
at warehouse E. The length of this tour is 7, so the truck arrives exactly at the
deadline; the cost is 4, since each part costs 2.

To specify an instance of this problem, we need the cost for each part at
4To expose different opportunities for cooperation, we can change our design decisions. For

example, if we think road congestion is important, we can institute a market where the trucks
can buy and sell tickets that allow them to pass through congested spots. Such a market, if
it is well designed and if the trucks can learn how to participate effectively in it, will tend to
shift the ownership of the tickets to those who can use them most profitably.
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each warehouse, the length of each edge, the list of required parts, the deadline,
and the cost for failure. All of these parameters are potentially uncertain, and
if we do not take this uncertainty into account, our plans may be brittle. In
the example given above, the tour BCECA is optimal when the parameters are
known. But if the deadline or the edge lengths are uncertain, planning to arrive
exactly at the deadline is risky. In this case the tour ACECA may be better:
while its cost for parts is 5 instead of 4 (3 for b at A and 2 for e at E), its path
length is 6 instead of 7, so it has a better chance of avoiding the failure penalty.

Above we recommended using no-regret learning algorithms to handle this
sort of uncertainty. In particular, we recommended using a no-regret online
convex programming algorithm such as follow-the-perturbed-leader [26,34].

To solve the problem using FPL (or any other online convex programming
algorithm), we can specify our tour using the variables

eij How many times do we use the edge between warehouses i and j?
pik How many copies of part k do we buy at warehouse i?

for all warehouses i and j and parts k. Our total parts cost and total runtime
are then linear functions of eij and pij :

C =
∑
ik

pikcik

T =
∑
ij

eijtij

where cik is the cost of part k at warehouse i and tij is the observed length of
edge ij.

Our loss for a given tour is a nonconvex function of C and T : if the actual
deadline is T0 and the failure penalty is F , the total loss is

L = C + F s(T − T0)

where s(·) is a unit step function. For learning purposes we will replace L by a
convex bound

L = C + F h(T − T0)

where h(·) is a convex hinge loss function which upper bounds s(·),

h(t) = max {0, 1 + t/ε}

Here ε is a target margin: h(·) will be 0 if T ≤ T0 − ε, while it will be at least 1
if T ≥ T0.

So, if we define X to be the convex hull of the set of feasible tours (where
each tour is represented using the vector of variables described above), we want
to minimize

L =
∑
ik

pikcik + F h

∑
ij

eijtij − T0


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over the feasible region (eij , pij) ∈ X.5 This is a convex problem, so we can run
FPL to find good settings for eij and pij .

There are two slight difficulties with applying FPL. First, FPL is designed
for a problem with a linear objective. To fix this problem we can replace L for
each instance with its tangent at the current value of eij and pij [23, p. 54].
That is, if we observe T ≤ T0 − ε for the current example, we replace L with∑

ik pikcik, while if we observe T ≥ T0 − ε, we replace L with∑
ik

pikcik + (F/ε)
∑
ij

eijtij − FT0/ε

Second, each iteration of FPL requires solving a linear program whose feasible
region is X. We cannot represent X explicitly, since there will generally be
exponentially many feasible tours. But, solving an LP over X is equivalent
to finding an optimal tour with known cik and tij , and we can find the best
tour using a combinatorial optimizer. (This may take exponential time in the
worst case, but there are many practically-efficient algorithms for finding good
tours in similar problems. In addition, because there are a limited number of
warehouses, the problem instances are small.)

FPL now provides the following guarantee: our average cost L for buying b
and e will not be much more than the best convex-cost L that we could have
achieved on average if we had known the uncertain parameters in advance. In
particular, if it was possible to buy b and e for an average cost C while beating
each deadline by at least ε, then our average cost will be not much more than
C per trial.

5For clarity, we emphasize that X is not an LP relaxation of the region of feasible tours;
X is the exact feasible region for an NP-complete optimization problem. Interior points of X
represent distributions over tours.
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