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Abstract. We present a unified view of matrix factorization that frames
the differences among popular methods, such as NMF, Weighted SVD,
E-PCA, MMMF, pLSI, pLSI-pHITS, Bregman co-clustering, and many
others, in terms of a small number of modeling choices. Many of these ap-
proaches can be viewed as minimizing a generalized Bregman divergence,
and we show that (i) a straightforward alternating projection algorithm
can be applied to almost any model in our unified view; (ii) the Hessian
for each projection has special structure that makes a Newton projection
feasible, even when there are equality constraints on the factors, which
allows for matrix co-clustering; and (iii) alternating projections can be
generalized to simultaneously factor a set of matrices that share dimen-
sions. These observations immediately yield new optimization algorithms
for the above factorization methods, and suggest novel generalizations of
these methods such as incorporating row and column biases, and adding
or relaxing clustering constraints.

1 Introduction

Low-rank matrix factorization is a fundamental building block of machine learn-
ing, underlying many popular regression, factor analysis, dimensionality reduc-
tion, and clustering algorithms. We shall show that the differences between many
of these algorithms can be viewed in terms of a small number of modeling choices.
In particular, our unified view places dimensionality reduction methods, such as
singular value decomposition [1], into the same framework as matrix co-clustering
algorithms like probabilistic latent semantic indexing [2]. Moreover, recently-
studied problems, such as relational learning [3] and supervised/semi-supervised
matrix factorization [4], can be viewed as the simultaneous factorization of sev-
eral matrices, where the low-rank representations share parameters. The model-
ing choices and optimization in the multiple-matrix models are very similar to
the single-matrix case.

The first contribution of this paper is descriptive: our view of matrix fac-
torization subsumes many single- and multiple-matrix models in the literature,
using only a small set of modeling choices. Our basic single-matrix factorization
model can be written X ≈ f(UV T ); choices include the prediction link f , the
definition of ≈, and the constraints we place on the factors U and V . Different
combinations of these choices also yield several new matrix factorization models.
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The second contribution of this paper is computational: we generalize the al-
ternating projections technique for matrix factorization to handle constraints on
the factors—e.g., clustering or co-clustering, or the use of margin or bias terms.
For most common choices of ≈, the loss has a special property, decomposability,
which allows for an efficient Newton update for each factor. Furthermore, many
constraints, such as non-negativity of the factors and clustering constraints, can
be distributed across decomposable losses, and are easily incorporated into the
per-factor update. This insight yields a common algorithm for most factoriza-
tion models in our framework (including both dimensionality reduction and co-
clustering models), as well as new algorithms for existing single-matrix models.

A parallel contribution [3] considers matrix factorization as a framework for
relational learning, with a focus on multiple relations (matrices) and large-scale
optimization using stochastic approximations. This paper, in contrast, focuses
on modeling choices such as constraints, regularization, bias terms, and more
elaborate link and loss functions in the single-matrix case.

2 Preliminaries

2.1 Notation

Matrices are denoted by capital letters, X , Y , Z. Elements, rows and columns
of a matrix are denoted Xij , Xi·, and X·j. Vectors are denoted by lower case
letters, and are assumed to be column vectors—e.g., the columns of factor U
are (u1, . . . , uk). Given a vector x, the corresponding diagonal matrix is diag(x).
A�B is the element-wise (Hadamard) product. A◦B is the matrix inner product
tr(AT B) =

∑
ij AijBij , which reduces to the dot product when the arguments

are vectors. The operator [A B] appends the columns of B to A, requiring that
both matrices have the same number of rows. Non-negative and strictly positive
restrictions of a set F are denoted F+ and F++. We denote matrices of natural
parameters as Θ, and a single natural parameter as θ.

2.2 Bregman Divergences

A large class of matrix factorization algorithms minimize a Bregman divergence:
e.g., singular value decomposition [1], non-negative matrix factorization [5], ex-
ponential family PCA [6]. We generalize our presentation of Bregman divergences
to include non-differentiable losses:

Definition 1. For a closed, proper, convex function F : R
m×n → R the gener-

alized Bregman divergence [7,8] between matrices Θ and X is

DF (Θ || X) = F (Θ) + F ∗(X) − X ◦ Θ

where F ∗ is the convex conjugate, F ∗(μ) = supΘ∈dom F [Θ ◦ μ − F (Θ)]. We
overload the symbol F to denote an element-wise function over matrices. If
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F : R → R is an element-wise function, and W ∈ R
m×n
+ is a constant weight

matrix, then the weighted decomposable generalized Bregman divergence is

DF (Θ || X, W ) =
∑

ij

Wij (F (Θij) + F ∗(Xij) − XijΘij) .

If F : R → R is additionally differentiable, ∇F = f , and wij = 1, the decompos-
able divergence is equivalent to the standard definition [9,10]:

DF (Θ || X, W ) =
∑

ij

F ∗(Xij) − F ∗(f(Θij)) − ∇F ∗(f(Θij))(Xij − f(Θij))

= DF ∗(X || f(Θ))

Generalized Bregman divergences are important because (i) they include many
common separable divergences, such as squared loss, F (x) = 1

2x2, and KL-
divergence, F (x) = x log2 x; (ii) there is a close relationship between Bregman
divergences and maximum likelihood estimation in regular exponential families:

Definition 2. A parametric family of distributions ψF = {pF (x|θ) : θ} is a
regular exponential family if each density has the form

log pF (x|θ) = log p0(x) + θ · x − F (θ)

where θ is the vector of natural parameters for the distribution, x is the vector
of minimal sufficient statistics, and F (θ) = log

∫
p0(x) · exp(θ · x) dx is the log-

partition function.

A distribution in ψF is uniquely identified by its natural parameters. It has been
shown that for regular exponential families

log pF (x|θ) = log p0(x) + F ∗(x) − DF ∗(x || f(θ)),

where the prediction link f(θ) = ∇F (θ) is known as the matching link for F
[11,12,6,13]. Generalized Bregman divergences assume that the link f and the
loss match, though alternating projections generalizes to non-matching links.

The relationship between matrix factorization and exponential families is
made clear by viewing the data matrix as a collection of samples {X11, . . . , Xmn}.
Let Θ = UV T be the parameters. For a decomposable regular Bregman diver-
gence, minimizing DF ∗(X || f(Θ)) is equivalent to maximizing the log-likelihood
of the data under the assumption that Xij is drawn from the distribution in ψF

with natural parameter Θij .

3 Unified View of Single-Matrix Factorization

Matrix factorization is both more principled and more flexible than is commonly
assumed. Our arguments fall into the following categories:
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Fig. 1. Two layer model of matrix factorization

Decomposability: Matrix factorization losses tend to be decomposable, ex-
pressible as the sum of losses for each element in the matrix, which has both
computational and statistical motivations. In many matrices the ordering of rows
and columns is arbitrary, permuting the rows and columns separately would not
change the distribution of the entries in the matrix. Formally, this idea is known
as row-column exchangeability [14,15]. Moreover, for such matrices, there exists a
function ϕ such that Xij = ϕ(μ, μi, μj , εij) where μ represents behaviour shared
by the entire matrix (e.g., a global mean), μi and μj per-row and per-column
effects, and εij per-entry effects. The εij terms lead naturally to decomposable
losses. The computational benefits of decomposability are discussed in Sect. 5.

Latent Independence: Matrix factorization can be viewed as maximum like-
lihood parameter estimation in a two layer graphical model, Fig. 1. If the rows
of X are exchangeable, then each training datum corresponds to x = Xi·, whose
latent representation is z = Ui·, and where Θi· = Ui·V T are the parameters of
p(x|z). Most matrix factorizations assume that the latents are marginally inde-
pendent of the observations, Fig. 1(a); an alternate style of matrix factorizations
assumes that the latents are conditionally independent given the observations,
Fig. 1(b), notably exponential family harmoniums [16].

Parameters vs. Predictions: Matrix factorizations can be framed as minimiz-
ing the loss with respect to model parameters; or minimizing the loss with respect
to reconstruction error. Since many common losses are regular Bregman diver-
gences, and there is a duality between expectation and natural parameters—
DF ∗(x || f(θ)) = DF (θ || f−1(x)), the two views are usually equivalent. This
allows one to view many plate models, such as pLSI, as matrix factorization.

Priors and Regularizers: Matrix factorizations allow for a wide variety of pri-
ors and regularizers, which can both address overfitting and the need for pooling
information across different rows and columns. Standard regression regularizers,
such as the �p norm of the factors, can be adapted. Hierarchical priors can be
used to produce a fully generative model over rows and columns, without resort-
ing to folding-in, which can easily lead to optimistic estimates of test errors [17].

Bayesian stance: The simplest distinction between the Bayesian and maxi-
mum a posteriori/maximum likelihood approaches is that the former computes
a distribution over U and V , while the latter generates a point estimate. Latent
Dirichlet allocation [18] is an example of Bayesian matrix factorization.

Collective matrix factorization assumes that the loss is decomposable and that
the latents are marginally independent. Our presentation assumes that the prior
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is simple (non-hierarchical) and estimation is done via regularized maximum
likelihood. Under these assumptions a matrix factorization can be defined by
the following choices, which are sufficient to include many popular approaches:

1. Data weights W ∈ R
m×n
+ .

2. Prediction link f : R
m×n → R

m×n.
3. Hard constraints on factors, U, V ∈ C.
4. Weighted loss between X and X̂ = f(UV T ), D(X || X̂, W ) ≥ 0.
5. Regularization penalty, R(U, V ) ≥ 0.

Given these choices the optimization for the model X ≈ f(UV T ) is

argmin
(U,V )∈C

D(X || f(UV T ), W ) + R(U, V )

Prediction links allow nonlinear relationships between Θ = UV T and the data
X . We focus on the case where D is a generalized Bregman divergences and f is
the matching link. Constraints, weights, and regularizers, along with the ensuing
optimization issues, are discussed in Sect. 5.

3.1 Models Subsumed by the Unified View

To justify our unified view we discuss a representative sample of single matrix
factorizations (Table 1) and how they can be described by their choice of loss,
link, constraints, weights, and regularization. Notice that all the losses in Table 1
are decomposable, and that many of the factorizations are closely related to lin-
ear models for independent, identically distributed (iid) data points: SVD is the
matrix analogue of linear regression; E-PCA/G2L2M are the matrix analogues
of generalized linear models; MMMF is the matrix analogue of ordinal regression
under hinge loss1 h; k-medians is the matrix analogue of quantile regression [19],
where the quantile is the median; and �1-SVD is the matrix analogue of the
LASSO [20]. The key difference between the regression/clustering algorithm and
its matrix analogue is changing the assumption from iid observations, where each
row of X is drawn from a single distribution, to row exchangeability.

Many of the models in Table 1 differ in the loss, the constraints, and the
optimization. In many cases the loss and link do not match, and the optimization
is non-convex in Θ, which is usually far harder than minimizing a similar convex
problem. We speculate that replacing the non-matching link in pLSI with its
matching link may yield an alternative that is easier to optimize.

Similarities between matrix factorizations have been noted elsewhere, such as
the equivalence of pLSI and NMF with additional constraints [21]. pLSI requires
that the matrix be parameters of a discrete distribution, 1◦X = 1. Adding an or-
thogonality constraint to �2-NMF yields a relaxed form of k-means [22]. Orthog-
onality of a column factors V T V = I along with integrality of Vij corresponds to
hard clustering the columns of X , at most one entry in Vi· can be non-zero. Even
without the integrality constraint, orthogonality plus non-negativity still implies
1 In Fast-MMMF a smoothed, differentiable version of hinge loss is used, hγ .
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a stochastic (clustering) constraint: ∀i
∑

� Vi� = 1, Vi� ≥ 0. In the k-means algo-
rithm, U acts as the cluster centroids and V as the clustering indicators, where
the rank of the decomposition and the number of clusters is k. In alternating
projections, each row update for a factor with the clustering constraint reduces
to assigning hard or soft cluster membership to each point/column of X .

A closely related characterization of matrix factorization models, which re-
lates NMF, pLSI, as well as Bayesian methods like Latent Dirichlet Allocation,
is Discrete PCA [23]. Working from a Bayesian perspective the regularizer and
divergence are replaced with a prior and likelihood. This restricts one to rep-
resenting models where the link and loss match, but affords the possibility of
Bayesian averaging where we are restricted to regularized maximum likelihood.
We speculate that a relationship exists between variational approximations to
these models and Bregman information [12], which averages a Bregman diver-
gence across the posterior distribution of predictions.

Our unified view of matrix factorization is heavily indebted to earlier work on
exponential family PCA and G2L2M. Our approach on a single matrix differs in
several ways from G2L2Ms: we consider extensions involving bias/margin terms,
data weights, and constraints on the factors, which allows us to place matrix
factorizations for dimensionality reduction and co-clustering into the same al-
ternating Newton-projections approach. Even when the loss is a regular Bregman
divergence, which corresponds to a regular exponential family, placing con-
straints on U and V , and thus on Θ, leads to models which do not correspond
to regular exponential families. For the specific case of log-loss and its match-
ing link, Logistic PCA proposes alternating projections on a lower bound of
the log-likelihood. Max-margin matrix factorization is one of the more elaborate
models: ordinal ratings {1, . . . , R}2 are modeled using R − 1 parallel separat-
ing hyperplanes, corresponding to the binary decisions Xij ≤ 1, Xij ≤ 2, Xij ≤
3, . . . , Xij ≤ R − 1. The per-row bias term Bir allows the distance between hy-
perplanes to differ for each row. Since this technique was conceived for user-item
matrices, the biases capture differences in each user. Predictions are made by
choosing the value which minimizes the loss of the R − 1 decision boundaries,
which yields a number in {1, . . . , R} instead of R.

4 Collective Matrix Factorization

A set of related matrices involves entity types E1, . . . , Et, where the elements
of each type are indexed by a row or column in at least one of the matrices.
The number of entities of type Ei is denoted ni. The matrices themselves are
denoted X(ij) where each row corresponds to an element of type Ei and each
column to an element of type Ej . If there are multiple matrices on the same
types we disambiguate them with the notation X(ij,u), u ∈ N. Each data matrix
is factored under the model X(ij) ≈ f (ij)(Θ(ij)) where Θ(ij) = U (i)(U (j))T for
low rank factors U (i) ∈ R

ni×kij . The embedding dimensions are kij ∈ N. Let k be
the largest embedding dimension. In low-rank factorization k � min(n1, . . . , nt).
2 Zeros in the matrix are considered missing values, and are assigned zero weight.
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Table 1. Single matrix factorization models. dom Xij describes the types of values
allowed in the data matrix. Unweighted matrix factorizations are denoted Wij = 1. If
constraints or regularizers are not used, the entry is marked with a em-dash.

Method dom Xij Link f(θ) Loss D(X|X̂ = f(Θ), W ) Wij

SVD [1] R θ ||W � (X − X̂)||2F ro 1
W-SVD [24,25] R θ ||W � (X − X̂)||2F ro ≥ 0
k-means [26] R θ ||W � (X − X̂)||2F ro 1
k-medians R θ

∑
ij |Wij

(
Xij − X̂ij

)
| 1

�1-SVD [27] R θ
∑

ij |Wij

(
Xij − X̂ij

)
| ≥ 0

pLSI [2] 1 ◦ X = 1 θ
∑

ij Wij

(
Xij log Xij

X̂ij

)
1

NMF [5] R+ θ
∑

ij Wij

(
Xij log Xij

Θij
+ Θij − Xij

)
1

�2-NMF [28,5] R+ θ ||W � (X − X̂)||2F ro 1
Logistic PCA [29] {0, 1} (1 + e−θ)−1 ∑

ij Wij

(
Xij log Xij

X̂ij
+

(1 − Xij) log 1−Xij

1−X̂ij

)
1

E-PCA [6] many many decomposable Bregman (DF ) 1
G2L2M [8] many many decomposable Bregman (DF ) 1
MMMF [30] {0, . . . , R} min-loss

∑R−1
r=1

∑
ij:Xij �=0 Wij ·h(Θij −Bir) 1

Fast-MMMF [31] {0, . . . , R} min-loss
∑R−1

r=1

∑
ij:Xij �=0 Wij ·hγ(Θij−Bir) 1

Method Constraints U Constraints V Regularizer R(U, V ) Algorithm(s)

SVD UT U = I V T V = Λ — Gaussian
Elimination,

Power Method
W-SVD — — — Gradient, EM
k-means — V T V = I ,

Vij ∈ {0, 1}
— EM

k-medians — V T V = I ,
Vij ∈ {0, 1}

— Alternating

�1-SVD — — — Alternating
pLSI 1T U1 = 1

Uij ≥ 0
1T V = 1
Vij ≥ 0

— EM

NMF Uij ≥ 0 Vij ≥ 0 — Multiplicative
�2-NMF Uij ≥ 0 Vij ≥ 0 — Multiplicative,

Alternating
Logistic PCA — — — EM
E-PCA — — — Alternating
G2L2M — — ||U ||2F ro + ||V ||2F ro Alternating

(Subgradient,
Newton)

MMMF — — tr(UV T ) Semidefinite
Program

Fast-MMMF — — 1
2 (||U ||2F ro + ||V ||2F ro) Conjugate

Gradient
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Collective matrix factorization addresses the problem of simultaneously fac-
toring a set of matrices that are related, where the rows or columns of one matrix
index the same type as the row or column of another matrix. An example of such
data is joint document-citation models where one matrix consists of the word
counts in each documents, and another matrix consists of hyperlinks or citations
between documents. The types are documents (E1), words (E2), and cited doc-
uments (E3), which can include documents not in the set E1. The two relations
(matrices) are denoted E1 ∼ E2 and E2 ∼ E3. If a matrix is unrelated to the
others, it can be factored independently, and so we consider the case where the
schema, the links between types {Ei}i, is fully connected. Denote the schema
E = {(i, j) : Ei ∼ Ej ∧ i < j}.

We assume that each matrix in the set {X(ij)}(i,j)∈E is reconstructed under
a weighted generalized Bregman divergence with factors {U (i)}t

i=1 and constant
data weight matrices {W (ij)}(i,j)∈E . Our approach is trivially generalizable to
any twice-differentiable and decomposable loss. The total reconstruction loss on
all the matrices is the weighted sum of the losses for each reconstruction:

Lu =
∑

(i,j)∈E

α(ij)
DF (Θ(ij) || X(ij), W (ij))

where α(ij) ≥ 0. We regularize on a per-factor basis to mitigate overfitting:

L =
∑

(i,j)∈E

α(ij)
DF (Θ(ij) || X(ij), W (ij)) +

t∑

i=1

R(U (i))

Learning consists of finding factors U (i) that minimize L.

5 Parameter Estimation

The parameter space for a collective matrix factorization is large, O(k
∑t

i=1 ni),
and L is non-convex, even in the single matrix case. One typically resorts to
techniques that converge to a local optimum, like conjugate gradient or EM. A
direct Newton step is infeasible due to the number of parameters in the Hessian.
Another approximate approach is alternating projection, or block coordinate
descent: iteratively optimize one factor U (r) at a time, fixing all the other factors.
Decomposability of the loss implies that the Hessian is block diagonal, which
allows a Newton coordinate update on U (r) to be reduced to a sequence of
independent update over the rows U

(r)
i· .

Ignoring terms that are constant with respect to the factors, the gradient of
the objective with respect to one factor, ∇rL = ∂L

∂U(r) , is

∇rL =
∑

(r,s)∈E

α(rs)
(
W (rs) �

(
f (rs)

(
Θ(rs)

)
− X(rs)

))
U (s) + ∇R(U (r)). (1)

The gradient of a collective matrix factorization is the weighted sum of the
gradients for each individual matrix reconstruction. If all the per-matrix losses,
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as well as the regularizers R(·), are decomposable, then the Hessian of L with
respect to U (r) is block-diagonal, with each block corresponding to a row of
U (r). For a single matrix the result is proven by noting that a decomposable
loss implies that the estimate of Xi· is determined entirely by Ui· and V . If V is
fixed then the Hessian is block diagonal. An analogous argument applies when
U is fixed and V is optimized. For a set of related matrices the result follows
immediately by noting that Equation 1 is a linear function (sum) of per-matrix
losses and the differential is a linear operator. Differentiating the gradient of the
loss with respect to U

(r)
i· ,

∇r,iL =
∑

(r,s)∈E

α(rs)
(
W

(rs)
i· �

(
f (rs)

(
Θ

(rs)
i·

)
− X(rs)

))
U (s) + ∇R(U (r)

i· ),

yields the Hessian for the row:

∇2
r,iL =

∑

(r,s)∈E

α(rs)
(
U (s)

)T

diag
(
W

(rs)
i· � f (rs)

(
Θ

(rs)
i·

))
U (s) + ∇2R(U (r)

i· ).

Newton’s rule yields the step direction ∇r,iL · [∇2
r,iL]−1. We suggest using the

Armijo criterion [32] to set the step length. While each projection can be com-
puted fully, we found it suffices to take a single Newton step. For the single
matrix case, with no constraints, weights, or bias terms, this approach is known
as G2L2M [8]. The Hessian is a k × k matrix, regardless of how large the data
matrix is. The cost of a gradient update for U

(r)
i· is O(k

∑
j:Ei∼Ej

nj). The cost
of Newton update for the same row is O(k3 + k2 ∑

j:Ei∼Ej
nj). If the matrix is

sparse, nj can be replaced with the number of entries with non-zero weight. The
incremental cost of a Newton update over the gradient is essentially only a factor
of k more expensive when k � min(n1, . . . , nt).

If Ej participates in more than one relationship, we allow our model to use
only a subset of the columns of U (j) for each relationship. This flexibility allows
us to have more than one relation between Ei and Ej without forcing ourselves
to predict the same value for each one. In an implementation, we would store
a list of participating column indices from each factor for each relation; but for
simplicity, we ignore this possibility in our notation.

The advantages to our alternating-Newton approach include:

– Memory Usage: A solver that optimizes over all the factors simultaneously
needs to compute residual errors to compute the gradient. Even if the data is
sparse, the residuals rarely are. In contrast, our approach requires only that
we store one row or column of a matrix in memory, plus O(k2) memory to
perform the update. This make out-of-core factorizations, where the matrix
cannot be stored in RAM, relatively easy.

– Flexibility of Representation: Alternating projections works for any link
and loss, and can be applied to any of the models in Table 13. In the fol-
lowing sections, we show that the alternating Newton step can also be used

3 For integrally constrained factors, like V in k-means, the Newton projection, a con-
tinuous optimization, is replaced by an integer optimization, such as hard clustering.
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with stochastic constraints, allowing one to handle matrix co-clustering al-
gorithms. Additionally, the form of the gradient and Hessian make it easy to
replace the per-matrix prediction link with different links for each element
of a matrix.

5.1 Relationship to Linear Models

Single-matrix factorization X ≈ f(UV T ) is a bilinear form, i.e., linear when
one of the factors is fixed. An appealing property of alternating projection for
collective matrix factorization is that the projection reduces an optimization
over matrices U (r) into an optimization over data vectors U

(r)
i· —essentially linear

models where the “features” are defined by the fixed factors. Since the projection
is a linear form, we can exploit many techniques from regression and clustering
for iid data. Below, we use this relationship to adapt optimization techniques for
�1-regularized regression to matrix factorization.

5.2 Weights

Weight Wij = 0 implies that the corresponding entry in the data matrix has no
influence on the reconstruction, which allows us to handle missing values. More-
over, weights can be used to scale terms so that the loss of each matrix reconstruc-
tion in L is a per-element loss, which prevents larger data matrices from exerting
disproportionate influence. If the Bregman divergences correspond to exponen-
tial families, then we can use log-likelihood as a common scale. Even when the
divergences are not regular, computing the average value of DF (ij)/DF (rs) , given
uniform random natural parameters, provides an adequate estimate of the rela-
tive scale of the two divergences, which can be accounted for in the weights.

5.3 Regularization

The most common regularizers used in matrix factorization are �p regulariz-
ers: R(U) ∝ λ

∑
ij |uij |p, where λ controls the strength of the regularizer, are

decomposable. In our experiments we use �2-regularization:

R(U) = λ||U ||2Fro/2, ∇R(Ui·) = Ui·/λ, ∇2R(Ui·) = diag(λ−11).

The �1-regularization constraint can be reduced to an inequality constraint on
each row of the factors: |U (r)

i· | ≤ t/λ, ∃t > 0. One can exploit a variety of
approaches for �1-regularized regression (see [33] for survey) in the projection
step. For example, using the sequential quadratic programming approach (ibid),
the step direction d is found by solving the following quadratic program: Let
x = U

(r)
i· , x+ = max(0, x), x− = − min(0, x), so x = x+ − x−:

min
d

(∇r,iLu + λ1) ◦ d +
1
2
dT · ∇2

r,iLu · d

s.t. ∀i x+
i + d+

i ≥ 0

∀i x−
i + d−i ≥ 0
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5.4 Clustering and Other Equality Constraints

Inequality constraints turn the projection into a constrained optimization; but
equality constraints can be incorporated into an unconstrained optimization,
such as our Newton projection. Equality constraints can be used to place ma-
trix co-clustering into our framework. With no constraints on the factors, each
matrix factorization can be viewed as dimensionality reduction or factor anal-
ysis: an increase in the influence of one latent variable does not require a de-
crease in the influence of other latents. In clustering the stochastic constraint,
∀i

∑
j U

(r)
ij = 1, U

(r)
ij ≥ 0, implies that entities of Ei must belong to one of

k latent clusters, and that U
(r)
i· is a distribution over cluster membership. In

matrix co-clustering stochastic constraints are placed on both factors. Since the
Newton step is based on a quadratic approximation to the objective, a null space
argument ([34] Chap. 10) can be used to show that with a stochastic constraint
the step direction d for row U

(r)
i· is the solution to

[
∇2

r,iL 1
1T 0

] [
d
ν

]

=
[ −∇r,iL
1 − 1T U

(r)
i·

]

(2)

where ν is the Lagrange multiplier for the stochastic constraint. The above tech-
nique is easily generalized to p > 1 linear constraints, yielding a k + p Hessian.

5.5 Bias Terms

Under our assumption of decomposable L we have that X
(rs)
ij ≈ f(Θ(rs)

ij ), but
matrix exchangeability suggests there may be an advantage to modeling per-row
and per-column behaviour. For example, in collaborative filtering, bias terms
can calibrate for a user’s mean rating. A straightforward way to account for
bias is to append an extra column of parameters to U paired with a constant
column in V : Ũ = [U uk+1] and Ṽ = [V 1]. We do not regularize the bias. It
is equally straightforward to allow for bias terms on both rows and columns:
Ũ = [U uk+1 1] and Ṽ = [V 1 vk+1], and so Ũ Ṽ T = (UV T ) + uk+11T + 1vT

k+1.
Note that these are biases in the space of natural parameters, a special case
being a margin in the hinge or logistic loss—e.g., the per-row (per-user, per-
rating) margins in MMMF are just row biases. The above biases maintain the
decomposability of L, but there are cases where this is not true. For example, a
version of MMMF that shares the same bias for all users for a given rating—all
the elements in uk+1 must share the same value.

5.6 Stochastic Newton

The cost of a full Hessian update for U
(r)
i· is essentially k times more expensive

than the gradient update, which is independent of the size of the data. However,
the cost of computing the gradient depends linearly on the number of observa-
tions in any row or column whose reconstruction depends on U

(r)
i· . If the data

matrices are dense, the computational concern is the cost of the gradient. We
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refer readers to a parallel contribution [3], which describes a provably convergent
stochastic approximation to the Newton step.

6 Related Work

The three-factor schema E1 ∼ E2 ∼ E3 includes supervised and semi-supervised
matrix factorization, where X(12) contains one or more types of labellings of
the rows of X(23). An example of supervised matrix factorization is SVDM [35],
where X(23) is factored under squared loss and X(12) is factored under hinge
loss. A similar model was proposed by Zhu et al. [36], using a smooth variant of
the hinge loss. Supervised matrix factorization has been recently generalized to
regular Bregman divergences [4]. Another example is supervised LSI [37], which
factors both the data and label matrices under squared loss, with an orthog-
onality constraint on the shared factors. Principal components analysis, which
factors a doubly centered matrix under squared loss, has also been extended
to the three-factor schema [38]. An extension of pLSI to two related matrices,
pLSI-pHITS, consists of two pLSI models that share latent variables [39].

While our choice of a bilinear form UV T is common, it is not the only op-
tion. Matrix co-clustering often uses a trilinear form X ≈ C1ACT

2 where C1 ∈
{0, 1}n1×k and C2 ∈ {0, 1}n2×k are cluster indicator matrices, and A ∈ R

k×k con-
tains the predicted output for each combination of clusters. This trilinear form is
used in k-partite clustering [40], an alternative to collective matrix factorization
which assumes that rows and columns are hard-clustered under a Bregman di-
vergence, minimized under alternating projections. The projection step requires
solving a clustering problem, for example, using k-means. Under squared loss, the
trilinear form can also be approximately minimized using a spectral clustering
relaxation [41]. Or, for general Bregman divergences, the trilinear form can be
minimized by alternating projections with iterative majorization for the projec-
tion [42]. A similar formulation in terms of log-likelihoods uses EM [43]. Banerjee
et al. propose a model for Bregman clustering in matrices and tensors [12,44],
which is based on Bregman information instead of divergence. While the above
approaches generalize matrix co-clustering to the collective case, they make a
clustering assumption. We show that both dimensionality reduction and clus-
tering can be placed into the same framework. Additionally, we show that the
difference in optimizing a dimensionality reduction and soft co-clustering model
is small, an equality constraint in the Newton projection.

7 Experiments

We have argued that our alternating Newton-projection algorithm is a viable ap-
proach for training a wide variety of matrix factorization models. Two questions
naturally arise: is it worthwhile to compute and invert the Hessian, or is gradient
descent sufficient for projection? And, how does alternating Newton-projection
compare to techniques currently used for specific factorization models?
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While the Newton step is more expensive than the gradient step, our exper-
iments indicate that it is definitely beneficial. To illustrate the point, we use
an example of a three-factor model: X(12) corresponds to a user-movie matrix
containing ratings, on a scale of 1–5 stars, from the Netflix competition [45].
There are n1 = 500 users and n2 = 3000 movies. Zeros in the ratings matrix
correspond to unobserved entries, and are assigned zero weight. X(23) contains
movie-genre information from IMDB [46], with n3 = 22 genres. We reconstruct
X(12) under I-divergence, and use its matching link—i.e., X

(12)
ij is Poisson dis-

tributed. We reconstruct X(23) under log-loss, and use its matching link—i.e.,
X

(23)
js is Bernoulli, a logistic model. From the same starting point, we measure

the training loss of alternating projections using either a Newton step or a gra-
dient step for each projection. The results in Fig. 2 are averaged over five trials,
and clearly favour the Newton step.

The optimization over L is a non-convex problem, and the inherent complex-
ity of the objective can vary dramatically from problem to problem. In some
problems, our alternating Newton-projection approach appears to perform bet-
ter than standard alternatives; however, we have found other problems where
existing algorithms typically lead to better scores.

Logistic PCA is an example of where alternating projections can outperform
an EM algorithm specifically designed for this model [29]. We use a binarized ver-
sion of the rating matrix described above, whose entries indicate whether a user
rated a movie. For the same settings, k = 25 and no regularization, we compare
the test set error of the model learned using EM4 vs. the same model learned
using alternating projections.5 Each method is run to convergence, a change of
less than one percent in the objective between iterations, and the experiment is
repeated ten times. The test error metric is balanced error rate, the average of
the error rates on held-out positive and negative entries, so lower is better. Using
the EM optimizer, the test error is 0.1813±0.020; using alternating projections,
the test error is 0.1253 ± 0.0061 (errors bars are 1-standard deviation).

Logistic Fast-MMMF is a variant of Fast-MMMF which uses log-loss and
its matching link instead of smoothed Hinge loss, following [47]. Alternating
Newton-projection does not outperform the recommended optimizer, conjugate
gradients6. To compare the behaviour on multiple trials run to convergence, we
use a small sample of the Netflix ratings data (250 users and 700 movies). Our
evaluation metric is prediction accuracy on the held-out ratings under mean
absolute error. On five repetitions with a rank k = 20 factorization, moderate
�2-regularization (λ = 105), and for the Newton step the Armijo procedure
described above, the conjugate gradient solver yielded a model with zero error;
the alternating-Newton method converged to models with test error > 0.015.

The performance of alternating Newton-projections suffers when k is large. On
a larger Netflix instance (30000 users, 2000 movies, 1.1M ratings) an iteration

4 We use Schein et al.’s implementation of EM for Logistic PCA.
5 We use an Armijo line search in the Newton projection, considering step lengths as

small as η = 2−4.
6 We use Rennie et al.’s conjugate gradient code for Logistic Fast-MMMF.
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Fig. 2. Gradient vs. Newton steps in alternating projection

of our approach takes almost 40 minutes when k = 100; an iteration of the
conjugate gradient implementation takes 80–120 seconds.

8 Conclusion

The vast majority of matrix factorization algorithms differ only in a small num-
ber of modeling choices: the prediction link, loss, constraints, data weights, and
regularization. We have shown that a wide variety of popular matrix factor-
ization approaches, such as weighted SVD, NMF, and MMMF, and pLSI can
be distinguished by these modeling choices. We note that this unified view sub-
sumes both dimensionality reduction and clustering in matrices using the bilinear
model X ≈ f(UV T ), and that there is no conceptual difference between single-
and multiple-matrix factorizations.

Exploiting a common property in matrix factorizations, decomposability of
the loss, we extended a well-understood alternating projection algorithm to han-
dle weights, bias/margin terms, �1-regularization, and clustering constraints. In
each projection, we recommended using Newton’s method: while the Hessian
is large, it is also block diagonal, which allows the update for a factor to be
performed independently on each of its rows. We tested the relative merits of
alternating Newton-projections against plain gradient descent, an existing EM
approach for logistic PCA, and a conjugate gradient solver for MMMF.
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