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F. Experiment Set-up Details for the Three Sim2Real
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G. Additional Sim2Real Experiment on Grasp Stability
Prediction.

H. Additional Analysis on Audio Simulation

A. Supplementary Video
In the supplementary video, we show 1) the motivation

and goal of OBJECTFOLDER 2.0; 2) the visualization of the
1,000 objects from our dataset; 3) examples of the multi-
sensory data for some sample objects and comparisons with
OBJECTFOLDER 1.0 [8]; 4) demos of real-world tactile-
audio contact localization experiments; 5) demos of real-
world visuo-tactile shape reconstruction experiments.

B. Dataset Details
The 1,000 objects in OBJECTFOLDER 2.0 are all of ap-

proximately homogeneous material property, and the mate-
rial types include ceramic, glass, wood, plastic, iron, poly-
carbonate, and steel. See Fig. 1a for the material type distri-
bution of the objects. The objects in our dataset are also of
diverse scales (length of the longest side of the axis aligned
bounding box enclosing the object). Fig. 1b shows the dis-
tribution of object scales in meter. Both the scale and mate-
rial type of the objects are used in modal analysis for real-
istic audio simulation.

*indicates equal contribution.
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Figure 1. Statistics of materials types and object scales for the
1,000 objects in OBJECTFOLDER 2.0.

C. Details for Vision, Audio, and Touch Simu-
lations

Vision: We use Blender’s Cycles path tracer [1] to render
images. For each object, we first normalize it into a unit
cube and use a point light source at a random location on
a unit sphere with radiance of (1, 1, 1). We then render
images of the object on a white background from camera
viewpoints randomly sampled on a full sphere with a radius
of 2.5. We render 500 images each for training, validation,
and testing.

Audio: We first tetrahedralize each object’s surface mesh
using a technique shown to produce high-quality tetrahe-
dralizations from meshes found in the wild [12]. See Fig. 2
for a comparison of the tetrahedron meshes that we use
and the volumetric hexahedron meshes used in OBJECT-
FOLDER 1.0. We can see that the tetrahedral mesh cap-
tures finer features and surface curvature at the same repre-
sentation size, so it can more accurately model the acous-
tic properties of the objects. We then use the material pa-
rameters as shown in Table 1 for each object and perform
modal analysis of the object mesh with Abaqus FEA soft-
ware [4], using second-order mesh elements for the analy-
sis. Whereas OBJECTFOLDER 1.0 uses first-order elements
for its modal analysis, the second-order elements we use in
OBJECTFOLDER 2.0 capture the elastic deformations of the
object at a higher-resolution, producing even more accurate
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Figure 2. Comparison of the volumetric hexahedron meshes used
in OBJECTFOLDER 1.0 and the tetrahedron meshes used in OB-
JECTFOLDER 2.0 for three representative objects.

analysis results [5]. From this modal analysis, we obtain
frequencies of each mode, as well as the initial gains of each
mode when contacted at each point on the surface mesh by
a unit force in each axis direction. Using the frequencies of
each mode along with material parameters, we estimate the
dampings of each mode according to a Rayleigh damping
model [19].

Touch: We use the geometric measurement from a Gel-
Sight tactile sensor as the touch reading. GelSight is a
vision-based tactile sensor that interacts the object with an
elastomer and measures the geometry of the contact sur-
face with high spatial resolution images by capturing the
deformation of the elastomer with an embedded camera. To
simulate the tactile sensing, we need to simulate 1) the de-
formation of the contact, and 2) the optical response to the
deformation. Because GelSight provides richer and denser
contact signals compared to most tactile sensors, its simula-
tion can be potentially used to synthesize the readings from
other tactile sensors [14, 17].

We adopt a two-stage approach to render realistic tac-
tile signals. Firstly, we simulate the sensor-object interac-
tion to render the deformation map, which is constructed
from the object’s shape in the contact area and the gelpad’s
shape in the non-contact area to represent the local shape
at the point of contact. Then we utilize the optical simu-
lation of Taxim [20], an example-based tactile simulation
model. Taxim simulates the optical response to the defor-
mation of the soft elastomer with a polynomial lookup table.
This table maps the deformed geometries to pixel intensity
sampled by the embedded camera. Finally, the simulation
model is calibrated with examples from a real-world Gel-
Sight tactile sensor to reduce the Sim2Real transfer gap.

D. Implementation Details for Implicit Neural
Representation Networks

VisionNet: We follow the prior work on object-centric
neural radiance field [10] to represent each object as a 7D
object-centric neural scattering function (OSF). OSF uses a
eight-layer MLP with 256 channels to predict the density
value σ, which is view invariant; and a four-layer MLP with
128 channels to predict the fraction of the incoming light
that is scatterd in the outgoing direction ρ = (ρr, ρg, ρb).
Following KiloNeRF [18], to accelerate neural rendering,
instead of using a single MLP to represent the entire object,
we represent each object with a large number of indepen-
dent and small MLPs each responsible for a small portion
of the object. We use a small MLP that has four layers
with 64 channels to predict σ; and a one-layer MLP with
64 channels to predict ρ. We first train an ordinary OSF
model and distill the knowledge of this teacher model into
the KiloOSF student model. The KiloOSF model is trained
such that its output matches the output of the teacher model.
We optimize the student model’s parameters by using an L2

loss between the values predicted by the student model and
those obtained from the teacher model. We also follow the
sampling strategy in [18]. We set the network grid resolu-
tion to be 16× 16× 16, and the threshold τ for occupancy
grid extraction to be 10. We use the Adam optimizer with
learning rate of 5× e−4, a batch size of 8192, and the same
learning rate scheduler as [16]. See [18] for more details.

AudioNet: For each axis direction, we train a separate
branch to encode the corresponding gains for all vertexes.
Each branch is an eight-layer MLP with 256 channels. For
each object, we normalize the values of gains to [0, 1] as
the prediction target. We use the same positional encoding
scheme as in [16].

TouchNet: We simulate the sensor-object interaction
with Pyrender [3] to render deformation maps using
OpenGL [2] with GPU-acceleration. During training, for
each surface location of the polygon mesh of the object, we
ramdonly sample a rotation angle within ±15◦ and a press-
ing depth (gel deformation) in the range of 0.5-2 mm, then
we obtain a deformation map of dimension 120 × 160 that
captures the local geometry information. TouchNet is also
an eight-layer MLP with 256 channels that takes the spatial
coordinate (x, y, z) of the vertex, a 3D unit contact orienta-
tion parametrized as (θT , φT ), gel penetration depth p, and
the spatial location (w, h) in the deformation map as input.
The output is the per-pixel value of the deformation map for
the contact. We normalize the values of deformation maps
to [0, 1] as the prediction target. After rendering the defor-
mation map from TouchNet, then we use Taxim to render
the tactile RGB image of resolution 120× 160× 3.



Material Type ρ E v α β

Ceramic 2.70× 103 7.20× 1010 0.19 6 1× 10−7

Glass 2.60× 103 6.20× 1010 0.20 1 1× 10−7

Wood 7.50× 102 1.10× 1010 0.25 60 2× 10−6

Plastic 1.07× 103 1.40× 109 0.35 30 1× 10−6

Iron 8.00× 103 2.10× 1011 0.28 5 1× 10−7

Polycarbonate 1.19× 103 2.40× 109 0.37 0.5 4× 10−7

Steel 7.85× 103 2.00× 1011 0.29 5 3× 10−8

Table 1. Material parameters for audio simulation. ρ,E, v, α, β denote density, Young’s Modulus, Posisson ratio, and Rayleigh damping
parameters, respectively. All parameters are in SI units.
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Figure 3. Comparing the visual, acoustic, and tactile data rendered from OBJECTFOLDER 1.0, OBJECTFOLDER 2.0 (Ours), and the
corresponding ground-truth for two sample objects. Our implicit neural representation networks accurately encode the multisensory data
for the objects that match the ground-truth well.

E. More Qualitative Examples of Mulitisen-
sory Data

In Fig. 4 in the main paper, we have shown an exam-
ple of the visual, acoustic, and tactile sensory data obtained
from OBJECTFOLDER 2.0 compared with the ground-truth
and the multisensory data from OBJECTFOLDER 1.0. Fig. 3
shows more examples for two objects. Our KiloOSF Vi-
sionNet renders images that match the ground-truth well
while being 60× faster than OBJECTFOLDER 1.0. While
directly predicting audio spectrograms cannot capture the
details of the modes signal and leads to artifacts in the back-
ground, our AudioNet renders audio in a much more accu-
rate manner. For touch, to make a fair comparison, we use
the TACTO [21] simulation used in OBJECTFOLDER 1.0
and the tactile readings from real-world GelSight sensors
as the ground truth instead. Our TouchNet output matches
well with the real tactile readings. The results demonstrate
the accuracy of our implicit neural representations to en-
code the multisensory data for the objects.

F. Experiment Set-up Details for the Three
Sim2Real Tasks

F.1. Object Scale Estimation

To perform object scale estimation, for each object we
generate 500 images from different camera viewpoints and
lighting conditions, 500 impact sounds with random forces
for different vertexes, and 500 tactile RGB images at ran-
dom surface locations from its corresponding Object File,
respectively. For each sensory modality, we use 80% of the
data for training, 10% for validation, and 10% for testing.
For the vision modality, we use the ImageNet pre-trained
ResNet-18 [11] network that takes an RGB image of the
object as input and predicts the scale of the object. We use
images of resolution 256 × 256 and perform random crop-
ping to obtain images of resolution 224 × 224 as input to
the network. After the final pooling layer, we use a fully-
connected layer to map the feature vector of dimension 512
to a single value followed by a Sigmoid layer then scaled by
0.5 to predict the scale of the object. For the audio modal-
ity, we also use ResNet-18 except that we change the first
layer to take a one-channel magnitude spectrogram of di-



mension 257×201 as input. The other settings are the same
as the vision modality. For touch, we use the ImageNet pre-
trained ResNet-18 network to extract features of dimension
512 from the tactile images. Then we forward a sequence of
features extracted from 10 tactile images and each concate-
nated with a 128 dimension embedding of the relative posi-
tions between two consecutive touches to a 3-layer LSTM
network with 256 dimensional hidden states. The final hid-
den state of the LSTM network is passed through two linear
layers of dimension 256 and 128 to predict a scalar value
representing the object scale.

For vision, to reduce the domain gap for Sim2Real, we
replace the background of real-world images with white
background, which is the same as the simulated images to
prevent the model from overfitting to the background. For
audio, because real-world recordings often contain ambient
sound apart from the recorded impact sounds of the objects,
during training we mix simulated impact sounds with ran-
dom real-world recordings in the same environment to re-
duce the domain gap.

F.2. Tactile-Audio Contact Localization

We apply particle filtering [15] to localize the sequence
of contact locations from which tactile readings or impact
sounds are collected. For touch, we extract feature maps
from an FCRN network [13], which is pre-trained for depth
prediction from tactile images, after the last layer of the en-
coder. We directly flatten the feature map to a 81,920 di-
mensional feature vector. For audio, we extract the mel fre-
quency cepstral coefficients (MFCCs) features from each
3s impact sound with number of MFCCs equal to 20 and
sampling rate equal to 44,100 Hz. The obtained mel spec-
trogram of dimension 259×20 is flattened to a vector of di-
mension 5, 180 to represent the audio feature. To combine
the two modalities, we concatenate the features from touch
and audio. We compare these features with particles sam-
pled from the object surfaces that represent the candidate
contact locations using cosine similarities. For initializa-
tion, we randomly sample 2,500 particles from the signed
distance function (SDF) that represents the object. In each
iteration, we re-sample the particles based on the similarity
scores. We assign larger weights to particles of larger sim-
ilarity scores (smaller cosine distance). At the end of each
iteration, the particles are moved according to the relative
motion between two consecutive contact, and we also add
Gaussian noise with the standard deviation of 2mm as the
system noise.

F.3. Visuo-Tactile Shape Reconstruction

We use Point Completion Network (PCN) [22], a
learning-based approach for shape completion, as a testbed
for this task. For touch, the input of the PCN network
is the sparse point cloud and the output is the completed
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Figure 4. Examples of a successful grasp and a failed grasp.

dense point cloud. We sample the sparse point cloud from
32 touch positions. For each touch, a local point cloud is
recovered from the tactile image from which we sample
64 points. We use 400 sparse point clouds obtained from
400 × 32 simulated tactile images per object for training
the PCN network, and 50 each for validation and testing.
During testing, we also evaluate the trained model on real
tactile data. For vision, instead of using the original en-
coder from PCN, we replace it with a ResNet-18 network
as image encoder and combine it with the PCN decoder to
output a dense point cloud. Similarly, we use 400, 50, 50
images for training, validation, and testing, respectively. To
combine the two modalities, we first separately train tactile-
based and vision-based shape reconstruction networks, and
then we concatenate the estimated point clouds from both
modalities and pass it through two linear layers of dimen-
sion 1024× 8 and 1024× 4 to predict the final dense point
cloud. We only train the last two linear layers and freeze
other parts of the network.

G. Grasp Stability Prediction

We have evaluated our tactile data on three Sim2Real
tasks using 13 real objects of complex shapes (Fig. 5 in the
main paper), including object scale estimation, contact lo-
calization, and shape reconstruction, demonstrating the re-
alism of our modeling. Additionally, we have performed
a new challenging object manipulation task—grasp stabil-
ity prediction. The goal is to predict grasp stability of a
robotic arm before lifting the object based on tactile im-
ages [6, 7, 21]. We generate the tactile images from our
TouchNet based on the grasp contact positions, orientations,
and gel deformations, and then label each grasp as either
“Success” or “Failure” based on the grasp outcome. We
train a ResNet-18 binary classifier based on the touch im-
ages for the medicine bottle object. This experiment is sim-
ilar to that in TACTO [21], except that we obtain touch read-
ings by querying TouchNet. While they only test in simu-
lation, we perform Sim2Real and test the classifier, trained
only on simulated data, on real GelSight images. We obtain
72.2% accuracy., while chance is 50%. The results indicate
that learning with tactile data from our dataset transfers to
real-world settings. Fig. 4 shows a successful grasp and a
failed grasp.
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Figure 5. Examples of a successful grasp and a failed grasp.

H. Additional Analysis on Audio Simulation
Using the YCB mug object as an example, we visualize

its spectrograms from OBJECTFOLDER 1.0 (OF 1.0) and
OBJECTFOLDER 2.0 (OF 2.0), as well as a real recording
of its impact sound in Fig. 5. Ours better matches the real
recording. Furthermore, we estimate mode peaks and mode
damping coefficients by finding peaks in the FFT, and then
fitting a line to the log amplitude envelope over time of each
mode frequency. We visualize these analytical DSP-based
estimates of frequency and damping for the three respective
audio clips. Our audio simulation aligns well with the real
recording, much more accurately than that of OF 1.0. These
comparisons as well as our Sim2Real experiments demon-
strate the accuracy of our audio simulation.
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