手眼标定:原理与编程实现
手眼标定是机器人技术中的重要环节,用于确定机器人手臂与视觉系统之间的转换关系。本文将详细介绍手眼标定的基本原理,并给出相应的编程实现。
一、手眼标定的基本原理
手眼标定通过获取机器人手臂的位置和姿态信息以及相机的位姿信息,建立二者之间的转换关系,从而实现精确的运动控制和视觉导航。其基本原理如下:
-
传统方法
传统的手眼标定方法包括基于标定物体的方法和基于特征点匹配的方法。基于标定物体的方法需要在机械臂和相机之间放置一个已知形状的标定物体,通过测量标定物体在机械臂坐标系和相机坐标系中的位置来计算转换关系。而基于特征点匹配的方法则通过提取机械臂末端执行器和相机图像中的特征点,并通过特征点之间的对应关系计算转换关系。 -
深度学习方法
近年来,深度学习方法在手眼标定中得到了广泛应用。这类方法通过训练神经网络,将机器人手臂和相机图像作为输入,输出其之间的转换关系。深度学习方法具有更高的自适应性和泛化能力,在复杂场景下表现优秀。
二、编程实现
下面给出一个使用Python编写的手眼标定示例程序:
import numpy as np
import cv2
def