本文始发于个人公众号:TechFlow,原创不易,求个关注
今天是高等数学的第14篇文章,我们一起来看看定积分的换元法和分部积分法。
我们之前在不定积分的内容当中曾经介绍过换元法和分部积分法这两种求解不定积分的方法,今天我们来探索将这两种方法应用在定积分上。有一点需要注意,虽然不定积分和定积分只有一字之差,但是在数学上其实它们是两个完全不同的概念。不定积分求解的是函数的原函数,而定积分则是求解的曲形的面积,也就是一个具体的值。
我们用Python来举例的话,不定积分有些像是高阶函数,我们传入一个函数,得到一个函数。而定积分则就是一个计算的函数,我们传入一个函数,得到一个值。由于有了牛顿-莱布尼茨公式,我们求解定积分的时候也需要求解原函数,但这只是计算过程相似,并不是它的定义。所以不要把两者弄混淆了。
换元法
在我们写出换元法的公式之前,我们先写清楚它的作用区间。这个是数学的惯例,我们写一个公式或者是定理或者是式子,都需要标明适用范围。我们假设函数f(x)在区间[a, b]上连续。
函数x=ϕ(t)x=\phi(t)x=ϕ(t)满足:
- ϕ(α)=a,ϕ(β)=b\phi(\alpha) = a, \phi(\beta) = bϕ(α)=a,ϕ(β)=b
- ϕ(t)\phi(t)ϕ(t)在区间[α,β][\alpha, \beta][α,β],或者[β,α][\beta, \alpha][β,α]上具有连续导数,值域是[a, b],那么:
∫abf(x)dx=∫αβf[ϕ(t)]ϕ′(t)dt\int_a^bf(x)dx = \int_\alpha^\beta f[\phi(t)]\phi'(t)dt∫abf(x)dx=∫αβf[ϕ(t)]ϕ′(t)dt
这个式子成立非常明显,但为了严谨,我们还是来证明一遍。
等式的左边很简单就是我们常见的积分函数,我们假设f(x)在区间[a, b]上的原函数是F(x),那么等式左边根据牛顿-莱布尼茨公式,可以得到:
∫abf(x)dx=F(b)−F(a)\int_a^b f(x)dx = F(b) - F(a)∫abf(x)dx=F(b)−F(a)
所以我们重点关注的是等式右边,等式右边也做类似处理,我们假设Φ(t)=F(ϕ(t))\Phi(t) = F(\phi(t))Φ(t)=F(ϕ(t))。
我们对Φ(t)\Phi(t)Φ(t)求导,可以得到:
Φ′(t)=dFdϕ⋅dϕdt=f(x)⋅ϕ′(t)=f[ϕ(t)]⋅ϕ′(t)\Phi'(t) = \frac{dF}{d\phi}\cdot \frac{d\phi}{dt} = f(x)\cdot \phi'(t) = f[\phi(t)]\cdot \phi'(t)Φ′(t)=dϕdF⋅dtdϕ=f(x)⋅ϕ′(t)=f[ϕ(t)]⋅ϕ′(t)
通过求导我们可以发现,Φ(t)\Phi(t)Φ(t)是f[ϕ(t)]⋅ϕ′(t)f[\phi(t)]\cdot \phi'(t)f[ϕ(t)]⋅ϕ′(t)的原函数。所以:
∫αβf[ϕ(t)]ϕ′(t)dt=Φ(β)−Φ(α)=F[ϕ(β)]−F[ϕ(α)]=F(b)−F(a) \begin{aligned} \int_\alpha^\beta f[\phi(t)]\phi'(t)dt &= \Phi(\beta) - \Phi(\alpha)\\ &= F[\phi(\beta)] - F[\phi(\alpha)] \\ &= F(b) - F(a) \end{aligned} ∫αβf[ϕ(t)]ϕ′(t)dt=Φ(β)−Φ(α)