敲黑板,定积分也有换元和分部积分法!

本文介绍了定积分中换元法和分部积分法的应用,阐述了两者在高等数学中的区别和联系。通过实例展示了如何利用Python进行相关计算,强调了在使用换元法时确定作用区间的重要性,并提供了多个例题加深理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文始发于个人公众号:TechFlow,原创不易,求个关注


今天是高等数学的第14篇文章,我们一起来看看定积分的换元法和分部积分法。

我们之前在不定积分的内容当中曾经介绍过换元法和分部积分法这两种求解不定积分的方法,今天我们来探索将这两种方法应用在定积分上。有一点需要注意,虽然不定积分和定积分只有一字之差,但是在数学上其实它们是两个完全不同的概念。不定积分求解的是函数的原函数,而定积分则是求解的曲形的面积,也就是一个具体的值。

我们用Python来举例的话,不定积分有些像是高阶函数,我们传入一个函数,得到一个函数。而定积分则就是一个计算的函数,我们传入一个函数,得到一个值。由于有了牛顿-莱布尼茨公式,我们求解定积分的时候也需要求解原函数,但这只是计算过程相似,并不是它的定义。所以不要把两者弄混淆了。


换元法


在我们写出换元法的公式之前,我们先写清楚它的作用区间。这个是数学的惯例,我们写一个公式或者是定理或者是式子,都需要标明适用范围。我们假设函数f(x)在区间[a, b]上连续。

函数x=ϕ(t)x=\phi(t)x=ϕ(t)满足:

  1. ϕ(α)=a,ϕ(β)=b\phi(\alpha) = a, \phi(\beta) = bϕ(α)=a,ϕ(β)=b
  2. ϕ(t)\phi(t)ϕ(t)在区间[α,β][\alpha, \beta][α,β],或者[β,α][\beta, \alpha][β,α]上具有连续导数,值域是[a, b],那么:

∫abf(x)dx=∫αβf[ϕ(t)]ϕ′(t)dt\int_a^bf(x)dx = \int_\alpha^\beta f[\phi(t)]\phi'(t)dtabf(x)dx=αβf[ϕ(t)]ϕ(t)dt

这个式子成立非常明显,但为了严谨,我们还是来证明一遍。

等式的左边很简单就是我们常见的积分函数,我们假设f(x)在区间[a, b]上的原函数是F(x),那么等式左边根据牛顿-莱布尼茨公式,可以得到:

∫abf(x)dx=F(b)−F(a)\int_a^b f(x)dx = F(b) - F(a)abf(x)dx=F(b)F(a)

所以我们重点关注的是等式右边,等式右边也做类似处理,我们假设Φ(t)=F(ϕ(t))\Phi(t) = F(\phi(t))Φ(t)=F(ϕ(t))

我们对Φ(t)\Phi(t)Φ(t)求导,可以得到:

Φ′(t)=dFdϕ⋅dϕdt=f(x)⋅ϕ′(t)=f[ϕ(t)]⋅ϕ′(t)\Phi'(t) = \frac{dF}{d\phi}\cdot \frac{d\phi}{dt} = f(x)\cdot \phi'(t) = f[\phi(t)]\cdot \phi'(t)Φ(t)=dϕdFdtdϕ=f(x)ϕ(t)=f[ϕ(t)]ϕ(t)

通过求导我们可以发现,Φ(t)\Phi(t)Φ(t)f[ϕ(t)]⋅ϕ′(t)f[\phi(t)]\cdot \phi'(t)f[ϕ(t)]ϕ(t)的原函数。所以:

∫αβf[ϕ(t)]ϕ′(t)dt=Φ(β)−Φ(α)=F[ϕ(β)]−F[ϕ(α)]=F(b)−F(a) \begin{aligned} \int_\alpha^\beta f[\phi(t)]\phi'(t)dt &= \Phi(\beta) - \Phi(\alpha)\\ &= F[\phi(\beta)] - F[\phi(\alpha)] \\ &= F(b) - F(a) \end{aligned} αβf[ϕ(t)]ϕ(t)dt=Φ(β)Φ(α)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值