贪心算法框架

1. 框架 

Algorithm Greedy(Problem):
    Input: 问题实例 Problem
    Output: 解集合 Solution
    
    // 1. 预处理阶段(通常需要排序)
    SortedItems ← Sort(Problem.items)  // 按贪心策略排序
    
    // 2. 初始化解集合
    Solution ← ∅
    
    // 3. 主循环:逐步构建解
    for each item in SortedItems do:
        // 3.1 可行性检查
        if IsFeasible(Solution ∪ {item}) then:
            Solution ← Solution ∪ {item}
            
        // 3.2 提前终止条件(可选)
        if IsComplete(Solution) then:
            break
    
    // 4. 返回最终解
    return Solution

2. 解决哪些问题

贪心算法适用于特定类型的优化问题,其核心是通过局部最优选择逐步逼近全局最优解。适用的问题需满足‌贪心选择性质‌(局部最优能导向全局最优)和‌最优子结构性质‌(子问题的最优解可组合为全局解)。主要解决以下问题:

🔧 一、经典问题类型

  1. 活动调度问题

    • 从互斥活动中选择最大兼容子集(如按结束时间排序后贪心选择)。
    • 典型场景‌:会议室安排、课程排期。
  2. 最小生成树问题

    • 在带权图中生成连接所有顶点的最小权重树。
    • 算法‌:Kruskal(按边权升序选择)和Prim(从点扩展最小边)。
  3. 最短路径问题

    • 求单源点到其他顶点的最短路径。
    • 算法‌:Dijkstra(优先队列选择当前最短路径节点。
  4. 背包问题(分数背包)

    • 物品可拆分时,按单位价值降序装入背包,使总价值最大。</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小硕算法工程师

你的鼓励将是我创作的最大动力哈

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值