[YOLOv7/YOLOv5系列算法改进NO.34]更换激活函数为FReLU等十余种激活函数

本文介绍了针对YOLOv7目标检测算法的改进,通过替换原SiLU激活函数为FReLU等十余种激活函数,旨在提高检测效果。FReLU是一种2D空间条件的激活函数,能有效提升视觉识别任务的性能。实验结果显示,在ResNet-50和ResNet-101上,FReLU分别提高了1.6%和0.7%的top-1准确率。作者分享了添加FReLU的步骤,并指出该方法同样适用于其他YOLO版本及目标检测网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前 言:作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv7,YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。

具体改进办法请关注后私信留言!关注即免费获取深度学习资料!

解决问题:之前改进从改进的部位来分的话从输入端、主干特征提取网络(backbone)、特征融合网络(neck)、检测头等四个方面进行改进,从改进的方法包括添加注意力机制、损失函数改进、改变网络结构、替换主干特征提取网络、改进非极大值抑制、k-means++聚类算法等方面进行改进,本文尝试通过改进更为专用于视觉任务的激活函数来网络进行改进。原激活函数为SiLU激活函数,来提高检测效果。也可类比方法改为其他种类的激活函数,如下所示:

Yolov8中,激活函数FReLU是一种改进激活函数,可以提高网络的性能。这个激活函数Yolov8中被用于增加网络的非线性表达能力,并且能够处理一些特定的问题,比如梯度消失和梯度爆炸。FReLU是通过将常规的ReLU函数与线性函数相结合而得到的。它通过引入一个可学习的参数来扩展ReLU的变化范围,从而提高网络的性能。 FReLU的具体定义如下: ``` FReLU(x) = max(0, x) + min(0, α * (exp(x/α) - 1)) ``` 其中,α是一个可学习的参数。当α=0时,FReLU就等价于ReLU函数。 FReLU改进版本在网络训练过程中,可以通过反向传播机制来更新α的值,从而使网络更加适应不同的数据分布和任务。此外,在实际应用中,FReLU还可以与其他的激活函数结合使用,以进一步提高网络的性能和稳定性。 总之,FReLUYolov8中的一种改进激活函数,它通过引入可学习的参数来提高网络的性能,并且能够处理一些特定的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进NO.59】引入ASPP模块](https://blog.csdn.net/m0_70388905/article/details/129492136)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能算法研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值