tensorflow(四)----会话

本文深入解析了TensorFlow中的会话概念,包括其定义、典型流程、执行原理及本地执行方式。通过实例展示了如何创建和使用会话,以及如何通过会话执行张量和操作。介绍了TensorFlow会话的三种执行方法:sess.run、Tensor.eval和Operation.run,并详细解释了会话执行的操作依赖和设备分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensorflow----会话

一、会话
1.会话的定义和典型流程

会话提供了估计张量(打印张量)和执行操作的运行环境,他是发放计算认为的客户端,所有计算任务都由它连接的执行引擎完成。一个会话的典型使用流程分为以下三步:

# 1.创建会话
tf.Session(target=..., graph=..., config=...)
# 2.估计张量或执行操作
sess.run(...)
# 3.关闭会话
sess.close()

target:会话连接的执行引擎。
graph:会话加载的数据流图。当有多个数据流图时,需要指定一个数据流图加载。
config:会话启动时的配置项。

注意: 用with...as ...语句可以省略sess.close()

2.会话的一个小例子
# 定义占位符
x = tf.placeholder(tf.float16, shape=(), name='x')
y = tf.placeholder(tf.float16, shape=(), name='y')
# 创建数据流图:z = x * y
z = x * y
# 创建会话
with tf.Session() as sess:
    # 向数据节点分别填充: x=6 y=8
    result = sess.run(z, feed_dict={x: 6, y: 8})
    # 输出结果
    print('result of x*y: {}'.format(result))

# 结果:
result of x*y: 48.0
3.会话执行

在之前的文章中,我们已经了解到可以用sess.run(...)的方法去让会话执行操作,比如初始化变量:sess.run(tf.global_variables_initializer())和估计张量(获取张量): sess.run(n)。接下来介绍另外两种会话执行的方法:

  • 估计操作: Tensor.eval(…)
  • 执行操作:Operation.run()

接下来举一个例子:

# 另外两种会话执行的方法:(之前一直用的sess.run(...)方法)
# 定义占位符和变量
x = tf.placeholder(tf.float32, shape=(), name='x')
a = tf.Variable(3.0, name='a')
b = tf.Variable(2.0, name='b')
# 构建数据流图:y = a * x + b
y = a * x + b
with tf.Session() as sess:
    # 执行初始化操作
    tf.global_variables_initializer().run()
    # 向数据节点填充数据: x=2
    result = y.eval(feed_dict={x: 2})
    print('result of a*x+b: {}'.format(result))

# 结果:
result of a*x+b: 8.0

其实,刚才介绍的Tensor.eval(…)和Operation.run()获取张量的方法都是基于sess.run(…)方法实现的,具体流程见下图:
在这里插入图片描述

4.会话的执行原理

当我们调用sess.run(…)语句执行训练操作时:

  1. 首先,程序内部提取依赖的所有前置操作。这些操作的节点共同组成一幅子图。就是把数据流图根据前置操作的依赖关系,分成好几个子图。多个节点依赖一个结点,另外多个结点依赖另一个结点,则可以分为两个子图。
  2. 然后,程序会将子图中的计算节点、存储节点和数据节点按照各自的执行设备分类,相同设备上的节点组成了一幅局部图。就是更具执行设备再将子图分成几个子图。
  3. 最后,每个设备上的局部图在实际执行时,根据节点间的依赖关系将各个节点有序的加载到设备上执行。不同子图上同深度的节点可以并行运行。

在这里插入图片描述
比如上图:

  1. 根据前置操作input无法分割子图。
  2. 子图根据执行设备分割成子子图,这里根据cpu、gpu分为以上两个部分
  3. 首先会加载input节点(因为只有这个节点深度为0),input节点对应操作执行完毕后,左右边消失,reshape和class lable节点变为深度为0的节点,这两个节点同时的被加载,并行执行…
5.会话本地执行

对于单机程序来说,相同的机器上不同编号的cpu或gpu就是不同的设备,我们可以在创建节点时,指定执行该节点的设备。

# 会话本地执行
with tf.device('/cpu:0'):
    tf.Variable(...)
    
with tf.device('/gpu:0'):
    tf.Variable(...)
6.tensorflow本地执行

在这里插入图片描述
client是我们在python中编写的代码,当我们用sess.run(…)时,会调用本地的执行引擎server,而不是调用python解释器去执行。本地执行引擎再根据节点的执行设备不同,分配到相应的设备中执行。

TensorFlow是一个强大的开源机器学习框架,用于构建和部署深度学习模型。以下是使用TensorFlow入门构建简单神经网络的基本步骤: 1. **安装TensorFlow**:首先,你需要安装TensorFlow库。如果你使用Python,可以使用pip安装最新版本: ``` pip install tensorflow ``` 2. **导入库**:在Python脚本中,引入`tensorflow`模块: ```python import tensorflow as tf ``` 3. **创建占位符**:定义输入数据的占位符,它们会在每次运行会话时提供实际的数据: ```python inputs = tf.placeholder(tf.float32, [None, input_size]) labels = tf.placeholder(tf.float32, [None, num_classes]) ``` 4. **定义权重和偏置**:初始化随机权重矩阵和偏置项,通常使用正态分布或其他初始化策略: ```python weights = tf.Variable(tf.random_normal([input_size, num_classes])) biases = tf.Variable(tf.zeros([num_classes])) ``` 5. **计算预测值**:使用点乘和加法操作计算神经网络的输出: ```python predictions = tf.nn.softmax(tf.add(tf.matmul(inputs, weights), biases)) ``` 6. **损失函数**:选择合适的损失函数,如交叉熵损失(适合分类任务): ```python loss = tf.reduce_mean(-tf.reduce_sum(labels * tf.log(predictions), reduction_indices=[1])) ``` 7. **优化器**:配置一个优化算法,如梯度下降或Adam,来更新权重以最小化损失: ```python optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss) ``` 8. **训练循环**:在一个会话中,不断提供训练数据并调用优化器迭代: ```python with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(num_epochs): # 进行一次训练轮次... ``` 9. **评估模型**:通过测试数据集验证模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ElegantCodingWH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值