matlab、sklearn 中的数据预处理

本文介绍了数据预处理的方法,包括归一化处理和PCA降维,并提供了MATLAB及Python sklearn库的具体实现代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据预处理(normalize、scale)

0. 使用 PCA 降维

  • matlab:

    [coeff, score] = pca(A);
    reducedDimension = coeff(:,1:5);
    reducedData = A * reducedDimension;

1. 最大最小映射(matlab)

[trainx, s1] = mapminmax(trainx);
testx = mapminmax('apply', test1, s1);

2. sklearn.preprocessing

去均值时,在测试集上进行预测时减去的均值是训练集上得到的均值;

import sklearn.preprocessing as prep

def standard_scale(X_train, X_test):
    preprocessor = prep.StandardScaler().fit(X_train)
    X_train = preprocessor.transform(X_train)
    X_test = preprocessor.transform(X_test)
    return X_train, X_test

转载于:https://www.cnblogs.com/mtcnn/p/9422108.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值