flink- AsyncDataStream 异步处理

本文探讨了Flink的AsyncDataStream中unorderedWait和orderedWait两种处理模式,介绍了它们在数据顺序和性能上的差异,以及在处理耗时操作时的使用场景。重点讲解了有序等待如何通过缓存提高吞吐量但可能导致延迟和Checkpoint负载。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、AsyncDataStream有2个方法:unorderedWait表示数据不需要关注顺序,处理完立即发送,orderedWait表示数据需要关注顺序,为了实现该目标,操作算子会在该结果记录之前的记录为发送之前缓存该记录。这往往会引入额外的延迟和一些Checkpoint负载,因为相比于无序模式结果记录会保存在Checkpoint状态内部较长的时间。

代码案例:

        //异步查询:Flink处理数据时候,遇到比较耗时的操作时,需要异步处理数据。
        SingleOutputStreamOperator<JSONObject> jsonObjectSingleOutputStream = AsyncDataStream
                .unorderedWait(
                        StreamOperator, new JDBCAsyncFunctionAnalysis(), 10 * 60 * 1000, TimeUnit.MICROSECONDS, 10).process(
                        new DataGovernanceFunction(context)
                ).setParallelism(opertatorPara);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值