LeetCode 45. 跳跃游戏 II (贪心+动态规划)

探讨了在给定非负整数数组中,如何使用最少的跳跃次数到达最后一个位置的算法问题。通过贪心算法和动态规划两种方法,详细解析了如何找到最优路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.题目

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

你的目标是使用最少的跳跃次数到达数组的最后一个位置。

示例:

输入: [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
     从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
说明:

假设你总是可以到达数组的最后一个位置。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jump-game-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2.题解

贪心

和跳跃游戏的思路一样,记录每一次从前往后遍历中能到达的最远位置。
我们维护当前能够到达的最大下标位置maxPos,记为边界end。我们从左到右遍历数组,到达边界时,更新边界并将跳跃次step数增加 1。
在每一步中,在这一步中选择那个可以使下一步到达最原位置的元素,迭代即可更新最远位置和所用步数。

class Solution
{
public:
    int jump(vector<int>& nums)
    {
        int maxPos = 0, n = nums.size(), end = 0, step = 0;
        for (int i = 0; i < n - 1; ++i)
        {
            if (maxPos >= i)
            {
                maxPos = max(maxPos, i + nums[i]);
                if (i == end)
                {
                    end = maxPos;
                    ++step;
                }
            }
        }
        return step;
    }
};
动态规划

官方说明,时间复杂度为n方的C++代码会有一组数据时间超限,大家试一下就知道了。
从头开始遍历,用一个而外的数组记录到达当前位置的最小步数,一直迭代到位置n位置,输出即可。




class Solution
{
public:
    int jump(vector<int>& nums)
    {
        vector<int>res(nums.size());
        int  len = nums.size();
        for(int i = 0 ; i< len - 1 ; i++)
        {
            int k = nums[i],j = i;
            while(k--)
            {
                if(nums[++j] == 0) nums[j] = 1;
                else if(nums[i] + 1 < nums[j]) nums[j] = nums[i] + 1;
            }
        }
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值