IF,TF,NT

本文介绍了计算机系统中的IF、TF及NT标志位的作用。IF位用于控制外部设备的中断,但不影响异常和软中断等;TF位用于调试环境下的单步执行控制;NT位则用于标记任务是否由其他任务调用执行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

IF

IF 位只能限制外部设备的中断,对那些影响系统正常运行的中断都无效,如异常 exception,软中断,如 int n 等,不可屏蔽中断 NMI 都不受 IF 限制.

sti 和 cli

IF 可以直接控制。指令cli 使 IF 位为 0,这称为关中断,指令 sti 使 IF 位为 1,这称为开中断。

TF

TF 表示 Trap Flag,也就是陷阱标志位,这用在调试环境中,当TF 为 0 时表示禁止单步执行,也就是说,进入中断后将 TF 置为 0,表示不允许中断处理程序单步执行

NT

NT 位表示 Nest Task Flag,即任务嵌套标志位,也就是用来标记任务嵌套调用的情况。
任务嵌套调用是指
CPU 将当前正执行的旧任务挂起,转去执行另外的新任务,待新任务执行完后,CPU 再回到旧任务继续执行。
(1)将旧任务 TSS 选择子写到了新任务 TSS 中的“上一个任务 TSS 的指针”字段中。
(2)将新任务标志寄存器 eflags 中的 NT 位置 1,表示新任务之所以能够执行,是因为有别的任务调
用了它。
第(2)步中这个“别的任务”便是指 CPU 在第 1 步中写进新任务自己 TSS 的“上一个任务 TSS 的
指针”字段中的值。
这就用到 NT 位了,当 CPU 执行 iret 时,它会去检查 NT 位的值,如果 NT 位为 1,说明当前任务是被嵌套执行的,因此会从自己 TSS 中“上一个任务 TSS 的指针”字段中获取旧任务,然后去执行该任务。如果 NT 位的值为 0,这表示当前是在中断处理环境下,于是就执行正常的中断退出流程

### TF-IDF算法伪代码 以下是基于TF-IDF定义和实现逻辑构建的伪代码,适用于论文中描述算法流程: ```plaintext 输入: 文档集合 D = {d1, d2, ..., dn}, 词汇表 V = {t1, t2, ..., tm} 输出: 每个词 ti 在每个文档 dj 中的 TF-IDF 值矩阵 M[i][j] 过程: 1. 初始化 TF 矩阵 T 和 IDF 向量 I 对于 i=1 到 m (遍历所有词语): 设置 T[i][] = 0 设置 I[i] = 0 2. 计算词频 (Term Frequency, TF) 对于 j=1 到 n (遍历所有文档): 对于 i=1 到 m (遍历所有词语): 如果 ti 出现在文档 dj 中: 设 fij 表示 ti 在 dj 中出现次数 计算 tf(i,j) = fij / |dj| (其中 |dj| 是文档 dj 的总词数) 更新 T[i][j] = tf(i,j) 3. 计算逆文档频率 (Inverse Document Frequency, IDF) 对于 i=1 到 m (遍历所有词语): 统计包含 ti 的文档数量 ni 计算 idf(ti) = log(n/ni),其中 n 是文档总数 更新 I[i] = idf(ti) 4. 计算 TF-IDF 值 对于 i=1 到 m (遍历所有词语): 对于 j=1 到 n (遍历所有文档): 计算 tf-idf(i,j) = T[i][j] * I[i] 将结果存储到矩阵 M[i][j] 返回: TF-IDF 值矩阵 M ``` 上述伪代码清晰地展示了如何通过分步计算词频和逆文档频率来获得最终的TF-IDF值[^1]。 此外,在实际应用中,可以通过调整权重函数进一步优化TF-IDF的效果。例如,采用平滑后的IDF公式 \( \text{IDF}(t) = \log\left(\frac{n}{n_t + 1}\right) \)[^2] 来减少极端情况的影响。 对于更复杂的场景,还可以引入其他改进方法,比如结合余弦相似度进行文本间的距离测量[^3]。 ### Python 实现片段 以下是一个简单的Python实现片段供参考: ```python import math from collections import Counter def compute_tf(texts): """计算词频""" tf_matrix = [] for text in texts: words = text.split() word_count = Counter(words) total_words = len(words) tf_dict = {word: count / total_words for word, count in word_count.items()} tf_matrix.append(tf_dict) return tf_matrix def compute_idf(texts): """计算逆文档频率""" all_words = set(word for text in texts for word in text.split()) N = len(texts) idf_dict = {} for word in all_words: nt = sum(1 for text in texts if word in text.split()) idf_dict[word] = math.log(N / (nt + 1)) # 平滑处理 return idf_dict def compute_tfidf(tf_matrix, idf_dict): """计算TF-IDF""" tfidf_matrix = [] for tf_doc in tf_matrix: tfidf_doc = {word: tf * idf_dict.get(word, 0) for word, tf in tf_doc.items()} tfidf_matrix.append(tfidf_doc) return tfidf_matrix ``` 问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值