『GitHub项目圈选01』一款构建AI数字人项目开源了!自动实现音视频同步!

从本周开始,小圈正式推出『GitHub项目圈选周刊』计划,精选一些小圈遇到的或行业内大佬们推荐的好玩、有趣、实用、超前的开源项目,以周刊文章形式分享给大家观阅学习,以望一起学习,共同进步。

🔥🔥🔥本周GitHub项目圈选****: 主要包含音视频同步、多代理框架、3D对象模型、适用于开发者的演示文档构建工具、网页程序打包、自构建CRUD应用等热点项目。

1、Video-Tetalking

Video-ReTalking 是一个利用AI实现视频人物嘴型与输入的声音同步的创新技术。简单来说,就是输入任意一个视频和一个音频文件,在生成的新视频中,人物的嘴型会与音频同步。

它不仅可以让嘴型与声音同步,还可以根据声音改变视频中人物的表情。整个过程不需要用户干预,都是自动完成的。很多博主大佬通过此项目构建了属于自己的AI数字人,是不是很有意思。

Star量:2.5K+

在线体验:https://colab.research.google.com/github/vinthony/video-retalking/blob/main/quick_demo.ipynb

项目地址:https://github.com/OpenTalker/video-retalking

系统为实现这一目标,分解为三个连续的任务:

  • 具有规范表达的人脸视频生成;

  • 音频驱动的口型同步;

  • 面部增强以提高照片真实感。

给定一个头部说话的视频,首先使用 表情编辑网络 根据相同的表情模板修改每一帧的表情,从而产生具有规范表情的视频。

然后将该视频与给定的音频一起输入到口型同步网络以生成口型同步视频。

最后,通过身份感知面部增强网络和后处理来提高合成面部的照片真实感。

以上所有三个步骤都使用基于学习的方法,并且所有模块都可以在顺序管道中处理,无需任何用户干预。

2、Autogen

Autogen 是微软团队研发的一个多代理框架,利用它可以轻松定制一系列工作任务,简直太强大了。

Star量:14.2K+

项目地址:https://github.com/microsoft/autogen

举一个例子来说,我们要实现一个爬虫程序,抓取并保存网页图片。如果把这个任务丢给 ChatGPT,它会直接返回一串可执行代码,但是代码通常会存在问题,例如执行报错、缺少依赖等,你需要反复跟 ChatGPT 对话来完善程序。

当然,我们也可以设定一个复杂 Prompt,要求它调用 ChatGPT 的代码执行插件,如果存在报错,则继续修正程序。(案例来源:Barret李靖)

但是这个任务如果交给 AutoGen 来实现,将会变得无比简单,几行代码就可以搞定:

  • 定义一个 Assistant Agent,它的任务是解决问题

  • 定义一个 UserProxy Agent,它的任务是替代人询问问题,同时在本地执行程序

这两个 Agent 都不需要给他们设置 Prompt。当我们把爬虫任务交给 UserProxy 后,它会理解任务, 然后询问 Assistant 应该如何做,Assistant 会把操作过程告诉 UserProxy,接着 UserProxy 会根据指示在本地安装依赖,然后创建文件执行代码,如果执行出现错误,它会把详细报错提交给 Assistant,依次循环,直到可以获取到最终的结果。 任务结束的时候,你会看到目标图片已经保存到本地磁盘了。

3、shap-e

shap-e 是OpenAI(ChatGPT开发商)开源的一款新模型,用来生成以文本或图像为条件的 3D 对象。以其创新方法改变了 3D 应用领域。允许用户在计算机上无缝运行它,而无需 OpenAI API 密钥或互联网连接。

Star量:10.5K+

项目地址:https://github.com/openai/shap-e

下图便是“An airplane that looks like a banana” 的 3D 图。而它的使用也非常简单,安装一个包即可:

pip install -e .

该项目最好搭配3D设计器一起使用!对于3D设计师非常有帮助。

4、Slidev

Slidev 是一款专门为开发者打造的演示文稿工具。通过Slidev,我们只要使用熟悉的Markdown就可以做出炫酷的PPT来,同时拥有支持HTML和Vue组件的能力,并且能够呈现像素级完美的布局。

Star量:28.5K+

官方地址:cn.sli.dev

项目地址:https://github.com/slidevjs/slidev

作为一个习惯于编码还不习惯于汇报的普通程序员,PPT 这种东西,制作起来实在是有难度。无论是用PowerPoint,WPS, 使用时总是无从下手。而 Slidev 这款工具正好适合,搭配md文档,效率极高,功能强大,令人惊喜。

5、Pake

Pake 是一个用 Rust语言 开发的轻量级工具,可以将网页打包成桌面应用。很适合想打包WEB应用的人群进行使用。毕竟Web应用只能基于浏览器进行使用,而Pake可以将其打包作为独立应用进行使用。

Star量:18.9K+

项目地址:https://github.com/tw93/Pake

相比传统的 Electron 打包,Pake 打包出来的应用体积小20倍左右,并且性能和体验也优于JS框架。

Pake 不仅可以简单地打包网页,还实现了快捷键透传、沉浸式窗口、拖拽、样式改写、去广告等功能,可以深度定制产品的风格。

Pake 支持Mac、Windows和Linux系统,可以将同一个网页在多个平台打包成桌面应用分发。

▲ 图片来源于网络

6、Refine

refine 是一个基于React的项目,是一个开源的、无头的 Web 应用框架,旨在帮助用户自由构建CRUD(创建、读取、更新、删除)应用程序,而不受任何约束。

Star量:15.7K+

官方地址:refine.dev

项目地址:https://github.com/refinedev/refine

它提供了灵活性和可定制性,让开发人员能够根据其需求构建CRUD应用程序。Refine使应用程序的开发更加自由,减少了开发周期,同时提供了丰富的功能。

它具有以下主要功能和核心优势:

  • 提供了内部钩子和组件,简化了开发过程并消除了重复任务。

  • 支持身份验证、访问控制、路由、网络通信等关键方面的行业标准解决方案。

  • 采用无头设计,提供无限样式定制选项,并与自定义设计或 UI 框架 (如 TailwindCSS) 完美配合使用。

  • 可以集成 Ant Design,Material UI,Mantine 和 Chakra UI 等流行 UI 库快速启动项目。

此外,refine 还具有以下特点:

  • 零配置,在一分钟内完成设置

  • 连接器支持 15+ 后端服务

  • 支持 Next.js 或 Remix 进行服务器渲染 (SSR)

以上就是本周GitHub圈选的六款开源项目,有兴趣的同学可以前往GitHub下载使用!!如果你喜欢本期的内容,欢迎点个关注,我们会定期推送优质的开源项目。

写到最后

感谢您的一路陪伴,用代码构建世界,一起探索充满未知且奇妙的魔幻旅程。如果您对Python编程技巧、好玩实用的开源项目、行业新知趣事和各类技术干货等充满兴趣,那么不要错过未来我为大家奉上的精彩内容!点击_关注_,让您的探索学习之旅更加丰富多彩,我们一同成长,一同前行!🚀💻📚

求一键三连_:_点赞、转发、在看

↓推荐关注↓

公众号「Python兴趣圈」内回复关键字“电子书”领取PDF格式的电子书籍(Python入门、异步编程、网络爬虫、高性能编程、数据分析与挖掘实战、Spring、Linux、CSS、VUE、自动化测试、程序员面试宝典等)。

四款国内外远程桌面软件横测:ToDesk、向日葵、TeamViewer、AnyDesk

新一代开源语音库CoQui TTS冲到了GitHub 20.5k Star

● 最新最全 VSCODE 插件推荐(2023版)

又发现3款GPT-4工具,免费,强烈推荐

Pandas 28种常用方法使用总结

<think>好的,我现在要帮用户了解短视频数字人开源大模型的技术实现步骤。首先,我需要明确用户的需求。用户提到了“短视频”、“数字人”、“开源”、“大模型”、“技术实现”和“操作步骤”这几个关键词,所以核心是要知道如何利用开源的大模型来实现数字人技术在短视频中的应用,具体步骤是怎样的。 接下来,我应该先回忆一下相关的技术知识。数字人技术通常涉及3D建模、动作捕捉、语音合成、AI驱动等。开源的大模型可能包括像阿里巴巴的EchoMimic或者其他类似项目。根据用户提供的引用,特别是引用[3]提到的EchoMimic,这可能是一个关键点。另外,引用[2]提到的Video-ReTalking技术,用于唇形同步,这也是数字人技术的一部分。 首先,我需要确定技术实现的基本流程。通常,数字人的创建步骤可能包括:数据采集、模型训练、动作与语音驱动、唇形同步、视频合成等。结合开源大模型,可能需要使用预训练的模型,然后进行微调或者直接应用。 然后,考虑用户提到的操作步骤。用户可能希望知道从零开始如何操作,比如选择什么工具、如何使用开源模型、如何集成到短视频制作中。例如,使用EchoMimic进行数字人生成,结合Video-ReTalking进行唇形同步,最后生成视频。 另外,需要注意技术实现中的关键点,比如数据准备、模型训练的计算资源、实时性要求等。短视频对实时生成可能要求不高,但需要高效的渲染和合成速度。 还需要检查是否有遗漏的步骤,比如是否需要3D建模软件,或者是否完全依赖AI生成。开源项目可能提供了一些自动化工具,减少了手动建模的需要。例如,EchoMimic可能提供了数字人生成的端到端解决方案,用户只需要提供音频和文本,就能生成对应的数字人视频。 还要考虑用户的技术背景。用户可能有一定的技术基础,但未必熟悉所有细节,所以步骤需要清晰,分点说明,并且可能需要推荐具体的工具或框架,比如使用GitHub上的开源项目,如何克隆代码库,安装依赖,运行示例等。 然后,验证每个步骤的可行性。比如,数据采集阶段是否需要特定设备,或者是否可以依赖公开数据集。模型训练是否需要GPU资源,这对于普通用户可能是个门槛,但开源项目可能已经提供了预训练模型,用户只需进行推理即可。 最后,整合所有信息,确保步骤逻辑清晰,涵盖从环境准备到最终部署的全流程,并且结合用户提供的引用内容,特别是引用[1]、[2]、[3]中的相关信息,确保引用正确,比如在提到数字人技术时引用[1],在唇形同步时引用[2],在开源大模型时引用[3]。 可能还需要考虑实际应用中的问题,比如如何调整数字人的外观、如何优化生成速度、如何处理不同语言的支持等。但用户主要关注操作步骤,所以这些可能作为后续优化的建议,而不是核心步骤。 总结下来,操作步骤可能包括: 1. 环境准备与工具选择 2. 数字人建模与驱动 3. 语音与唇形同步处理 4. 视频合成与后期处理 5. 部署与优化 每个步骤下需要详细说明使用的工具、方法和具体操作,比如使用EchoMimic进行数字人生成,使用Video-ReTalking进行唇形同步,使用FFmpeg进行视频合成等。同时,需要确保引用正确,比如在提到数字人技术时引用[1],在唇形同步时引用[2],在开源大模型时引用[3]。</think>### 短视频数字人开源大模型技术实现操作步骤 #### 1. **环境准备与工具选择** - **硬件要求**: 建议配置GPU(如NVIDIA RTX 3090及以上)以加速模型推理与训练。 - **软件依赖**: - 安装Python 3.8+、PyTorch、TensorFlow等深度学习框架。 - 使用Git克隆开源项目仓库(如阿里巴巴的EchoMimic[^3])。 ```bash git clone https://github.com/alibaba/EchoMimic.git ``` - **数据集准备**: 收集或使用公开数据集(如VoxCeleb、GRID),包含人物视频、音频及对应文本。 #### 2. **数字人建模与驱动** - **3D建模**: 使用Blender或开源工具生成基础数字人模型,或直接调用预训练模型生成虚拟形象[^1]。 - **动作驱动**: - 通过关键点检测(如OpenPose)提取真人视频中的动作数据。 - 使用EchoMimic等大模型将动作数据映射到数字人模型,实现肢体和表情驱动。 ```python # 示例:调用EchoMimic驱动接口 from echomimic import Driver driver = Driver(model_path="pretrained/echomimic.pt") animations = driver.generate_pose(video_input) ``` #### 3. **语音与唇形同步处理** - **语音合成**: 使用TTS模型(如Tacotron2)生成音频文件。 - **唇形同步**: 调用Video-ReTalking技术[^2],将音频与数字人嘴型匹配: ```python from video_retalking import sync_lip synced_video = sync_lip(input_video, input_audio) ``` #### 4. **视频合成与后期处理** - **多模态融合**: 将驱动后的数字人动作、唇形同步视频与背景合成。 - **渲染优化**: 使用FFmpeg或Unreal Engine进行光影、分辨率增强。 ```bash ffmpeg -i animation.mp4 -i audio.wav -c:v libx264 -c:a aac output.mp4 ``` #### 5. **部署与优化** - **轻量化部署**: 使用ONNX或TensorRT优化模型推理速度。 - **实时交互**: 集成到短视频平台API,支持用户输入文本/音频实时生成数字人内容[^1]。 --- ### 技术实现示意图 $$ \text{输入} \xrightarrow{\text{语音/文本}} \text{TTS} \xrightarrow{\text{唇形同步}} \text{数字人驱动} \xrightarrow{\text{渲染}} \text{输出视频} $$ ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孜孜孜孜不倦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值