
Ruby - Misc #10278

[RFC] st.c: use ccan linked list

09/22/2014 05:32 AM - normalperson (Eric Wong)

Status: Closed

Priority: Normal

Assignee: normalperson (Eric Wong)

Description

Mainly posting this for documentation purposes because it seems like

an obvious thing to try given we have ccan/list nowadays.

Having shorter code along branchless insert/delete, and using a common

linked-list API is very appealing.

On the other hand, benchmark results are a mixed bag:

http://80x24.org/bmlog-20140922-032221.13002

 Also, I may have introduced new bugs the tests didn't catch.

The st_foreach* functions get a bit strange when dealing with

packed-to-unpacked transitions while iterating.

Great thing: bighash is faster (as expected) because of branchless

linked list insertion. However, the major speedup in bighash probably

isn't too important, most hashes are small and users never notice.

vm2_bighash* 1.222

 Also, we could introduce rb_hash_new_with_size() for use insns.def

(newhash) if people really care about the static bighash case (I don't

think many do).

Real regressions, iteration seems more complex because loop conditions

are more complex :<

hash_keys 0.978

hash_values 0.941

 However, hash_keys/values regressions are pretty small.

Things that worry me:

vm1_attr_ivar* 0.736

vm1_attr_ivar_set* 0.845

 WTF? I reran the attr_ivar tests, and the numbers got slightly better:

 ["vm1_attr_ivar",

 [[1.851297842,

 1.549076322,

 1.623306027,

 1.956916541,

 1.533218607,

 1.554089054,

 1.702590516,

 1.789863782,

 1.711815018,

 1.851260599],

 [1.825423191,

 1.824934062,

 1.542471471,

 1.868502091,

 1.79106375,

07/17/2025 1/7

 1.884568825,

 1.850712387,

 1.797538962,

 2.165696827,

 1.866671482]]],

 ["vm1_attr_ivar_set",

 [[1.926496052,

 2.04742421,

 2.025571131,

 2.047656291,

 2.043747069,

 2.099586827,

 1.953769267,

 2.017580504,

 2.440432603,

 2.111254634],

 [2.365839125,

 2.076282818,

 2.112784977,

 2.118754445,

 2.091752673,

 2.161164561,

 2.107439445,

 2.128147747,

 2.945295069,

 2.131679632]]]]

Elapsed time: 91.963235593 (sec)

benchmark results:

minimum results in each 10 measurements.

Execution time (sec)

name orig stll

loop_whileloop 0.672 0.670

vm1_attr_ivar* 0.861 0.872

vm1_attr_ivar_set* 1.255 1.406

Speedup ratio: compare with the result of `orig' (greater is better)

name stll

loop_whileloop 1.002

vm1_attr_ivar* 0.987

vm1_attr_ivar_set* 0.892

 Note: these tests do not even hit st, and even if they did, these are

tiny tables which are packed so the linked-list implementation has no

impact (especially not on lookup tests)

So yeah, probably something messy with the CPU caches.

I always benchmark with the performance CPU governor, and the

rerun ivar numbers are run with CPU pinned to a single core.

CPU: AMD FX-8320 Maybe I can access my other systems later.

Related issues:

Related to Ruby - Feature #10321: [PATCH] test st_foreach{,_check} for packed... Closed 10/03/2014

Associated revisions

Revision d8748874cca191f2244595d25f95b091dd423150 - 06/25/2015 07:01 PM - Eric Wong

st.c: use ccan linked-list

This improves the bm_vm2_bighash benchmark significantly by

removing branches during insert, but slows down anything

requiring iteration with the more complex loop termination

checking.

Speedup ratio of 1.10 - 1.20 is typical for the vm2_bighash

benchmark.

07/17/2025 2/7

include/ruby/st.h (struct st_table): hide struct list_head

st.c (struct st_table_entry): adjust struct

(head, tail): remove shortcut macros

(st_head): new wrapper function

(st_init_table_with_size): adjust to new struct and API

(st_clear): ditto

(add_direct): ditto

(unpack_entries): ditto

(rehash): ditto

(st_copy): ditto

(remove_entry): ditto

(st_shift): ditto

(st_foreach_check): ditto

(st_foreach): ditto

(get_keys): ditto

(get_values): ditto

(st_values_check): ditto

(st_reverse_foreach_check): ditto (unused)

(st_reverse_foreach): ditto (unused)

[ruby-core:69726] [Misc #10278]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51034 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision d8748874 - 06/25/2015 07:01 PM - Eric Wong

st.c: use ccan linked-list

This improves the bm_vm2_bighash benchmark significantly by

removing branches during insert, but slows down anything

requiring iteration with the more complex loop termination

checking.

Speedup ratio of 1.10 - 1.20 is typical for the vm2_bighash

benchmark.

include/ruby/st.h (struct st_table): hide struct list_head

st.c (struct st_table_entry): adjust struct

(head, tail): remove shortcut macros

(st_head): new wrapper function

(st_init_table_with_size): adjust to new struct and API

(st_clear): ditto

(add_direct): ditto

(unpack_entries): ditto

(rehash): ditto

(st_copy): ditto

(remove_entry): ditto

(st_shift): ditto

(st_foreach_check): ditto

(st_foreach): ditto

(get_keys): ditto

(get_values): ditto

(st_values_check): ditto

(st_reverse_foreach_check): ditto (unused)

(st_reverse_foreach): ditto (unused)

[ruby-core:69726] [Misc #10278]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51034 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision d3725a86dee7c80dba1e16110545ff69c4ad9e1d - 06/26/2015 10:32 PM - Eric Wong

st.c: use ccan linked-list (try 2)

This improves the bm_vm2_bighash benchmark significantly by

removing branches during insert, but slows down anything

requiring iteration with the more complex loop termination

checking.

Speedup ratio of 1.10 - 1.20 is typical for the vm2_bighash

benchmark.

include/ruby/st.h (struct st_table): hide struct list_head

st.c (struct st_table_entry): adjust struct

(head, tail): remove shortcut macros

(st_head): new wrapper function

(st_init_table_with_size): adjust to new struct and API

07/17/2025 3/7

(st_clear): ditto

(add_direct): ditto

(unpack_entries): ditto

(rehash): ditto

(st_copy): ditto

(remove_entry): ditto

(st_shift): ditto

(st_foreach_check): ditto

(st_foreach): ditto

(get_keys): ditto

(get_values): ditto

(st_values_check): ditto

(st_reverse_foreach_check): ditto (unused)

(st_reverse_foreach): ditto (unused)

[ruby-core:69726] [Misc #10278]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51044 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision d3725a86 - 06/26/2015 10:32 PM - Eric Wong

st.c: use ccan linked-list (try 2)

This improves the bm_vm2_bighash benchmark significantly by

removing branches during insert, but slows down anything

requiring iteration with the more complex loop termination

checking.

Speedup ratio of 1.10 - 1.20 is typical for the vm2_bighash

benchmark.

include/ruby/st.h (struct st_table): hide struct list_head

st.c (struct st_table_entry): adjust struct

(head, tail): remove shortcut macros

(st_head): new wrapper function

(st_init_table_with_size): adjust to new struct and API

(st_clear): ditto

(add_direct): ditto

(unpack_entries): ditto

(rehash): ditto

(st_copy): ditto

(remove_entry): ditto

(st_shift): ditto

(st_foreach_check): ditto

(st_foreach): ditto

(get_keys): ditto

(get_values): ditto

(st_values_check): ditto

(st_reverse_foreach_check): ditto (unused)

(st_reverse_foreach): ditto (unused)

[ruby-core:69726] [Misc #10278]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51044 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision c31b0def42942c7d9f61b87e9aedf665363970ae - 06/29/2015 06:10 PM - Eric Wong

st.c: use ccan linked-list (try 3)

This improves the bm_vm2_bighash benchmark significantly by

removing branches during insert, but slows down anything

requiring iteration with the more complex loop termination

checking.

Speedup ratio of 1.10 - 1.20 is typical for the vm2_bighash

benchmark.

v3 - st_head calculates list_head address in two steps

to avoid a bug in old gcc 4.4 (Debian 4.4.7-2)

bug which incorrectly warned with:

warning: dereferencing pointer ‘({anonymous})’ does break

strict-aliasing rules

include/ruby/st.h (struct st_table): hide struct list_head

st.c (struct st_table_entry): adjust struct

(head, tail): remove shortcut macros

(st_head): new wrapper function

07/17/2025 4/7

(st_init_table_with_size): adjust to new struct and API

(st_clear): ditto

(add_direct): ditto

(unpack_entries): ditto

(rehash): ditto

(st_copy): ditto

(remove_entry): ditto

(st_shift): ditto

(st_foreach_check): ditto

(st_foreach): ditto

(get_keys): ditto

(get_values): ditto

(st_values_check): ditto

(st_reverse_foreach_check): ditto (unused)

(st_reverse_foreach): ditto (unused)

[ruby-core:69726] [Misc #10278]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51064 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision c31b0def - 06/29/2015 06:10 PM - Eric Wong

st.c: use ccan linked-list (try 3)

This improves the bm_vm2_bighash benchmark significantly by

removing branches during insert, but slows down anything

requiring iteration with the more complex loop termination

checking.

Speedup ratio of 1.10 - 1.20 is typical for the vm2_bighash

benchmark.

v3 - st_head calculates list_head address in two steps

to avoid a bug in old gcc 4.4 (Debian 4.4.7-2)

bug which incorrectly warned with:

warning: dereferencing pointer ‘({anonymous})’ does break

strict-aliasing rules

include/ruby/st.h (struct st_table): hide struct list_head

st.c (struct st_table_entry): adjust struct

(head, tail): remove shortcut macros

(st_head): new wrapper function

(st_init_table_with_size): adjust to new struct and API

(st_clear): ditto

(add_direct): ditto

(unpack_entries): ditto

(rehash): ditto

(st_copy): ditto

(remove_entry): ditto

(st_shift): ditto

(st_foreach_check): ditto

(st_foreach): ditto

(get_keys): ditto

(get_values): ditto

(st_values_check): ditto

(st_reverse_foreach_check): ditto (unused)

(st_reverse_foreach): ditto (unused)

[ruby-core:69726] [Misc #10278]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@51064 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

History

#1 - 09/22/2014 06:34 AM - nobu (Nobuyoshi Nakada)

- Description updated

Probably, we should remove back member.

#2 - 09/22/2014 07:12 AM - normalperson (Eric Wong)

nobu@ruby-lang.org wrote:

Probably, we should remove back member.

07/17/2025 5/7

mailto:nobu@ruby-lang.org

 Just back and making it a singly-linked list?

st_delete would become O(n), unfortunately.

I also do not think going from 48 to 40 bytes makes a difference on most

x86-64 mallocs because (IIRC) the ABI requires 16-byte alignment.

If we can go from 48 => 32 bytes, great!

But I don't see what else to remove while keeping compatibility/speed :<

#3 - 09/22/2014 07:23 AM - nobu (Nobuyoshi Nakada)

- Status changed from Open to Assigned

Indeed.

#4 - 09/22/2014 06:58 PM - normalperson (Eric Wong)

Better (at least more explainable) results on the Xeon:

http://80x24.org/spew/m/st-ccan-list-bench@meltdown.html

Will test on the old Phenom II, too.

#5 - 09/22/2014 11:40 PM - normalperson (Eric Wong)

Eric Wong normalperson@yhbt.net wrote:

Will test on the old Phenom II, too.

 bighash looks nice as expected, haven't had time to look more into

these numbers but it's more consistent than the Vishera (FX-8320):

http://80x24.org/spew/m/20140922231823.GA21644%40dcvr.yhbt.net.html

#6 - 10/02/2014 06:58 PM - normalperson (Eric Wong)

A fixup patch for packed => unpacked transitions:

http://80x24.org/spew/m/st-ccan-ll-fixup-1%4080x24.org.txt

This needs tests, but it seems the packed => unpacked transitions during

iteration are totally untested in the current Ruby implementation.

Fortunately, it seems hash.c bans such transitions.

I suppose I can write tests to explicitly test for these changes,

but it may be easier and cheaper to bail out (possibly raise an error)

#7 - 10/03/2014 10:53 PM - normalperson (Eric Wong)

- Related to Feature #10321: [PATCH] test st_foreach{,_check} for packed-to-unpack change added

#8 - 10/04/2014 02:12 AM - normalperson (Eric Wong)

I like my original patch a little more, now, especially since it passes

the test in #10321. I'll squash the following simplfication on top

if I commit: http://80x24.org/spew/m/st-ll-foreach-simple%40whir.txt

#9 - 10/05/2014 12:49 PM - normalperson (Eric Wong)

Since we'll need it for st_reverse_foreach_check ([ruby-core:65408]),

I've implemented list_for_each_rev_safe to ccan/list:

https://lists.ozlabs.org/pipermail/ccan/2014-October/thread.html

It applies on top of two of my others intended for compile.c:

https://lists.ozlabs.org/pipermail/ccan/2014-September/thread.html

Also, updated bench results from the weird FX-8320 CPU after

simplifying the foreach loops a little:

http://80x24.org/spew/m/st-ll-v2-results%40whir.txt (good, I think)

Also http://80x24.org/spew/m/st-ccan-ll-fixup-1%4080x24.org.txt was

wrong and I rejected it due to improved tests in [Feature #10321]

#10 - 06/24/2015 08:20 AM - normalperson (Eric Wong)

- File 0001-st.c-use-ccan-linked-list-v2.patch added

07/17/2025 6/7

http://80x24.org/spew/m/st-ccan-list-bench@meltdown.html
mailto:normalperson@yhbt.net
http://80x24.org/spew/m/20140922231823.GA21644%40dcvr.yhbt.net.html
http://80x24.org/spew/m/st-ccan-ll-fixup-1%4080x24.org.txt
https://bugs.ruby-lang.org/issues/10321
http://80x24.org/spew/m/st-ll-foreach-simple%40whir.txt
https://blade.ruby-lang.org/ruby-core/65408
https://lists.ozlabs.org/pipermail/ccan/2014-October/thread.html
https://lists.ozlabs.org/pipermail/ccan/2014-September/thread.html
http://80x24.org/spew/m/st-ll-v2-results%40whir.txt
http://80x24.org/spew/m/st-ccan-ll-fixup-1%4080x24.org.txt
https://bugs.ruby-lang.org/issues/10321

Updated v2 patch.

I care about this more, now, since I want to try to make unordered hash an

option with st.c in the future for internals. This should make future changes

easier-to-understand with less code.

I'm willing to trade a little hash iteration (rare, I hope) performance

for better insert/delete performance (on big hashes).

Also, this has minor object size reductions (on 32-bit x86)

 text data bss dec hex filename

 14718 24 0 14742 3996 st.o-before

 14166 24 0 14190 376e st.o-after

#11 - 01/31/2018 08:12 AM - normalperson (Eric Wong)

- Status changed from Assigned to Closed

Files

0001-st.c-use-ccan-linked-list.patch 13.1 KB 09/22/2014 normalperson (Eric Wong)

0001-st.c-use-ccan-linked-list-v2.patch 16.8 KB 06/24/2015 normalperson (Eric Wong)

Powered by TCPDF (www.tcpdf.org)

07/17/2025 7/7

http://www.tcpdf.org

