
Ruby - Feature #11167

Allow an attr_ variant for query-methods that end with a question mark '?' character, such as: def

foo? returning @foo

05/21/2015 07:05 PM - shevegen (Robert A. Heiler)

Status: Rejected

Priority: Normal

Assignee:

Target version:

Description

Hi guys,

Hi nobu :)

Also hi matz if matz reads this, and of course the rest of the core

team and everyone else.

Today on IRC, this mini-discussion happened (I show a snippet):

<apeiros> I really miss attr_query or whatever you want to name it

<apeiros> which would generate a ? method too

<jhass> apeiros: crystal has :P getter?

<apeiros> nice

 Ok, so the language crystal has something ruby does not have.

We can't let those newcomers get away with making ruby look old

now can we!

I use ruby not crystal but I very often use methods that end

with a '?' query mark in ruby. It helps me in simple if clauses

such as:

if hash.has_key?

if hash.key?

if cat.is_hungry?

 (In the latter, it might be a cat of class Cat instance, with

an instance variable called @is_hungry, and when the cat is

fed with food, it is not hungry logically.)

We can generate these @ivars through attr_* right now as is

already, such as:

attr_reader :foo

def foo; @foo; end

attr_writer :foo

def foo=(i); @foo = i; end

attr_accessor :foo

^^^ Combines the above two methods into one.

 But we have no way to designate methods that end via '?'.

I do not know which API call would be nice. apeiros on

IRC suggested attr_query

I am fine with that. (The name is secondary for me, I

would like to have this feature available - what name

it would then have is not the main issue for me.)

07/17/2025 1/4

apeiros then also suggested this syntax:

All attr_* that would end with a ? token, would be a

combination of attr_reader and also a variant of the

above that has a '?' token, so for example:

attr_reader :foo?

 Would create both a method foo() and foo?().

People who do not need this, can continue to use:

attr_reader :foo

 just fine.

So perhaps this suggestion is even better than

a new method (such as through attr_query())

(I also have added one more line from apeiros,

not sure if I understood it, but I think the

above explanation should suffice - here is the

other suggestion he did:)

apeiros> e.g. attr_reader :foo? -> foo? // attr_accessor :foo? -> foo= + foo? // all with @foo of

course. and foo? returning true/false.

 Ok, that's it.

Thanks for reading!

Related issues:

Related to Ruby - Feature #12046: Allow attr_reader :foo? to define instance ... Rejected

Is duplicate of Ruby - Feature #10720: A proposal for something like: attr_... Rejected

History

#1 - 05/21/2015 11:02 PM - nobu (Nobuyoshi Nakada)

- Is duplicate of Feature #10720: A proposal for something like: attr_reader :foo? - with the trailing '?' question mark added

#2 - 05/21/2015 11:03 PM - nobu (Nobuyoshi Nakada)

- Description updated

#3 - 05/22/2015 12:43 PM - matz (Yukihiro Matsumoto)

Hi,

Is there any real-world use-case for the proposal?

It seems

 def foo?

 @foo

 end

 is just fine.

Matz.

#4 - 05/22/2015 03:28 PM - djberg96 (Daniel Berger)

Abandoned all hope:

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/5796

https://www.ruby-forum.com/topic/135195

#5 - 05/22/2015 05:44 PM - spatulasnout (B Kelly)

Hi Matz,

07/17/2025 2/4

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/5796
https://www.ruby-forum.com/topic/135195

Yukihiro Matsumoto wrote:

Is there any real-world use-case for the proposal?

 I've wanted this feature for years. :)

Here's an example from code I'm working with today:

 def startup_complete?

 @startup_complete

 end

 I would have preferred:

 attr_reader :startup_complete?

 It seems

 def foo?

 @foo

 end

 is just fine.

 Perhaps fine, but clunky. :)

In other words, why do we ever use attr_reader (etc.) at all?

We use attr_.* because it's preferable to writing a bunch of

mini-functions.

The reasons are identical for the '?' variant.

Regards,

Bill

#6 - 05/23/2015 11:28 AM - duerst (Martin Dürst)

Daniel Berger wrote:

Abandoned all hope:

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/5796

https://www.ruby-forum.com/topic/135195

 I think that this shows that there are several people who really like to use a foo? getter with a foo= setter. What it doesn't show that there are enough

such people that it would balance out the confusion for those who think that a foo= setter goes together with a foo getter, at least by default.

With the current state, the main case is covered, nobody gets confused, and those who want a foo?/foo= pair can easily get it either as Matz showed

above (easily reduced to one line) or by redefining the attr_... methods; the later is also very easy as it is usually about the first example given when

explaining metaprogramming.

#7 - 02/16/2016 06:54 AM - matz (Yukihiro Matsumoto)

- Status changed from Open to Rejected

See #12046.

Matz.

#8 - 07/09/2019 12:08 AM - mame (Yusuke Endoh)

- Related to Feature #12046: Allow attr_reader :foo? to define instance method foo? for accessing @foo added

#9 - 01/10/2020 06:33 AM - anders (Anders Bälter)

Like that!

sudo (Sudo Nice) wrote:

07/17/2025 3/4

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/5796
https://www.ruby-forum.com/topic/135195
https://bugs.ruby-lang.org/issues/12046

How about implementing it similarly to Crystal?

attr_accessor? :foo

https://bugs.ruby-lang.org/issues/5781#note-16

Powered by TCPDF (www.tcpdf.org)

07/17/2025 4/4

https://bugs.ruby-lang.org/issues/5781#note-16
http://www.tcpdf.org

