
Ruby - Feature #12079

Loosening the condition for refinement

02/16/2016 01:29 PM - sawa (Tsuyoshi Sawada)

Status: Rejected   

Priority: Normal   

Assignee: matz (Yukihiro Matsumoto)   

Target version:    

Description

There are a few non-standard ways of calling a method that cannot be used when the relevant method is a refined method:

a symbol used with & as a block via symbol to proc

a symbol used with send or __send__

For example, the following will fail:

    module Foo

      refine String

        def baz; end

      end

    end

    using Foo

    ["a", "b", "c"].map(&:baz) # => undefined method error

    "a".send(:baz) # => undefined method error

 I would like to propose to loosen the condition for refinement so that as long as the relevant construction (such as the use of & to

provoke Symbol#to_proc or calling of send or __send__) is within the valid scope of refinement, allow the call to the relevant

methods.

Related issues:

Has duplicate Ruby - Bug #12530: Module Refinements Rejected

Is duplicate of Ruby - Feature #9451: Refinements and unary & (to_proc) Closed

Is duplicate of Ruby - Feature #11476: Methods defined in Refinements cannot ... Closed

History

#1 - 02/20/2016 03:34 PM - sawa (Tsuyoshi Sawada)

To the list of relevant constructions, I would also like to add inject when it takes a symbol argument.

module Foo

  refine String do

    def baz a, b; a + b * 2 end

  end

end

using Foo

["x", "y", "z"].inject(:baz) # => undefined method error

["x", "y", "z"].inject("", :baz) # => undefined method error

 So my generalization for the target of my proposal is: Ruby core methods/constructions in which a(nother) method is called in the form of a symbol or

a string. There may be a few more of them that I have missed.

#2 - 02/21/2016 02:14 AM - sawa (Tsuyoshi Sawada)

There is a point that needs to be made clear regarding this proposal: whether the symbol or string used in the construction has to be a literal. I think

there would be use cases where the symbol/string is expressed as a more complex expression:

module Foo

  refine String do

    def baz; end

  end

end

def a

07/17/2025 1/2



  case some_expression

  when "x" then :baz

  when "y" then :bar

  end

end

using Foo

["a", "b", "c"].map(&(some_condition ? :baz : :bar))

"a".__send__("BAZ".downcase)

"a".send(a)

 In order for the proposal to be useful, I think the relevant symbol/string should not be restricted to literals. Furthermore, the location where the

expression is expanded to a symbol/string should not matter; solely the location of &, __send__, or send, etc. should matter. In above, while send is

within the scope of refinement for String#baz, a, which can be possibly expanded to :baz, is expanded outside of the scope of refinement. In such

cases too, I think the refinement should be effective.

#3 - 05/28/2016 09:55 AM - hsbt (Hiroshi SHIBATA)

- Status changed from Open to Assigned

- Assignee set to shugo (Shugo Maeda)

#4 - 06/24/2016 06:22 AM - shugo (Shugo Maeda)

- Assignee changed from shugo (Shugo Maeda) to matz (Yukihiro Matsumoto)

I would like to propose to loosen the condition for refinement so that as long as the relevant construction (such as the use of & to provoke

Symbol#to_proc or calling of send or send) is within the valid scope of refinement, allow the call to the relevant methods.

 What do you think, Matz?

#5 - 06/29/2016 03:25 AM - shugo (Shugo Maeda)

- Has duplicate Bug #12530: Module Refinements added

#6 - 06/29/2016 03:27 AM - matz (Yukihiro Matsumoto)

I agree that would be nicer to users. My concern is performance penalty.

Matz.

#7 - 09/08/2016 06:49 AM - shugo (Shugo Maeda)

- Is duplicate of Feature #9451: Refinements and unary & (to_proc) added

#8 - 09/08/2016 06:49 AM - shugo (Shugo Maeda)

- Is duplicate of Feature #11476: Methods defined in Refinements cannot be called via send added

#9 - 09/08/2016 06:51 AM - shugo (Shugo Maeda)

- Status changed from Assigned to Rejected

This issue will be addressed by #9451 and #11476.

Powered by TCPDF (www.tcpdf.org)

07/17/2025 2/2

https://bugs.ruby-lang.org/issues/9451
https://bugs.ruby-lang.org/issues/11476
http://www.tcpdf.org

