
Ruby - Feature #13552

[PATCH 0/2] reimplement ConditionVariable, Queue, SizedQueue using ccan/list

05/10/2017 12:16 AM - normalperson (Eric Wong)

Status: Closed

Priority: Normal

Assignee: normalperson (Eric Wong)

Target version: 2.5

Description

The performance improvement increases as the number of waiters

increases, due to avoiding the O(n) behavior of rb_ary_delete on

the waiting thread. Uncontended queues and condition variables

performance is not altered significantly.

Function entry cost is slightly increased for ConditionVariable,

since the data pointer is separately allocated and not embedded

into the RVALUE slot.

name |trunk |built

----------------------|------:|------:

vm_thread_condvar1 | 0.858| 0.858

vm_thread_condvar2 | 1.003| 0.804

vm_thread_queue | 0.131| 0.129

vm_thread_sized_queue | 0.265| 0.251

vm_thread_sized_queue2| 0.892| 0.859

vm_thread_sized_queue3| 0.879| 0.845

vm_thread_sized_queue4| 0.599| 0.486

Speedup ratio: compare with the result of `trunk' (greater is better)

name |built

----------------------|------:

vm_thread_condvar1 | 0.999

vm_thread_condvar2 | 1.246

vm_thread_queue | 1.020

vm_thread_sized_queue | 1.057

vm_thread_sized_queue2| 1.039

vm_thread_sized_queue3| 1.041

vm_thread_sized_queue4| 1.233

Associated revisions

Revision ea1ce47fd7f2bc9023e9a1391dbadcfaf9e892ce - 05/19/2017 06:53 PM - Eric Wong

thread_sync.c: rewrite the rest using using ccan/list

The performance improvement increases as the number of waiters

increases, due to avoiding the O(n) behavior of rb_ary_delete on

the waiting thread. Uncontended queues and condition variables

performance is not altered significantly.

Function entry cost is slightly increased for ConditionVariable,

since the data pointer is separately allocated and not embedded

into the RVALUE slot.

[ruby-core:81235] [Feature #13552]

name trunk built

vm_thread_condvar1 0.858 0.858

vm_thread_condvar2 1.003 0.804

vm_thread_queue 0.131 0.129

vm_thread_sized_queue 0.265 0.251

vm_thread_sized_queue2 0.892 0.859

07/17/2025 1/6

name trunk built

vm_thread_sized_queue3 0.879 0.845

vm_thread_sized_queue4 0.599 0.486

Speedup ratio: compare with the result of `trunk' (greater is better)

name built

vm_thread_condvar1 0.999

vm_thread_condvar2 1.246

vm_thread_queue 1.020

vm_thread_sized_queue 1.057

vm_thread_sized_queue2 1.039

vm_thread_sized_queue3 1.041

vm_thread_sized_queue4 1.233

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58805 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision ea1ce47f - 05/19/2017 06:53 PM - Eric Wong

thread_sync.c: rewrite the rest using using ccan/list

The performance improvement increases as the number of waiters

increases, due to avoiding the O(n) behavior of rb_ary_delete on

the waiting thread. Uncontended queues and condition variables

performance is not altered significantly.

Function entry cost is slightly increased for ConditionVariable,

since the data pointer is separately allocated and not embedded

into the RVALUE slot.

[ruby-core:81235] [Feature #13552]

name trunk built

vm_thread_condvar1 0.858 0.858

vm_thread_condvar2 1.003 0.804

vm_thread_queue 0.131 0.129

vm_thread_sized_queue 0.265 0.251

vm_thread_sized_queue2 0.892 0.859

vm_thread_sized_queue3 0.879 0.845

vm_thread_sized_queue4 0.599 0.486

Speedup ratio: compare with the result of `trunk' (greater is better)

name built

vm_thread_condvar1 0.999

vm_thread_condvar2 1.246

vm_thread_queue 1.020

vm_thread_sized_queue 1.057

vm_thread_sized_queue2 1.039

vm_thread_sized_queue3 1.041

vm_thread_sized_queue4 1.233

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58805 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision 17bf0c0001179858aacabbfe1b8bf2960e6b9083 - 07/21/2017 07:06 PM - Eric Wong

07/17/2025 2/6

NEWS: add entries for thread_sync.c changes

I'm slightly worried about some external code subclassing

ConditionVariable, Queue, and SizedQueue and relying on them

being Structs. However, they only started being Structs with

Ruby 2.1, and were implemented in pure Ruby before that; so

hopefully nobody notices that implementation detail.

Also, note the Mutex change as it may affect program design

when space can be saved.

NEWS: entries for [Feature #13552] and [Feature #13517]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@59385 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision 17bf0c00 - 07/21/2017 07:06 PM - Eric Wong

NEWS: add entries for thread_sync.c changes

I'm slightly worried about some external code subclassing

ConditionVariable, Queue, and SizedQueue and relying on them

being Structs. However, they only started being Structs with

Ruby 2.1, and were implemented in pure Ruby before that; so

hopefully nobody notices that implementation detail.

Also, note the Mutex change as it may affect program design

when space can be saved.

NEWS: entries for [Feature #13552] and [Feature #13517]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@59385 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

History

#1 - 05/10/2017 12:17 AM - normalperson (Eric Wong)

- File 0002-thread_sync.c-rewrite-the-rest-using-using-ccan-list.patch added

#2 - 05/10/2017 12:19 AM - normalperson (Eric Wong)

pull request:

The following changes since commit 6ad7c53ba9fb688ea1070a2319a64f0cc32c08e8:

test/thread: relax internal implementation check in error message (2017-05-09 19:52:10 +0000)

are available in the git repository at:

git://80x24.org/ruby.git sync-list

for you to fetch changes up to 4d77449e1c832d4398cdc07ef10b57e55bea1b81:

thread_sync.c: rewrite the rest using using ccan/list (2017-05-09 20:42:50 +0000)

Eric Wong (2):

thread_sync.c: rename mutex_waiter struct to sync_waiter

thread_sync.c: rewrite the rest using using ccan/list

thread_sync.c | 487 ++++++++++++++++++++++++++++++++++++++--------------------

1 file changed, 324 insertions(+), 163 deletions(-)

#3 - 05/18/2017 05:21 PM - normalperson (Eric Wong)

normalperson@yhbt.net wrote:

 thread_sync.c: rename mutex_waiter struct to sync_waiter

 thread_sync.c: rewrite the rest using using ccan/list

Any comment? Rebased patches against current trunk (r58783) available here:

https://80x24.org/spew/20170516033841.1795-1-e@80x24.org/raw

https://80x24.org/spew/20170516033841.1795-2-e@80x24.org/raw

 Thanks.

07/17/2025 3/6

mailto:normalperson@yhbt.net

Feature #13552: [PATCH 0/2] reimplement ConditionVariable, Queue, SizedQueue using ccan/list

https://bugs.ruby-lang.org/issues/13552#change-64734

#4 - 05/19/2017 02:24 AM - ko1 (Koichi Sasada)

- Status changed from Open to Assigned

- Assignee set to normalperson (Eric Wong)

- Target version set to 2.5

Sorry for late response.

Only one comment (maybe you passes all of tests, right?)

New data type should be RUBY_TYPED_WB_PROTECTED (they need to use write barriers correctly).

Do you want to try or should I modify?

Thanks,

Koichi

#5 - 05/19/2017 03:51 AM - normalperson (Eric Wong)

ko1@atdot.net wrote:

Sorry for late response.

 No problem.

Only one comment (maybe you passes all of tests, right?)

 Of course :)

New data type should be RUBY_TYPED_WB_PROTECTED (they need to use write barriers correctly).

Do you want to try or should I modify?

 I'm still not very familiar with RGenGC, but here is my try:

https://80x24.org/spew/20170519034419.GA29820@whir/raw

 I'm not sure how this helps performance, however. The Arrays

are constantly changing with push/pop and RGenGC works best for

stable (unchanging) objects (correct?)

Also, does setting RUBY_TYPED_WB_PROTECTED make sense for

rb_condvar and rb_mutex_t? They store no Ruby objects and

have no dmark callback.

Thanks.

#6 - 05/19/2017 06:39 AM - ko1 (Koichi Sasada)

https://80x24.org/spew/20170519034419.GA29820@whir/raw

 Thank you. Adding const helps us to recognize.

PACKED_STRUCT_UNALIGNED(struct rb_queue {

 struct list_head waitq;

 const VALUE que;

 int num_waiting;

});

 I'm not sure how this helps performance, however. The Arrays

are constantly changing with push/pop and RGenGC works best for

stable (unchanging) objects (correct?)

 Sorry, I can't understand your question.

07/17/2025 4/6

https://bugs.ruby-lang.org/issues/13552
https://bugs.ruby-lang.org/issues/13552#change-64734
mailto:ko1@atdot.net
https://80x24.org/spew/20170519034419.GA29820@whir/raw

Could you give me your question in other words?

Also, does setting RUBY_TYPED_WB_PROTECTED make sense for

rb_condvar and rb_mutex_t? They store no Ruby objects and

have no dmark callback.

 Yes, please. not wb protected objects become roots for all of minor gc.

No write is the best wb protected object.

#7 - 05/19/2017 08:11 AM - normalperson (Eric Wong)

ko1@atdot.net wrote:

https://80x24.org/spew/20170519034419.GA29820@whir/raw

 Thank you. Adding const helps us to recognize.

PACKED_STRUCT_UNALIGNED(struct rb_queue {

 struct list_head waitq;

 const VALUE que;

 int num_waiting;

});

Thank you for that advice! I will update tomorrow.

> I'm not sure how this helps performance, however. The Arrays

> are constantly changing with push/pop and RGenGC works best for

> stable (unchanging) objects (correct?)

Sorry, I can't understand your question.

Could you give me your question in other words?

Generational GC tries to avoid marking since "old" generation

does not change references.

However, the ->que in Queue/SizedQueue is always changing

because threads push/pop. When references are always changing

in Queues, so GC needs mark ->que frequently.

Also, does setting RUBY_TYPED_WB_PROTECTED make sense for

rb_condvar and rb_mutex_t? They store no Ruby objects and

have no dmark callback.

 Yes, please. not wb protected objects become roots for all of minor gc.

No write is the best wb protected object.

 Good to know! I will update and commit tomorrow.

#8 - 05/19/2017 06:53 PM - Anonymous

- Status changed from Assigned to Closed

Applied in changeset trunk|r58805.

thread_sync.c: rewrite the rest using using ccan/list

The performance improvement increases as the number of waiters

increases, due to avoiding the O(n) behavior of rb_ary_delete on

the waiting thread. Uncontended queues and condition variables

performance is not altered significantly.

Function entry cost is slightly increased for ConditionVariable,

since the data pointer is separately allocated and not embedded

into the RVALUE slot.

[ruby-core:81235] [Feature #13552]

07/17/2025 5/6

mailto:ko1@atdot.net
https://80x24.org/spew/20170519034419.GA29820@whir/raw
bugs.ruby-lang.org/issues/13552
https://bugs.ruby-lang.org/issues/13552

name trunk built

vm_thread_condvar1 0.858 0.858

vm_thread_condvar2 1.003 0.804

vm_thread_queue 0.131 0.129

vm_thread_sized_queue 0.265 0.251

vm_thread_sized_queue2 0.892 0.859

vm_thread_sized_queue3 0.879 0.845

vm_thread_sized_queue4 0.599 0.486

Speedup ratio: compare with the result of `trunk' (greater is better)

name built

vm_thread_condvar1 0.999

vm_thread_condvar2 1.246

vm_thread_queue 1.020

vm_thread_sized_queue 1.057

vm_thread_sized_queue2 1.039

vm_thread_sized_queue3 1.041

vm_thread_sized_queue4 1.233

Files

0001-thread_sync.c-rename-mutex_waiter-struct-to-sync_wai.patch 1.63 KB 05/10/2017 normalperson (Eric Wong)

0002-thread_sync.c-rewrite-the-rest-using-using-ccan-list.patch 21.3 KB 05/10/2017 normalperson (Eric Wong)

Powered by TCPDF (www.tcpdf.org)

07/17/2025 6/6

http://www.tcpdf.org

