
Ruby - Bug #19043

Segfault on macOS 11.7 while using StringScanner in multiple threads

10/06/2022 09:08 PM - keithdoggett (Keith Doggett)

Status: Open

Priority: Normal

Assignee:

Target version:

ruby -v: ruby 3.2.0dev (2022-09-27T18:58:28Z

master 5d4048e0bc) [x86_64-darwin19]

Backport: 2.7: UNKNOWN, 3.0: UNKNOWN, 3.1:

UNKNOWN

Description

During testing on our CI, one of the runners failed due to a segfault that appears to have originated from the StringScanner class,

specifically the scan_until method. The test ensures that we are able to properly parse strings in a multithreaded environment.

 def test_multithreaded

 parser = RGeo::WKRep::WKTParser.new

 data = fixtures.join("isere.wkt").read

 Array.new(100) do

 Thread.fork do

 parser.parse(data)

 end

 end.map(&:join)

 end

 Here's the parse method

 def parse(str)

 @mutex.synchronize do

 str = str.downcase

 @cur_factory = @exact_factory

 if @cur_factory

 @cur_factory_support_z = @cur_factory.property(:has_z_coordinate) ? true : false

 @cur_factory_support_m = @cur_factory.property(:has_m_coordinate) ? true : false

 end

 @cur_expect_z = nil

 @cur_expect_m = nil

 @cur_srid = @default_srid

 if @support_ewkt && str =~ /^srid=(\d+);/i

 str = $'

 @cur_srid = Regexp.last_match(1).to_i

 end

 begin

 start_scanner(str)

 obj = parse_type_tag

 if @cur_token && !@ignore_extra_tokens

 raise Error::ParseError, "Extra tokens beginning with #{@cur_token.inspect}."

 end

 ensure

 clean_scanner

 end

 obj

 end

 end

 Where the StringScanner is created and assigned to @scanner in start_scanner and @scanner is set to nil in clean_scanner.

According to the control frame information in the log, the error is caused in the scan_until method, but it might be due to gc_sweep

being run at some point.

Unfortunately since this happened on a CI system I don't have access to the diagnostic file. We've tried to replicate this locally

unsuccessfully. The best we've done is caused a deadlock while trying to join the threads, but cannot reliably reproduce that. Here's

a link to the CI run that caused the issue if that's helpful (https://github.com/rgeo/rgeo/actions/runs/3144578897/jobs/5110771257).

07/16/2025 1/2

https://github.com/rgeo/rgeo/actions/runs/3144578897/jobs/5110771257

If there's any tips on how to reproduce or anything you want me to try to get more information please let me know.

History

#1 - 10/11/2022 01:19 AM - nobu (Nobuyoshi Nakada)

This seems related to compaction-GC, since crashed at revert_stack_objects.

@tenderlovemaking (Aaron Patterson), any thoughts?

#2 - 10/11/2022 08:32 PM - eightbitraptor (Matt V-H)

keithdoggett (Keith Doggett) wrote:

If there's any tips on how to reproduce or anything you want me to try to get more information please let me know.

 @keithdogget I can see that you run with GC.auto_compact=true on CI (from here).

This looks like it is related to auto-compaction.

/Users/runner/.rubies/ruby-head/lib/libruby.3.2.dylib(gc_sweep+0x9f6) [0x108ebac46]

/Users/runner/.rubies/ruby-head/lib/libruby.3.2.dylib(newobj_alloc+0x19f) [0x108eb92cf]

/Users/runner/.rubies/ruby-head/lib/libruby.3.2.dylib(rb_wb_protected_newobj_of+0xab) [0x108eaacbb]

 GC is being triggered while allocating a new object, running a major and then compacting.

Have you tried replicating with GC.auto_compact=true and GC.stress=true?

#3 - 10/20/2022 09:35 PM - keithdoggett (Keith Doggett)

eightbitraptor (Matthew Valentine-House) wrote in #note-2:

Have you tried replicating with GC.auto_compact=true and GC.stress=true?

 Thanks for the response. We tried to replicate the crash with GC.stress=true but were unable to do so, although we were able to cause a few

deadlocks (though we're unsure what's causing it exactly). We even decomposed the method to test just the StringScanner related functionality in a

mutex to no avail.

I can keep trying to test it on my end, but the deadlocks seem to randomly happen. Maybe if I can figure out the cause of those that will give us more

info on the root cause the crash?

Files

multithread_crash.log 75.3 KB 10/06/2022 keithdoggett (Keith Doggett)

Powered by TCPDF (www.tcpdf.org)

07/16/2025 2/2

https://bugs.ruby-lang.org/users/73
https://github.com/rgeo/rgeo/blob/41db19a5e0cc3bf9d87cf7c12ced8c0d12b3ff91/test/test_helper.rb#L42
http://www.tcpdf.org

