
Ruby - Misc #19122

Use MADV_DONTNEED instead of MADV_FREE when freeing a Fiber's stack

11/11/2022 04:06 PM - smcgivern (Sean McGivern)

Status: Assigned

Priority: Normal

Assignee: ioquatix (Samuel Williams)

Description

I'd like to propose that Ruby stops using MADV_FREE when freeing a Fiber's stack, and switches to using MADV_DONTNEED even

when MADV_FREE is supported.

MADV_FREE is used in one place in the Ruby codebase, when freeing the stack of a freed Fiber:

https://git.ruby-lang.org/ruby.git/tree/cont.c#n683

The comment for fiber_pool_stack_free says:

// We advise the operating system that the stack memory pages are no longer being used.

// This introduce some performance overhead but allows system to relaim memory when there is press

ure.

 Where possible (i.e. on Linux 4.5 and later), fiber_pool_stack_free uses MADV_FREE over MADV_DONTNEED. This has the side

effect that memory statistics such as RSS will not reduce until and unless the OS actually reclaims that memory. If that doesn't

happen, then the reported memory usage via RSS will be much higher than the 'real' memory usage.

If this was pervasive throughtout the Ruby codebase then that would be one thing, but currently this is just for Fiber. This means that:

1. A program that doesn't use Fiber will have somewhat reliable RSS statistics on recent Linux.

2. A program that heavily uses Fiber (such as something using Async::HTTP) will see an inflated RSS statistic.

Go made a similar change to the one I'm proposing here for similar reasons: https://github.com/golang/go/issues/42330

While MADV_FREE is somewhat faster than MADV_DONTNEED, it doesn't affect many of the statistics that

MADV_DONTNEED does until the memory is actually reclaimed. This generally leads to poor user experience, like confusing

stats in top and other monitoring tools; and bad integration with management systems that respond to memory usage.

[...]

I propose we change the default to prefer MADV_DONTNEED over MADV_FREE, to favor user-friendliness and minimal

surprise over performance. I think it's become clear that Linux's implementation of MADV_FREE ultimately doesn't meet our

needs.

 As an aside, MADV_FREE was not used in Ruby 3.1 (https://bugs.ruby-lang.org/issues/19101), and I haven't found any bugs filed

about this behaviour other than that one.

History

#1 - 11/11/2022 04:06 PM - smcgivern (Sean McGivern)

@ioquatix (Samuel Williams) apologies for the direct assignment; you just seemed like the person who has the most knowledge and investment in the

current state of Fiber.

#2 - 11/21/2022 04:18 AM - ioquatix (Samuel Williams)

I don't have a strong opinion about this, but I'm generally against loosing performance.

Maybe it can be controlled using environment variable.

#3 - 11/25/2022 10:06 AM - smcgivern (Sean McGivern)

ioquatix (Samuel Williams) wrote in #note-2:

I don't have a strong opinion about this, but I'm generally against loosing performance.

Maybe it can be controlled using environment variable.

 Having this user-controllable works for me, although I don't know about the Ruby project's general stance on toggles like this.

07/18/2025 1/4

https://git.ruby-lang.org/ruby.git/tree/cont.c#n683
https://github.com/golang/go/issues/42330
https://bugs.ruby-lang.org/issues/19101
https://bugs.ruby-lang.org/users/3344

@ioquatix (Samuel Williams) is https://github.com/socketry/falcon-benchmark the right test suite to run here? I'm not sure if that's what you ran in

https://bugs.ruby-lang.org/issues/15997#note-19, or if that was slightly different.

I'm happy to try this out with the various options here to quantify the current state - just point me in the right direction :-)

#4 - 05/24/2023 03:08 PM - ioquatix (Samuel Williams)

https://github.com/ruby/ruby/pull/7855 should enable you to test different advice. Just bit shift it to the left to enable any MADV_... value to be

specified.

#5 - 05/25/2023 02:07 AM - ioquatix (Samuel Williams)

If you want to use a specific mode (OS specific), you can do this:

On Linux, find the mode, e.g. MADV_DONTNEED = 6 (

https://github.com/torvalds/linux/blob/933174ae28ba72ab8de5b35cb7c98fc211235096/arch/alpha/include/uapi/asm/mman.h#L50).

Shift it one bit to the left (i.e. multiply by 2) = 12.

Then run Ruby like this:

> RUBY_SHARED_FIBER_POOL_FREE_STACKS=12 ruby

 This will force the use of MADV_DONTNEED. However, no validation is done, so the OS may not accept it. So it will also emit a warning that this

behaviour is OS dependent and may crash your Ruby interpreter.

With this in place, you should be able to test your code/hypothesis/memory usage/performance.

As for making this the default, I suppose we could consider it but we'd need to confirm the performance impact. I would prefer to have high

performance by default. RSS is a poor measurement IMHO. What about USS and PSS? Are they impacted the same way? Can we subtract the

usage that can be later dropped?

#6 - 05/30/2023 12:27 PM - smcgivern (Sean McGivern)

ioquatix (Samuel Williams) wrote in #note-5:

If you want to use a specific mode (OS specific), you can do this:

On Linux, find the mode, e.g. MADV_DONTNEED = 6 (

https://github.com/torvalds/linux/blob/933174ae28ba72ab8de5b35cb7c98fc211235096/arch/alpha/include/uapi/asm/mman.h#L50).

Shift it one bit to the left (i.e. multiply by 2) = 12.

Then run Ruby like this:

> RUBY_SHARED_FIBER_POOL_FREE_STACKS=12 ruby

Thanks for adding this!

As for making this the default, I suppose we could consider it but we'd need to confirm the performance impact. I would prefer to have high

performance by default. RSS is a poor measurement IMHO. What about USS and PSS? Are they impacted the same way? Can we subtract the

usage that can be later dropped?

 I mean, as I said in the original description, this is the only part of Ruby that works this way, which makes it surprising. If usage of fibers becomes

more common in the wild, or MADV_FREE gets used in other areas where Ruby frees memory, then I would predict more reports noting this

behaviour. Other languages have reverted their usage of MADV_FREE for similar reasons.

We can construct another metric that gives us exactly what we want (for cAdvisor, we'd need something like

https://github.com/google/cadvisor/issues/3197), but not through PSS or USS; both of those track RSS closely here, at least in my tests. We need to

look at either active_anon + inactive_anon (for a cgroups memory.stat file), or LazyFree plus some other things I'm not sure about (for a process's

smaps_rollup). This won't be the default in most monitoring tools, or in top et al, so as I said above, that wouldn't necessarily stop issues coming in.

#7 - 04/03/2024 03:50 AM - hsbt (Hiroshi SHIBATA)

- Status changed from Open to Assigned

#8 - 03/04/2025 09:10 PM - ioquatix (Samuel Williams)

On the latest Linux kernel, the constants have changed:

MADV_DONTNEED = 4

MADV_FREE = 8

07/18/2025 2/4

https://bugs.ruby-lang.org/users/3344
https://github.com/socketry/falcon-benchmark
https://bugs.ruby-lang.org/issues/15997#note-19
https://github.com/ruby/ruby/pull/7855
https://github.com/torvalds/linux/blob/933174ae28ba72ab8de5b35cb7c98fc211235096/arch/alpha/include/uapi/asm/mman.h#L50
https://github.com/torvalds/linux/blob/933174ae28ba72ab8de5b35cb7c98fc211235096/arch/alpha/include/uapi/asm/mman.h#L50
https://github.com/google/cadvisor/issues/3197

 I did a quick comparison, creating 10,000 fibers x10 times in a loop:

samuel@aiko ~/D/s/memory-leak (main)> time RUBY_SHARED_FIBER_POOL_FREE_STACKS=8 bundle exec test.rb >/dev/null

<main>: warning: Setting RUBY_SHARED_FIBER_POOL_FREE_STACKS to a value greater than 1 is operating system spec

ific, and may cause crashes.

__

Executed in 841.07 millis fish external

 usr time 373.88 millis 441.00 micros 373.44 millis

 sys time 463.22 millis 168.00 micros 463.05 millis

samuel@aiko ~/D/s/memory-leak (main)> time RUBY_SHARED_FIBER_POOL_FREE_STACKS=16 bundle exec test.rb >/dev/nul

l

<main>: warning: Setting RUBY_SHARED_FIBER_POOL_FREE_STACKS to a value greater than 1 is operating system spec

ific, and may cause crashes.

__

Executed in 582.77 millis fish external

 usr time 357.66 millis 420.00 micros 357.24 millis

 sys time 220.90 millis 164.00 micros 220.74 millis

samuel@aiko ~/D/s/memory-leak (main)> time RUBY_SHARED_FIBER_POOL_FREE_STACKS=0 bundle exec test.rb >/dev/null

__

Executed in 444.61 millis fish external

 usr time 312.92 millis 503.00 micros 312.41 millis

 sys time 128.99 millis 0.00 micros 128.99 millis

 Also memory usage as we expected:

samuel@aiko ~/D/s/memory-leak (main)> RUBY_SHARED_FIBER_POOL_FREE_STACKS=16 bundle exec test.rb

<main>: warning: Setting RUBY_SHARED_FIBER_POOL_FREE_STACKS to a value greater than 1 is operating system spec

ific, and may cause crashes.

PID: 70235

Memory usage: 150.82 MB

Clearing fibers and garbage collecting...

Memory usage: 150.82 MB

samuel@aiko ~/D/s/memory-leak (main)> RUBY_SHARED_FIBER_POOL_FREE_STACKS=8 bundle exec test.rb

<main>: warning: Setting RUBY_SHARED_FIBER_POOL_FREE_STACKS to a value greater than 1 is operating system spec

ific, and may cause crashes.

PID: 70279

Memory usage: 151.63 MB

Clearing fibers and garbage collecting...

Memory usage: 73.63 MB

 Using the following test script:

#!/usr/bin/env ruby

require "memory/leak/system"

def print_memory_usage

 size = Memory::Leak::System.memory_usage(Process.pid)

 units = %w(B KB MB GB TB)

 unit = 0

 while size > 1024 && unit < units.size

 size /= 1024.0

 unit += 1

 end

 puts "Memory usage: %.2f %s" % [size, units[unit]]

end

puts "PID: #{Process.pid}"

10.times do |i|

 puts "Iteration: #{i}"

 # Create 10,000 fibers:

 fibers = 10_000.times.map do

 Fiber.new do

 Fiber.yield Fiber.current

 end.resume

 end

07/18/2025 3/4

 # Print memory usage:

 print_memory_usage

 puts "Clearing fibers and garbage collecting..."

 # Clear fibers:

 fibers.clear

 GC.start

 # Print memory usage:

 print_memory_usage

end

Powered by TCPDF (www.tcpdf.org)

07/18/2025 4/4

http://www.tcpdf.org

