Ruby - Bug #19374

Issue with Ractor.make_shareable with curried procs
01/24/2023 12:40 PM - luke-gru (Luke Gruber)

Status: Closed
Priority: Normal
Assignee: ko1 (Koichi Sasada)

Target version:

ruby -v: Backport: 2.7: UNKNOWN, 3.0: UNKNOWN, 3.1:
UNKNOWN, 3.2: UNKNOWN

Description
This works, but shouldn't:

class Worker
def start (&blk)
blk = blk.curry # bug in ruby allows sharing of non-shareable proc
Ractor.make_shareable (blk)
@ractor = Ractor.new(blk) do |Db|
main = b.call
p "from ractor: #{main}"

end
end
def work
@ractor.take
end
end
worker = Worker.new
a = self # unshareable main object

p "from main: #{a}"
worker.start { a }

worker.work

The curried proc has a reference to the original proc and it's not checked for shareability.

Associated revisions

Revision d80f3a287¢c5¢8d0404b6cb837db360cab320cde1 - 03/26/2025 11:05 PM - luke-gru (Luke Gruber)

Ractor.make_shareable(proc_obj) makes inner structure shareable

Proc objects are now traversed like other objects when making them
shareable.

Fixes [Bug #19372]
Fixes [Bug #19374]

Revision d80f3a287¢c5¢8d0404b6cb837db360cab320cde1 - 03/26/2025 11:05 PM - luke-gru (Luke Gruber)
Ractor.make_shareable(proc_obj) makes inner structure shareable

Proc objects are now traversed like other objects when making them
shareable.

Fixes [Bug #19372]
Fixes [Bug #19374]

Revision d80f3a28 - 03/26/2025 11:05 PM - luke-gru (Luke Gruber)

Ractor.make_shareable(proc_obj) makes inner structure shareable

Proc objects are now traversed like other objects when making them
shareable.

07/17/2025 1/2

Fixes [Bug #19372]
Fixes [Bug #19374]

History

#1 - 01/25/2023 01:25 PM - luke-gru (Luke Gruber)
This issue is fixed by https:/github.com/ruby/ruby/pull/7182. | will add a test to that PR for this.

#2 - 01/27/2023 03:48 AM - hsbt (Hiroshi SHIBATA)
- Status changed from Open to Assigned

- Assignee set to ko1 (Koichi Sasada)

#3 - 08/18/2024 01:22 PM - reesericci (Reese Armstrong)
Hey y'all -

I'm commenting here to say that this bug seems to be the only way | was able to pass a Proc to a Ractor even though it doesn't reference self - so
wondering what the path is for that instead of exploiting this bug. For context, here's my code:

class Transaction
def initialize (&block)
@block = Ractor.make_shareable (block.curry)
@original_state = nil
end

def apply (ob7j)

begin
@original_state = obj.dup
@new_obj = obj.deep_transform values { |value| value = value.dup }

@block.call (@new_ob7j)
obj.replace (@new_obj)

rescue => e
puts e
rollback (obj)
raise e

end

end
end

Which then this entire object gets passed into a Ractor and that's where .apply() is called.
Thanks,
--reese

#4 - 01/14/2025 03:03 AM - luke-gru (Luke Gruber)

There's a new feature request that should remedy this: https:/bugs.ruby-lang.org/issues/21033

#5 - 03/26/2025 11:05 PM - luke-gru (Luke Gruber)

- Status changed from Assigned to Closed

Applied in changeset git|d80f3a287¢5¢c8d0404b6cb837db360cab320cde.

Ractor.make_shareable(proc_obj) makes inner structure shareable

Proc objects are now traversed like other objects when making them
shareable.

Fixes [Bug #19372]
Fixes [Bug #19374]

07/17/2025 22

https://github.com/ruby/ruby/pull/7182
https://bugs.ruby-lang.org/issues/21033
https://bugs.ruby-lang.org/projects/ruby-master/repository/git/revisions/d80f3a287c5c8d0404b6cb837db360cab320cde1
https://bugs.ruby-lang.org/issues/19372
https://bugs.ruby-lang.org/issues/19374
http://www.tcpdf.org

