
Ruby - Feature #19755

Module#class_eval and Binding#eval use caller location by default

07/03/2023 11:19 AM - byroot (Jean Boussier)

Status: Closed

Priority: Normal

Assignee:

Target version:

Description

Background

In Ruby we're very reliant on Method#source_location as well as caller_locations to locate source code.

However, code generated via Binding#eval, Module#class_eval etc defeat this if called without a location:

Foo.class_eval <<~RUBY

 def bar

 end

RUBY

p Foo.instance_method(:bar).source_location # => ["(eval)", 1]

 The overwhelming majority of open source code properly pass a filename and lineno, however a small minority doesn't and make

locating the code much harder than it needs to be.

Here's some example of anonymous eval uses I fixed in the past:

https://github.com/ruby/mutex_m/pull/11

https://github.com/rails/execjs/pull/120

https://github.com/jnunemaker/httparty/pull/776

https://github.com/SiftScience/sift-ruby/pull/76

https://github.com/activemerchant/active_merchant/pull/4675

https://github.com/rails/thor/pull/807

https://github.com/dry-rb/dry-initializer/pull/104

https://github.com/rmosolgo/graphql-ruby/pull/4288

Proposal

I suggest that instead of defaulting to "(eval)", the optional filename argument of the eval family of methods should instead default to:

"(eval in #{caller_locations(1, 1).first.path})" and lineno to caller_locations(1, 1).first.lineno.

Which can pretty much be monkey patched as this:

module ModuleEval

 def class_eval(code, location = "(eval in #{caller_locations(1, 1).first.path})", lineno =

caller_locations(1, 1).first.lineno)

 super

 end

end

Module.prepend(ModuleEval)

module Foo

 class_eval <<~RUBY

 def foo

 end

 RUBY

end

p Foo.instance_method(:foo)

 before:

07/22/2025 1/5

https://github.com/ruby/mutex_m/pull/11
https://github.com/rails/execjs/pull/120
https://github.com/jnunemaker/httparty/pull/776
https://github.com/SiftScience/sift-ruby/pull/76
https://github.com/activemerchant/active_merchant/pull/4675
https://github.com/rails/thor/pull/807
https://github.com/dry-rb/dry-initializer/pull/104
https://github.com/rmosolgo/graphql-ruby/pull/4288

#<UnboundMethod: Foo#foo() (eval):1>

 after:

#<UnboundMethod: Foo#foo() (eval in /tmp/foo.rb):10>

 Of course the lineno part is likely to not be fully correct, but the reasoning is that it's better than defaulting to 0 or 1.

Another possiblity would be to include the caller lineo inside the filename part, and leave the actual lineo default to 1:

#<UnboundMethod: Foo#foo() (eval at /tmp/foo.rb:10):1>

Associated revisions

Revision 43a5c191358699fe8b19314763998cb8ca77ed90 - 07/24/2023 12:51 PM - byroot (Jean Boussier)

Use the caller location as default filename for eval family of methods

[Feature #19755]

Before (in /tmp/test.rb):

Object.class_eval("p __FILE__") # => "(eval)"

 After:

Object.class_eval("p __FILE__") # => "(eval at /tmp/test.rb:1)"

 This makes it much easier to track down generated code in case

the author forgot to provide a filename argument.

Revision 43a5c191358699fe8b19314763998cb8ca77ed90 - 07/24/2023 12:51 PM - byroot (Jean Boussier)

Use the caller location as default filename for eval family of methods

[Feature #19755]

Before (in /tmp/test.rb):

Object.class_eval("p __FILE__") # => "(eval)"

 After:

Object.class_eval("p __FILE__") # => "(eval at /tmp/test.rb:1)"

 This makes it much easier to track down generated code in case

the author forgot to provide a filename argument.

Revision 43a5c191 - 07/24/2023 12:51 PM - byroot (Jean Boussier)

Use the caller location as default filename for eval family of methods

[Feature #19755]

Before (in /tmp/test.rb):

Object.class_eval("p __FILE__") # => "(eval)"

 After:

Object.class_eval("p __FILE__") # => "(eval at /tmp/test.rb:1)"

 This makes it much easier to track down generated code in case

the author forgot to provide a filename argument.

History

#1 - 07/03/2023 12:01 PM - Eregon (Benoit Daloze)

#<UnboundMethod: Foo#foo() (eval in /tmp/foo.rb):10> sounds great to me, +1.

The (eval makes it clear it's an eval in that file and so the line of an exception inside might not be exact.

#2 - 07/03/2023 01:15 PM - Dan0042 (Daniel DeLorme)

+1

07/22/2025 2/5

Just be careful about the implementation, because that monkey patch doesn't work if another module is in the call chain

module DebugEval

 def class_eval(code, ...)

 p debug: code

 super # <= source_location will report the eval comes from here

 end

 prepend_features Module

end

 Actually this is a problem I tend to have whenever I want to use caller_locations. Thread.each_caller_location has made it easier but it would be nice

to have something like #first_caller_location_which_is_not_self_or_super

#3 - 07/03/2023 01:43 PM - byroot (Jean Boussier)

doesn't work if another module is in the call chain

 I'm not sure we can / should handle this. Decorating class_eval / eval should be quite rare anyways.

#4 - 07/03/2023 03:59 PM - Eregon (Benoit Daloze)

byroot (Jean Boussier) wrote in #note-3:

Decorating class_eval / eval should be quite rare anyways.

 Indeed, and class_eval/eval is broken if decorated e.g. for a = 3; class_eval "a".

The direct caller of Module#class_eval should always be the code around it.

Full example:

works as-is, breaks with DebugEval

module M

 a = 3

 class_eval "p a"

end

#5 - 07/03/2023 04:30 PM - Dan0042 (Daniel DeLorme)

Indeed, and class_eval/eval is broken if decorated e.g. for a = 3; class_eval "a".

 Oh yeah, good point, that one slipped my mind.

#6 - 07/11/2023 12:30 PM - nobu (Nobuyoshi Nakada)

Foo.class_eval <<~RUBY

 def bar

 end

RUBY

 This code equals Foo.class_eval "def bar\n""end\n".

Which do you expect 1 or 2 as __LINE__ at the def line?

#7 - 07/11/2023 12:33 PM - byroot (Jean Boussier)

Which do you expect 1 or 2 as __LINE__ at the def line?

 I don't feel strongly about either, as it is assumed that the line number can't always be correct anyway.

I think 1 seem more logical to me, as it would be weird to assume a heredoc was used.

#8 - 07/11/2023 01:19 PM - Dan0042 (Daniel DeLorme)

I think 1 seem more logical to me, as it would be weird to assume a heredoc was used.

07/22/2025 3/5

 Ah, but with #19458 it would be possible to know that a heredoc was used, and use 2 for the def line. :-D

#9 - 07/13/2023 08:44 AM - matz (Yukihiro Matsumoto)

Accepted. I prefer the last format #<UnboundMethod: Foo#foo() (eval at /tmp/foo.rb:10):1>.

Matz.

#10 - 07/13/2023 01:20 PM - nobu (Nobuyoshi Nakada)

matz (Yukihiro Matsumoto) wrote in #note-9:

Accepted. I prefer the last format #<UnboundMethod: Foo#foo() (eval at /tmp/foo.rb:10):1>.

 In that case, what should __FILE__ and __dir__ be?

"(eval at /tmp/foo.rb:10)" as __FILE__ may be ok, but "(eval at /tmp" as __dir__?

#11 - 07/13/2023 01:43 PM - byroot (Jean Boussier)

Oh, __dir__ is a good point, I haven't thought of it.

Currently, it's nil:

>> eval("__dir__")

=> nil

 I suppose we should just keep that?

#12 - 07/13/2023 01:47 PM - byroot (Jean Boussier)

I just finished a PR for it, but I agree we need to handle __dir__: https://github.com/ruby/ruby/pull/8070

#13 - 07/18/2023 10:23 AM - byroot (Jean Boussier)

we need to handle __dir__

 So the way it was handled until now was simply:

if (path == eval_default_path) {

 return Qnil;

}

 So how I'm handling it right now is basically path.start_with?("(eval at ") && path.end_with?(")"). It doesn't feel great, but I can't think of another

solution, and I think it's good enough.

The last blocker is that this change breaks syntax_suggest test suite, so I need https://github.com/ruby/syntax_suggest/pull/200 merged first. Other

than that I think the PR is good to go.

#14 - 07/20/2023 06:01 PM - schneems (Richard Schneeman)

I've merged the PR. Thanks for your work here!

#15 - 07/24/2023 12:51 PM - byroot (Jean Boussier)

- Status changed from Open to Closed

Applied in changeset git|43a5c191358699fe8b19314763998cb8ca77ed90.

Use the caller location as default filename for eval family of methods

[Feature #19755]

Before (in /tmp/test.rb):

Object.class_eval("p __FILE__") # => "(eval)"

 After:

Object.class_eval("p __FILE__") # => "(eval at /tmp/test.rb:1)"

07/22/2025 4/5

https://bugs.ruby-lang.org/issues/19458
https://github.com/ruby/ruby/pull/8070
https://github.com/ruby/syntax_suggest/pull/200
https://bugs.ruby-lang.org/projects/ruby-master/repository/git/revisions/43a5c191358699fe8b19314763998cb8ca77ed90
https://bugs.ruby-lang.org/issues/19755

 This makes it much easier to track down generated code in case

the author forgot to provide a filename argument.

Powered by TCPDF (www.tcpdf.org)

07/22/2025 5/5

http://www.tcpdf.org

