Ruby - Bug #20478

Circular parameter syntax error rules
05/08/2024 04:07 PM - kddnewton (Kevin Newton)

Status: Closed
Priority: Normal
Assignee:

Target version:

ruby -v: Backport: 3.1: UNKNOWN, 3.2: UNKNOWN, 3.3:
UNKNOWN

Description
| would like to revisit https://bugs.ruby-lang.org/issues/16343.

These cases are syntax errors:

def foo(bar = -> { bar }) end # no lambda parameters
def foo(bar = —>() { bar }) end # no lambda parameters
def foo(bar = baz { bar }) end # no block parameters

def foo(bar = baz { _1 + bar }) end # parameters, but no pipes
def foo(bar = baz { it + bar }) end # parameters, but no pipes

These cases are not syntax errors:

def foo(bar = ->(baz) { bar }) end # lambda parameters
def foo (bar baz { || bar }) end # no block parameters but empty pipes
def foo (bar baz { |qux| bar }) end # block parameters

| don't think these rules are very intuitive, and they feel somewhat arbitrary. | would like to suggest we change them to be either:

e Syntax error is raised if the parameter is ever read in its default value at any scope depth
e Syntax error is raised if the parameter is ever read in its default value at depth 0

Either one is fine by me, but gating the syntax error based on the presence of pipes is really confusing.

Related issues:
Related to Ruby - Bug #16343: Inconsistent behavior of 'circular argument ref... Closed

History

#1 - 05/10/2024 07:48 AM - nobu (Nobuyoshi Nakada)

Given that these Procs are only created if the argument bar is not assigned, should they all be syntax errors?

#2 - 05/10/2024 01:44 PM - kddnewton (Kevin Newton)

Yes, | very much think they should all be syntax errors.

#3 - 05/12/2024 03:57 AM - nobu (Nobuyoshi Nakada)

Even this should be a syntax error?

def foo(bar = ->(baz = bar) {}) end

That means it needs to manage the list of yet-unusable variables, not only tracking single variable.

#4 - 05/13/2024 04:42 PM - kddnewton (Kevin Newton)

| figured that was already happening for the "unused" warning.

#5 - 05/14/2024 01:21 AM - byroot (Jean Boussier)

- Related to Bug #16343: Inconsistent behavior of 'circular argument reference' error added

#6 - 05/20/2024 02:05 PM - kddnewton (Kevin Newton)

@nobu (Nobuyoshi Nakada) another option would be to delete those tests and leave it up to the parser instead of forcing parse.y to implement it.

07/20/2025 12

https://bugs.ruby-lang.org/issues/16343
https://bugs.ruby-lang.org/users/4

Specifically I'm talking about:

o = Object.new

assert_warn("") do
o.instance_eval ("def foo(var: bar {| | var}) var end")
end

o = Object.new

assert_warn("") do
o.instance_eval ("def foo(var: bar {|| var}) var end")
end

and

o = Object.new

assert_warn("") do
o.instance_eval ("def foo(var = bar {| | wvar}) var end")
end

o = Object.new

assert_warn("") do
o.instance_eval ("def foo(var = bar {|| var}) var end")
end

If it's too complicated to implement in parse.y, then removing these tests would be a good compromise. These tests themselves are the issue
blocking me.

#7 - 05/23/2024 05:37 PM - kddnewton (Kevin Newton)
If we go with only syntax errors at depth 0, then this:
def foo(bar = baz { bar }) end

should not be a syntax error either. | think that makes sense, because the baz method could use instance_exec/instance_eval so we don't know if bar
is going to be the same variable here or not.

#8 - 05/23/2024 05:39 PM - kddnewton (Kevin Newton)

Also:

def foo(bar = -> { bar }) end
def foo(bar = ->() { bar }) end
def foo(bar = ->(_) { bar }) end

Two of these are a syntax error, but | think either all of them should be or none of them should be.

#9 - 06/06/2024 09:10 AM - mame (Yusuke Endoh)

Discussed at the dev meeting. @matz (Yukihiro Matsumoto) said all cases should be accepted with no syntax error. So def foo(bar = bar) = bar; foo
will return nil with no warning and error.

#10 - 06/06/2024 08:30 PM - kddnewton (Kevin Newton)
- Status changed from Open to Closed

Merged.

#11 - 12/20/2024 09:16 AM - Earlopain (Earlopain _)

This used to emit a warning since all the way back from Ruby 2.2, before it was invalid syntax. Should the warning be reintroduced?

07/20/2025 22

https://bugs.ruby-lang.org/users/13
http://www.tcpdf.org

