
Ruby - Feature #4326

Fiber should respond to call() and []

01/26/2011 04:08 PM - tenderlovemaking (Aaron Patterson)

Status: Closed

Priority: Normal

Assignee: ko1 (Koichi Sasada)

Target version:

Description

=begin

Fibers are considered to be coroutines. Knuth says "Subroutines are special cases of ... coroutines". This makes sense to me.

Method, Proc, and lambda respond to call and []. If Fiber also responded to call and [], we could use coroutines in places where we

use lambdas, procs, and methods.

I've attached a patch that implements the two methods.

=end

History

#1 - 01/27/2011 10:45 AM - kstephens (Kurt Stephens)

=begin

Shouldn't Fiber#[] behave like Thread#[]? What about Continuation#[]?

=end

#2 - 01/27/2011 01:07 PM - nobu (Nobuyoshi Nakada)

=begin

Hi,

At Wed, 26 Jan 2011 16:08:52 +0900,

Aaron Patterson wrote in [ruby-core:34861]:

Fibers are considered to be coroutines. Knuth says

"Subroutines are special cases of ... coroutines". This

makes sense to me.

 Do you mean

"A is kind of B, A has a feature X, therefore B also should

have X",

but not

"A is kind of B, B has a feature X, therefore A also should

have X"?

Sounds strange to me.

--

Nobu Nakada

=end

#3 - 01/28/2011 07:15 AM - tenderlovemaking (Aaron Patterson)

=begin

On Thu, Jan 27, 2011 at 01:07:33PM +0900, Nobuyoshi Nakada wrote:

Hi,

At Wed, 26 Jan 2011 16:08:52 +0900,

Aaron Patterson wrote in [ruby-core:34861]:

Fibers are considered to be coroutines. Knuth says

"Subroutines are special cases of ... coroutines". This

makes sense to me.

07/16/2025 1/9

bugs.ruby-lang.org/issues/4326
bugs.ruby-lang.org/issues/4326

 Do you mean

"A is kind of B, A has a feature X, therefore B also should

have X",

but not

"A is kind of B, B has a feature X, therefore A also should

have X"?

Sounds strange to me.

 Maybe code will be more clear. I want to do this:

 def square block

 block.call ** 2

 end

 callables = [

 lambda { 10 },

 Fiber.new { Fiber.yield 10 }

]

 callables.map { |thing| square thing }

 Instead I have to do this:

 def square block

 value = block.is_a?(Fiber) ? block.resume : block.call

 value ** 2

 end

 callables = [

 lambda { 10 },

 Fiber.new { Fiber.yield 10 }

]

 callables.map { |thing| square thing }

 --

Aaron Patterson

http://tenderlovemaking.com/

Attachment: (unnamed)

=end

#4 - 01/28/2011 07:41 AM - tenderlovemaking (Aaron Patterson)

=begin

On Thu, Jan 27, 2011 at 02:14:16PM -0800, Aaron Patterson wrote:

On Thu, Jan 27, 2011 at 01:07:33PM +0900, Nobuyoshi Nakada wrote:

Hi,

At Wed, 26 Jan 2011 16:08:52 +0900,

Aaron Patterson wrote in [ruby-core:34861]:

Fibers are considered to be coroutines. Knuth says

"Subroutines are special cases of ... coroutines". This

makes sense to me.

 Do you mean

"A is kind of B, A has a feature X, therefore B also should

have X",

but not

"A is kind of B, B has a feature X, therefore A also should

have X"?

Sounds strange to me.

 Maybe code will be more clear. I want to do this:

def square block

07/16/2025 2/9

http://tenderlovemaking.com/
bugs.ruby-lang.org/issues/4326

 block.call ** 2

end

callables = [

 lambda { 10 },

 Fiber.new { Fiber.yield 10 }

]

callables.map { |thing| square thing }

 Instead I have to do this:

def square block

 value = block.is_a?(Fiber) ? block.resume : block.call

 value ** 2

end

callables = [

 lambda { 10 },

 Fiber.new { Fiber.yield 10 }

]

callables.map { |thing| square thing }

The way I think about it is:

A subroutine is a coroutine, but in ruby I cannot use a coroutine in

the place of a subroutine.

Am I thinking about this wrong?

--

Aaron Patterson

http://tenderlovemaking.com/

Attachment: (unnamed)

=end

#5 - 01/28/2011 11:10 AM - runpaint (Run Paint Run Run)

=begin

I understood what you meant, and agree in principle. I wanted to think about the implications given that (a) #call is duck-typed on, and (b) Fibers

cannot be called across Threads, and, possibly, (c) the root Fiber has special semantics but no predicate for identifying them.

=end

#6 - 01/28/2011 04:43 PM - usa (Usaku NAKAMURA)

- Status changed from Open to Assigned

=begin

=end

#7 - 01/29/2011 02:57 AM - headius (Charles Nutter)

=begin

RPRR and Nobu make good points.

Fibers are coroutines...agreed.

If we go by Knuth, a subroutine "is a" coroutine, but you're thinking about the relationship wrong. A Hash "is a" Object. We don't expect Object

(coroutine) to do what Hash (subroutine) can do and you cannot use an Object (coroutine) in the place of a Hash (subroutine). Simply put, Knuth's

statement doesn't mean Fiber should be usable everywhere a subroutine (Proc) can be used.

RPRR's points about threading and root fibers are also important, since they explicitly mean you can't use a Fiber in place of a thread-agnostic

subroutine.

In practice I don't really care about adding [] and .call to Fiber, but they do mask the fact that these are not simply "resumable procs".

=end

#8 - 01/29/2011 08:29 AM - tenderlovemaking (Aaron Patterson)

=begin

On Sat, Jan 29, 2011 at 02:58:46AM +0900, Charles Nutter wrote:

07/16/2025 3/9

http://tenderlovemaking.com/

Issue #4326 has been updated by Charles Nutter.

RPRR and Nobu make good points.

Fibers are coroutines...agreed.

If we go by Knuth, a subroutine "is a" coroutine, but you're thinking about the relationship wrong. A Hash "is a" Object. We don't expect Object

(coroutine) to do what Hash (subroutine) can do and you cannot use an Object (coroutine) in the place of a Hash (subroutine). Simply put,

Knuth's statement doesn't mean Fiber should be usable everywhere a subroutine (Proc) can be used.

 My point is that it seems that LSP is broken. Either Fiber should

respond to "call" and "[]", or Proc should respond to "resume". Really

I don't care which.

RPRR's points about threading and root fibers are also important, since they explicitly mean you can't use a Fiber in place of a thread-agnostic

subroutine.

 I agree these are problems. But I think fixing those issues is

different than fixing LSP problems.

--

Aaron Patterson

http://tenderlovemaking.com/

Attachment: (unnamed)

=end

#9 - 01/29/2011 09:45 AM - headius (Charles Nutter)

=begin

On Fri, Jan 28, 2011 at 5:29 PM, Aaron Patterson

aaron@tenderlovemaking.com wrote:

My point is that it seems that LSP is broken. Either Fiber should

respond to "call" and "[]", or Proc should respond to "resume". Really

I don't care which.

 LSP says the opposite. Assuming (from your interpretation of Knuth and

LSP) that coroutines (Fibers) are a generalization of subroutines

(procs), and conversely subroutines (procs) are a specialization of

coroutines (Fibers), then T = coroutines (Fibers), S = subroutines

(procs) and...

"Let q(x) be a property provable about objects x of type T. Then q(y)

should be true for objects y of type S where S is a subtype of T."

So subroutines (procs) should do everything Fibers can do, but not the

inverse relationship. This would also imply that subroutines should be

resumable, etc.

However...I'm not sure what Knuth was saying is implying a

generalization/specialization relationship. He was saying subroutines

⊂ coroutines. So you should be able to expect that for all operations

q on coroutines there should be a matching operation q on subroutines

and vice versa. Doesn't this mean we should also have resuming,

yielding, etc on subroutines? (please no)

So...there are three possibilities:

1. subroutines are a specialization of coroutines. Then it's perfectly

valid for subroutines to define things coroutines do not.

2. subroutines are equivalent to coroutines. Then coroutines should

add [] and call and subroutines should have resuming/yielding

capabilities.

3. coroutines are a specialization of subroutines. Then coroutines

should add [] and call, and we're done. And Knuth is wrong.

Now that I've thoroughly confused myself, I'll leave it up to you and

ruby-core... which reality would you like?

Charlie

07/16/2025 4/9

https://bugs.ruby-lang.org/issues/4326
http://tenderlovemaking.com/
mailto:aaron@tenderlovemaking.com

=end

#10 - 01/29/2011 09:47 AM - headius (Charles Nutter)

=begin

On Fri, Jan 28, 2011 at 6:45 PM, Charles Oliver Nutter

headius@headius.com wrote:

LSP says the opposite. Assuming (from your interpretation of Knuth and

LSP) that coroutines (Fibers) are a generalization of subroutines

(procs), and conversely subroutines (procs) are a specialization of

coroutines (Fibers), then T = coroutines (Fibers), S = subroutines

(procs) and...

 BTW, I'd love to do an audit of Ruby behaviors some time and see how

frequently LSP is broken. I'd also love to hear why Liskov would say

about IO#reopen changing the object's type completely. :)

Charlie

=end

#11 - 01/29/2011 10:16 AM - mame (Yusuke Endoh)

=begin

Hi,

2011/1/27 Kurt Stephens redmine@ruby-lang.org:

Shouldn't Fiber#[] behave like Thread#[]?

 I think more notice should be taken of Kurt's remark :-)

--

Yusuke Endoh mame@tsg.ne.jp

=end

#12 - 01/29/2011 10:42 AM - headius (Charles Nutter)

=begin

On Fri, Jan 28, 2011 at 7:15 PM, Yusuke ENDOH mame@tsg.ne.jp wrote:

Hi,

2011/1/27 Kurt Stephens redmine@ruby-lang.org:

Shouldn't Fiber#[] behave like Thread#[]?

 I think more notice should be taken of Kurt's remark :-)

 Indeed. When coroutines were built for OpenJDK (in the MLVM project)

the author quickly realized the need for coroutine-locals as well as

thread-locals.

I tend to think of fibers more like threads or actors than

subroutines, but of course I'm biased because on JRuby they are

threads.

Charlie

=end

#13 - 01/30/2011 02:41 AM - tenderlovemaking (Aaron Patterson)

=begin

On Sat, Jan 29, 2011 at 09:45:30AM +0900, Charles Oliver Nutter wrote:

On Fri, Jan 28, 2011 at 5:29 PM, Aaron Patterson

aaron@tenderlovemaking.com wrote:

07/16/2025 5/9

mailto:headius@headius.com
mailto:redmine@ruby-lang.org
mailto:mame@tsg.ne.jp
mailto:mame@tsg.ne.jp
mailto:redmine@ruby-lang.org
mailto:aaron@tenderlovemaking.com

My point is that it seems that LSP is broken. Either Fiber should

respond to "call" and "[]", or Proc should respond to "resume". Really

I don't care which.

 LSP says the opposite. Assuming (from your interpretation of Knuth and

LSP) that coroutines (Fibers) are a generalization of subroutines

(procs), and conversely subroutines (procs) are a specialization of

coroutines (Fibers), then T = coroutines (Fibers), S = subroutines

(procs) and...

"Let q(x) be a property provable about objects x of type T. Then q(y)

should be true for objects y of type S where S is a subtype of T."

So subroutines (procs) should do everything Fibers can do, but not the

inverse relationship. This would also imply that subroutines should be

resumable, etc.

However...I'm not sure what Knuth was saying is implying a

generalization/specialization relationship. He was saying subroutines

⊂ coroutines. So you should be able to expect that for all operations

q on coroutines there should be a matching operation q on subroutines

and vice versa. Doesn't this mean we should also have resuming,

yielding, etc on subroutines? (please no)

So...there are three possibilities:

1. subroutines are a specialization of coroutines. Then it's perfectly

valid for subroutines to define things coroutines do not.

 Yes, but it is not perfectly valid for subroutines to not define

things that coroutines do. We can either resolve that by defining

"resume" on Proc, or "call" and "[]" on Fiber.

1. subroutines are equivalent to coroutines. Then coroutines should

add [] and call and subroutines should have resuming/yielding

capabilities.

2. coroutines are a specialization of subroutines. Then coroutines

should add [] and call, and we're done. And Knuth is wrong.

 Now that I've thoroughly confused myself, I'll leave it up to you and

ruby-core... which reality would you like?

 I have been trying to choose reality number 1, the entire time, but

apparently I cannot explain myself clearly. :'(

--

Aaron Patterson

http://tenderlovemaking.com/

Attachment: (unnamed)

=end

#14 - 01/30/2011 01:47 PM - headius (Charles Nutter)

=begin

On Sat, Jan 29, 2011 at 11:41 AM, Aaron Patterson

aaron@tenderlovemaking.com wrote:

1. subroutines are a specialization of coroutines. Then it's perfectly

valid for subroutines to define things coroutines do not.

 Yes, but it is not perfectly valid for subroutines to not define

things that coroutines do. We can either resolve that by defining

"resume" on Proc, or "call" and "[]" on Fiber.

...

I have been trying to choose reality number 1, the entire time, but

apparently I cannot explain myself clearly. :'(

 But doesn't reality 1 mean that subroutines should get resume/etc and

07/16/2025 6/9

http://tenderlovemaking.com/
mailto:aaron@tenderlovemaking.com

coroutines should not get call/[]? It seems to me you either want my

reality 3 or Jim's reality 4.

Charlie

=end

#15 - 01/30/2011 01:50 PM - headius (Charles Nutter)

=begin

On Fri, Jan 28, 2011 at 9:28 PM, Jim Weirich jim.weirich@gmail.com wrote:

I wouldn't say Knuth is wrong, but a natural language "is-a" is not always

an indication of subtype (c.f. the square/rectangle paradox where a square

is-a rectangle, but having square inherit separate set_width/set_height

methods from rectangle would be wrong).

 Right...so my reality 2 and your reality 4 are pretty close; mine says

that coroutines and subroutines are the same thing, but subroutines

are a specialized subset. Yours says that coroutines and subroutines

are both of the same (super)type, and so they should share in common

operations from that (super)type.

In any case, I should restate again that I really don't care if Ruby

adds call and [] on Fiber :) I just want to make sure it's not being

done for a logically inconsistent reason.

Charlie

=end

#16 - 01/30/2011 10:18 PM - rkh (Konstantin Haase)

=begin

This might go in a slightly different direction, but I would really love Fiber to define #to_proc allowing things like [1, 2, 3].each(&fiber).

Also note that in ANSI smalltalk (which has a rather common object model to Ruby) a block closure is implementing the valuable protocol (objects that

respond to #value and akin, smalltalk's #call), which would be something like the common ancestor for procs and fibers.

Konstantin

=end

#17 - 01/31/2011 08:26 AM - tenderlovemaking (Aaron Patterson)

=begin

On Sun, Jan 30, 2011 at 01:47:06PM +0900, Charles Oliver Nutter wrote:

On Sat, Jan 29, 2011 at 11:41 AM, Aaron Patterson

aaron@tenderlovemaking.com wrote:

1. subroutines are a specialization of coroutines. Then it's perfectly

valid for subroutines to define things coroutines do not.

 Yes, but it is not perfectly valid for subroutines to not define

things that coroutines do. We can either resolve that by defining

"resume" on Proc, or "call" and "[]" on Fiber.

...

I have been trying to choose reality number 1, the entire time, but

apparently I cannot explain myself clearly. :'(

 But doesn't reality 1 mean that subroutines should get resume/etc and

coroutines should not get call/[]? It seems to me you either want my

reality 3 or Jim's reality 4.

 I don't know anymore. I guess I don't care anymore either.

--

Aaron Patterson

http://tenderlovemaking.com/

07/16/2025 7/9

mailto:jim.weirich@gmail.com
mailto:aaron@tenderlovemaking.com
http://tenderlovemaking.com/

Attachment: (unnamed)

=end

#18 - 01/31/2011 08:37 AM - tenderlovemaking (Aaron Patterson)

=begin

On Sat, Jan 29, 2011 at 10:15:31AM +0900, Yusuke ENDOH wrote:

Hi,

2011/1/27 Kurt Stephens redmine@ruby-lang.org:

Shouldn't Fiber#[] behave like Thread#[]?

 I think more notice should be taken of Kurt's remark :-)

 Even if Fiber only implemented call, it would make the code in

[ruby-core:34909] much better.

Maybe I will change my patch to not implement [], and we don't have to

worry about the semantics of Fiber#[] for this ticket.

--

Aaron Patterson

http://tenderlovemaking.com/

Attachment: (unnamed)

=end

#19 - 01/31/2011 08:42 AM - tenderlovemaking (Aaron Patterson)

- File fiber.patch added

=begin

New patch without Fiber#[]

=end

#20 - 06/10/2011 04:23 AM - ko1 (Koichi Sasada)

Hi,

Sorry for late response.

(2011/01/26 16:08), Aaron Patterson wrote:

Feature #4326: Fiber should respond to call() and []

http://redmine.ruby-lang.org/issues/show/4326

Author: Aaron Patterson

Status: Open, Priority: Normal

Assigned to: Koichi Sasada

Fibers are considered to be coroutines. Knuth says "Subroutines are special cases of ... coroutines". This makes sense to me.

Method, Proc, and lambda respond to call and []. If Fiber also responded to call and [], we could use coroutines in places where we use

lambdas, procs, and methods.

I've attached a patch that implements the two methods.

 I don't understand all of this thread. However, as I said to aaron at

IRC, I want to reject this proposal.

Reasons:

(1) Proc is restartable. It can be called infinite times. In general,

Fiber is not for such usage.

(2) If we permit Fiber#call, maybe other guys say "should support

Fiber#[]". However, as you mention, Fiber#[] is ambiguous with Fiber

local storage.

--

// SASADA Koichi at atdot dot net

07/16/2025 8/9

mailto:redmine@ruby-lang.org
https://blade.ruby-lang.org/ruby-core/34909
http://tenderlovemaking.com/
https://bugs.ruby-lang.org/issues/4326
http://redmine.ruby-lang.org/issues/show/4326

#21 - 06/26/2012 05:22 AM - ko1 (Koichi Sasada)

- Description updated

- Status changed from Assigned to Closed

I close this ticket.

Please re-open it if anyone have any comment which we need to discuss again.

Files

fiber.patch 997 Bytes 01/26/2011 tenderlovemaking (Aaron Patterson)

fiber.patch 853 Bytes 01/31/2011 tenderlovemaking (Aaron Patterson)

Powered by TCPDF (www.tcpdf.org)

07/16/2025 9/9

http://www.tcpdf.org

