Ruby - Feature #5582

Allow clone of singleton methods on a BasicObject
11/07/2011 12:34 PM - thinkerbot (Simon Chiang)

Status: Assigned

Priority: Normal

Assignee: matz (Yukihiro Matsumoto)
Target version:

Description

Currently | do not know of a way to implement something like 'clone' on a BasicObject subclass. This is as close as I've gotten but as

you can see the singleton methods are not propagated to the clone.

require 'test/unit'
class Context < BasicObject
def _singleton_class_
class << self
SINGLETON_CLASS = self
def _singleton_class_
SINGLETON_CLASS
end
end
_singleton_class_
end

def _class_
_singleton_class_.superclass
end

def _extend_ (mod)
mod.__send__ (:extend_object,
end

self)

def _initialize_clone_ (oriqg)
set variables as needed
end

def _clone_
clone = _class_.allocate

clone._ initialize_clone_(self)

_singleton_class_.included_modules.each {|mod]|

clone

clone

end
end

class ContextTest < Test::Unit::TestCase
module A
def a
ra
end
end

def test_ _clone_ _inherits_modules
context = Context.new
context._extend_ A
clone = context._clone_
assert_equal clone.a

end

:a,

def test__clone_ _inherits_singleton_methods

context = Context.new

def context.a

07/24/2025

._extend_ mod }

1/2

ta

end
clone = context._clone_
assert_equal :a, clone.a # fails
end
end

Is there a way to do this that | don't see? If not, then | request that a way be added - perhaps by allowing the singleton_class to be
set somehow.

In my case | am using Context as the context for a dsl where methods write to a target (an instance variable). | want to be able to
clone a context such that | can have multiple contexts with the same methods, including extensions and singletons, that write to
different targets.

Thank you.

History

#1 - 11/24/2011 11:34 AM - kernigh (George Koehler)

=begin
My first attempt:

module Clone

include Kernel

(instance_methods - [:clone, :initialize_clone]).each {|m| undef_method m}
end

b = BasicObject.new
class << b

include ::Clone

def single; "Quack!"; end
end

¢ =b.clone
puts c.single

Output:

scratch.rb:3: warning: undefining “object_id' may cause serious problems
Quack!

Clone inherits from Kernel, but undefines all its instance methods except Clone#clone and Clonetinitialize_clone. This technique has some awful side
effects: Kernel === b and Kernel === ¢ become true. Clone might inherit metamethods from Kernel (because | only undefined instance methods, not
metamethods).

=end

#2 - 03/27/2012 11:52 PM - mame (Yusuke Endoh)
- Status changed from Open to Assigned

- Assignee set to matz (Yukihiro Matsumoto)

#3 - 11/24/2012 02:14 PM - mame (Yusuke Endoh)

- Target version changed from 1.9.2 to 2.6

#4 - 12/12/2012 11:36 PM - nobu (Nobuyoshi Nakada)

=begin
2.0 allows "method transplanting'.

module Clone

%i[clone initialize_copy initialize_dup initialize_clone].each do |m|
define_method(m, Kernel.instance_method(m))

end

end

=end

#5 - 12/25/2017 06:15 PM - naruse (Yui NARUSE)
- Target version deleted (2.6)

07/24/2025 22

http://www.tcpdf.org

