
Ruby - Bug #5759

flatten calls to_ary on everything

12/14/2011 08:55 AM - trans (Thomas Sawyer)

Status: Rejected

Priority: Normal

Assignee: nobu (Nobuyoshi Nakada)

Target version: 1.9.3

ruby -v: ruby 1.9.3dev (2011-09-23 revision

33323) [x86_64-linux]

Backport:

Description

I often ensure that I have an array by doing:

def foo=(x)

@foo = [x].flatten

end

But this has turned into a problem as of late, as it seems #flatten is calling #to_ary on every element in the array, and apparently

catching the error raised if #to_ary isn't defined for that object. But that causes potential issues with objects that use

#method_missing. I think #flatten should use respond_to?(:to_ary) to make sure an object can handle it before actually calling it.

Related issues:

Related to Ruby - Bug #6039: lambda vs proc; #to_ary w/ splat bug Rejected 02/17/2012

History

#1 - 12/14/2011 10:05 AM - drbrain (Eric Hodel)

Use Kernel#Array:

$ ruby -e 'p Array("a\nb"), Array(["a\nb"])'

["a\nb"]

["a\nb"]

#2 - 12/14/2011 07:23 PM - regularfry (Alex Young)

On 14/12/11 01:05, Eric Hodel wrote:

Issue #5759 has been updated by Eric Hodel.

Use Kernel#Array:

$ ruby -e 'p Array("a\nb"), Array(["a\nb"])'

["a\nb"]

["a\nb"]

 Or a splat:

ruby-1.9.3-p0 :001 > a="a\nb"; [*a]

=> ["a\nb"]

ruby-1.9.3-p0 :002 > a=["a\nb"]; [*a]

=> ["a\nb"]

Not sure I disagree that #flatten should check first (or just leave the

exception uncaught) though.

--

Alex

Bug #5759: flatten calls to_ary on everything

http://redmine.ruby-lang.org/issues/5759

Author: Thomas Sawyer

Status: Open

Priority: Normal

Assignee:

07/22/2025 1/3

https://bugs.ruby-lang.org/issues/5759
https://bugs.ruby-lang.org/issues/5759
http://redmine.ruby-lang.org/issues/5759

Category:

Target version: 1.9.3

ruby -v: ruby 1.9.3dev (2011-09-23 revision 33323) [x86_64-linux]

I often ensure that I have an array by doing:

def foo=(x)

@foo = [x].flatten

end

But this has turned into a problem as of late, as it seems #flatten is calling #to_ary on every element in the array, and apparently catching the

error raised if #to_ary isn't defined for that object. But that causes potential issues with objects that use #method_missing. I think #flatten should

use respond_to?(:to_ary) to make sure an object can handle it before actually calling it.

#3 - 02/17/2012 04:09 AM - ddebernardy (Denis de Bernardy)

Possibly related:

http://bugs.ruby-lang.org/issues/6039

#4 - 03/11/2012 05:02 PM - ko1 (Koichi Sasada)

- Assignee set to nobu (Nobuyoshi Nakada)

#5 - 03/18/2012 06:46 PM - shyouhei (Shyouhei Urabe)

- Status changed from Open to Assigned

#6 - 12/30/2012 10:45 PM - nobu (Nobuyoshi Nakada)

- Status changed from Assigned to Rejected

When you define method_missing, you have to also define respond_to_missing? properly.

#7 - 12/31/2012 05:15 AM - trans (Thomas Sawyer)

=begin

Isn't the the problem that it doesn't bother to check (({#respond_to?})) at all?

class Baz

def method_missing(s)

s

end

def respond_to_missing?(s, x)

 return false if s == :to_ary

 true

end

 end

b = Baz.new

b.respond_to?(:to_ary) #=> false

[Baz.new].flatten

=> in `flatten': can't convert Baz to Array (Baz#to_ary gives Symbol) (TypeError)

=end

#8 - 12/31/2012 10:46 AM - bitsweat (Jeremy Daer)

class Baz; def respond_to?(s, x) super unless s == :to_ary end end

=> nil

[Baz.new].flatten

=> [#Baz:0x007f8d3115c7d0]

#9 - 01/03/2013 12:10 PM - trans (Thomas Sawyer)

=begin

So it does call (({#respond_to?})) after all? Yet, I thought (({#respond_to_missing?})) was invented so people would not have to override

07/22/2025 2/3

http://bugs.ruby-lang.org/issues/6039

(({#respond_to?})). What's my misunderstanding? Surely we are not now expected to define both?

=end

Powered by TCPDF (www.tcpdf.org)

07/22/2025 3/3

http://www.tcpdf.org

