
Ruby - Bug #6416

Deadlock when calling Thread#join from signal interrupt context

05/09/2012 06:13 AM - ender672 (Timothy Elliott)

Status: Closed

Priority: Normal

Assignee: kosaki (Motohiro KOSAKI)

Target version: 2.0.0

ruby -v: ruby 2.0.0dev (2012-05-09 trunk 35598)

[x86_64-linux]

Backport:

Description

=begin

The interpreter can deadlock when calling Thread#join both from the main context and from the signal handler context.

t = Thread.new{ sleep 3 }

Signal.trap "SIGINT" do

t.join

end

puts 'Press ctrl + c now'

t.join

The above will deadlock on linux x86_64 with ruby 1.9.x and ruby trunk. It works fine with ruby 1.8.7-p352 and JRuby.

=end

History

#1 - 05/17/2012 12:32 AM - mame (Yusuke Endoh)

- Status changed from Open to Assigned

- Assignee set to kosaki (Motohiro KOSAKI)

Kosaki-san, could you take a look?

--

Yusuke Endoh mame@tsg.ne.jp

#2 - 05/18/2012 05:04 PM - kosaki (Motohiro KOSAKI)

- Assignee changed from kosaki (Motohiro KOSAKI) to ko1 (Koichi Sasada)

Hi ko1,

This is because thread_join() is not designed reentrant. It can insert a thread twice join_list. And then, join_list

is going to become circular ring and it lead to deadlock.

So, I think th.join in trap context should raise ThreadError. What do you think?

#3 - 10/30/2012 09:13 AM - ko1 (Koichi Sasada)

- Target version set to 2.0.0

Please give me a time.

#4 - 11/26/2012 09:35 AM - ko1 (Koichi Sasada)

- Assignee changed from ko1 (Koichi Sasada) to kosaki (Motohiro KOSAKI)

I agree with kosaki-san's comment.

#5 - 11/26/2012 08:02 PM - kosaki (Motohiro KOSAKI)

07/20/2025 1/2

mailto:mame@tsg.ne.jp

- Status changed from Assigned to Closed

Fixed at r37852.

Thanks, Timothy!

#6 - 11/28/2012 11:31 AM - authorNari (Narihiro Nakamura)

Hello

I need sometimes to call Thread#join in Signal.trap when I want to implement safe termination in a server.

For instance: https://gist.github.com/4158509

Is it a wrong use case in the first place?

Thanks.

#7 - 11/28/2012 11:46 AM - kosaki (Motohiro KOSAKI)

Nari,

In your case, main thread and trap handler uses the same mutex and it is racy and deadlockable. Even if I revert my change, it wouldn't work.

#8 - 11/28/2012 01:01 PM - authorNari (Narihiro Nakamura)

kosaki (Motohiro KOSAKI) wrote:

Nari,

In your case, main thread and trap handler uses the same mutex and it is racy and deadlockable. Even if I revert my change, it wouldn't work.

 I see, Thanks!

Powered by TCPDF (www.tcpdf.org)

07/20/2025 2/2

https://gist.github.com/4158509
http://www.tcpdf.org

