
Ruby - Feature #8046

allow Object#extend to take a block

03/08/2013 11:48 AM - phluid61 (Matthew Kerwin)

Status: Open

Priority: Normal

Assignee:

Target version:

Description

=begin

In #8038 david_macmahon proposed:

How about allowing Object#extend to take a block that would be executed with the context such that methods defined therein would

become singleton methods of the object receiving #extend?

For example:

foo = Object.new

foo.extend do

def bar

...

end

def baz

...

end

end

=end

History

#1 - 03/08/2013 11:53 AM - Anonymous

=begin

There are two ways to do this - make the extend block execute in the context of the receiver's singleton class, or make it execute in the context of a

new module to be mixed in to the receiver's singleton class.

For example:

def extend(&bk)

 singleton_class.class_eval(&bk)

end

 or

def extend(&bk)

 singleton_class.send(:include, Module.new(&bk))

end

 Which should it be?

=end

#2 - 03/08/2013 01:05 PM - phluid61 (Matthew Kerwin)

charliesome (Charlie Somerville) wrote:

There are two ways to do this - make the extend block execute in the

context of the receiver's singleton class, or make it execute in the

context of a new module to be mixed in to the receiver's singleton class.

...

Which should it be?

 I'd think more like the former, as that doesn't inject a new anonymous Module into the singleton_class's #ancestors.

Does class_eval do anything dramatically different from module_eval (i.e. is the block handled differently in either case)?

#3 - 03/08/2013 03:53 PM - david_macmahon (David MacMahon)

07/17/2025 1/3

https://bugs.ruby-lang.org/issues/8038

On Mar 7, 2013, at 6:53 PM, charliesome (Charlie Somerville) wrote:

There are two ways to do this

def extend(&bk)

singleton_class.class_eval(&bk)

end

or

def extend(&bk)

singleton_class.send(:include, Module.new(&bk))

end

 At the risk of being overly pedantic, since we're talking about Object#extend, I think it would be more like:

def extend(*modules, &bk)

extend singleton_class with modules, if any

singleton_class.class_eval(&bk) if bk

end

or

def extend(module=nil, &bk)

extend singleton_class with modules, if any

singleton_class.send(:include, Module.new(&bk)) if bk

end

Which raises another question: what would be the order of extending if #extend is passed one or more modules and given a block? IOW, should the

passed in module(s) be included first thereby giving the block the opportunity to override them or vice versa (or should this be explicitly disallowed)? I

guess I'd favor the first way (include module(s) first, then block can override).

On the original question I tend to agree with @phluid61 that it would be preferable to avoid inserting an anonymous Module in the singleton_class's

ancestors. Would having the anonymous module provide any advantage over not having it?

Thanks,

Dave

P.S. Why "singleton_class.send(:include, Module.new(&bk))" instead of just "singleton_class.include(Module.new(&bk))"? Are these somehow not

equivalent?

#4 - 03/08/2013 04:27 PM - phluid61 (Matthew Kerwin)

david_macmahon (David MacMahon) wrote:

Which raises another question: what would be the order of extending if

#extend is passed one or more modules and given a block? IOW, should

the passed in module(s) be included first thereby giving the block the

opportunity to override them or vice versa (or should this be explicitly

disallowed)? I guess I'd favor the first way (include module(s) first,

then block can override).

 That's the order Facets uses: https://github.com/rubyworks/facets/blob/master/lib/core/facets/kernel/extend.rb

On the original question I tend to agree with @phluid61 that it would be

preferable to avoid inserting an anonymous Module in the

singleton_class's ancestors. Would having the anonymous module provide

any advantage over not having it?

 My reasoning against was that on calling it a second time, there would be a second anonymous module, and so on.

P.S. Why "singleton_class.send(:include, Module.new(&bk))" instead of

just "singleton_class.include(Module.new(&bk))"? Are these somehow not

equivalent?

 #include is private, so can't be called directly from outside the singleton_class object.

#5 - 03/08/2013 09:19 PM - nobu (Nobuyoshi Nakada)

Without a module, it'd not be #extend but #singleton_class_eval.

07/17/2025 2/3

https://github.com/rubyworks/facets/blob/master/lib/core/facets/kernel/extend.rb

#6 - 12/25/2017 06:15 PM - naruse (Yui NARUSE)

- Target version deleted (2.6)

Powered by TCPDF (www.tcpdf.org)

07/17/2025 3/3

http://www.tcpdf.org

