
Ruby - Feature #9111

Encoding-free String comparison

11/14/2013 10:15 PM - sawa (Tsuyoshi Sawada)

Status: Open

Priority: Normal

Assignee:

Target version:

Description

=begin

Currently, strings with the same content but with different encodings count as different strings. This causes strange behaviour as

below (noted in StackOverflow question

http://stackoverflow.com/questions/19977788/strange-behavior-in-packed-ruby-strings#19978206):

[128].pack("C") # => "\x80"

[128].pack("C") == "\x80" # => false

 Since [128].pack("C") has the encoding ASCII-8BIT and "\x80" (by default) has the encoding UTF-8, the two strings are not equal.

Also, comparison of strings with different encodings may end up with a messy, unintended result.

I suggest that the comparison String#<=> should not be based on the respective encoding of the strings, but all the strings should be

internally converted to UTF-8 for the purpose of comparison.

=end

Related issues:

Related to Ruby - Feature #10084: Add Unicode String Normalization to String ... Closed

History

#1 - 11/14/2013 11:17 PM - nobu (Nobuyoshi Nakada)

sawa (Tsuyoshi Sawada) wrote:

I suggest that the comparison String#<=> should not be based on the respective encoding of the strings, but all the strings should be internally

converted to UTF-8 for the purpose of comparison.

 It's unacceptable to always convert all strings to UTF-8, should restrict to comparison with an ASCII-8BIT string.

#2 - 11/15/2013 12:04 AM - sawa (Tsuyoshi Sawada)

Following nobu's suggestion, I came up with the following several possibilities:

When two strings with different encodings are to be compared by String#<=>, then one of the following options should be taken:

Raise a Warning message

Raise an error

Convert one of the strings to the other one.

I am not sure which option would be the best, but feel the feature should not be left as is now.

#3 - 11/15/2013 05:20 AM - Hanmac (Hans Mackowiak)

what about strings with the same encoding, but different content, but that is turned the same?

like "â" can be maked from "a" + "^" somehow, should they also treated as equal?

#4 - 11/15/2013 02:41 PM - sawa (Tsuyoshi Sawada)

Hanmac: "â" can be maked from "a" + "^"

 Treating them the same is too much, I think. There are various marking methods. For example, â would have a different marking in TeX. Assuming

them equal is going too much. They should be treated differently.

07/17/2025 1/2

http://stackoverflow.com/questions/19977788/strange-behavior-in-packed-ruby-strings#19978206

#5 - 11/15/2013 05:15 PM - Hanmac (Hans Mackowiak)

i found the wikipedia source: http://en.wikipedia.org/wiki/Combining_character

its not about treating "^a" or "a^" the same as "â" but there is a way to clue the chars together

i think thats also a reason for http://api.rubyonrails.org/classes/String.html#method-i-mb_chars ?

i found another interesting gems http://rubygems.org/gems/unicode_utils

with that is also possible to do something like this: "ä".upcase => "Ä"

there is another page about combining character: http://sbp.so/supercombiner

#6 - 11/21/2013 04:35 PM - naruse (Yui NARUSE)

Hanmac (Hans Mackowiak) wrote:

what about strings with the same encoding, but different content, but that is turned the same?

like "â" can be maked from "a" + "^" somehow, should they also treated as equal?

 The standard practice is NFD("â") == NFD("a" + "^").

To NFD, you can use some libraries.

see also http://bibwild.wordpress.com/2013/11/19/benchmarking-ruby-unicode-normalization-alternatives/

#7 - 07/23/2014 10:11 AM - duerst (Martin Dürst)

- Related to Feature #10084: Add Unicode String Normalization to String class added

Powered by TCPDF (www.tcpdf.org)

07/17/2025 2/2

http://en.wikipedia.org/wiki/Combining_character
http://api.rubyonrails.org/classes/String.html#method-i-mb_chars
http://rubygems.org/gems/unicode_utils
http://sbp.so/supercombiner
http://bibwild.wordpress.com/2013/11/19/benchmarking-ruby-unicode-normalization-alternatives/
http://www.tcpdf.org

