\name{armStats} \alias{armStats} \title{ Find aberrations with chromosome arm resolution } \description{ Calculate significant chromosomal arms with various statistical tests } \usage{ armStats(datalist, chromNum=1, arm="q", samples=NULL, select="cli",test="fisher", bonferroni = TRUE, enrichment = "greater") } \arguments{ \item{datalist}{ The CAFE datalist to be analyzed, i.e. the output of \code{\link{ProcessCels}}. } \item{chromNum}{ The chromosome to be calculated. This can be \code{"ALL"} to calculate all chromosomes. } \item{arm}{ Select which arm - \code{"q"} or \code{"p"} - to analyse } \item{samples}{ A vector containing sample numbers to be analyzed } \item{select}{ Signifies which type of sample selection prompt will be shown, if \code{samples=NULL}. Currently supported are \code{"cli"} for a command line interface and \code{"gui"} for a tcl/tk-based graphical user interface. } \item{test}{ Signifies which statistical test to be used in the final calculation. Must be either \code{"fisher"} for an exact fisher test or \code{"chisqr"} for a chi square test. } \item{bonferroni}{ If \code{bonferroni=TRUE}, will correct the p-values of the enrichment test with a bonferroni method. } \item{enrichment}{ Test for over or underexpression. Can be set to \code{"greater"} or \code{"less"}. } } \value{ A named vector containing p-values. } \author{ Sander Bollen } \note{ Technically speaking, the Fisher's exact test is better than the chi-square test; the Fisher's exact test gives an exact p-value, whereas the chi-square test only gives an approximation. However, the Fisher's exact test can get slow for large sample sizes, and the chi-square test becomes better with increasing sample size but does not slow down as much. } \seealso{ \code{\link{chromosomeStats}} \code{\link{bandStats}} } \examples{ data("CAFE_data") armStats(CAFE_data,chromNum="ALL",samples=c(1,3),arm="p") } \keyword{multivariate}