89fa3af2 |
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/runSNF.R
\name{CiteFuse}
\alias{CiteFuse}
|
233354bd |
\title{CiteFuse}
|
89fa3af2 |
\usage{
|
846c3061 |
CiteFuse(
sce,
altExp_name = "ADT",
W_list = NULL,
gene_select = TRUE,
dist_cal_RNA = "correlation",
dist_cal_ADT = "propr",
ADT_subset = NULL,
K_knn = 20,
|
7f7a3d81 |
K_knn_Aff = 30,
sigma = 0.45,
|
80273ea0 |
t = 10,
|
846c3061 |
metadata_names = NULL,
|
7f7a3d81 |
verbose = TRUE,
|
80273ea0 |
topN = 2000
|
846c3061 |
)
|
89fa3af2 |
}
\arguments{
|
a320ea6f |
\item{sce}{a SingleCellExperiment}
|
89fa3af2 |
\item{altExp_name}{expression name of ADT matrix}
\item{W_list}{affinity list, if it is NULL, the function will calculate it.}
|
a320ea6f |
\item{gene_select}{whether highly variable genes will be selected
|
7f7a3d81 |
for RNA-seq to calcualte simlarity matrix using `scran` package}
|
89fa3af2 |
\item{dist_cal_RNA}{similarity metrics used for RNA matrix}
\item{dist_cal_ADT}{similarity metrics used for ADT matrix}
\item{ADT_subset}{A vector indicates the subset that will be used.}
\item{K_knn}{Number of nearest neighbours}
|
7f7a3d81 |
\item{K_knn_Aff}{Number of nearest neighbors for computing affinity matrix}
\item{sigma}{Variance for local model for computing affinity matrix}
|
89fa3af2 |
\item{t}{Number of iterations for the diffusion process.}
\item{metadata_names}{A vector indicates the names of metadata returned}
\item{verbose}{whether print out the process}
|
7f7a3d81 |
|
80273ea0 |
\item{topN}{top highly variable genes are used
|
7f7a3d81 |
variable gene selection
(see `modelGeneVar` in `scran` package for more details)}
|
89fa3af2 |
}
|
233354bd |
\value{
A SingleCellExperiment object with fused matrix results stored
}
|
89fa3af2 |
\description{
A function to runSNF for CITE seq data
}
|
c3e74dcc |
\examples{
data("sce_ctcl_subset", package = "CiteFuse")
sce_ctcl_subset <- CiteFuse(sce_ctcl_subset)
}
|
7f7a3d81 |
\references{
B Wang, A Mezlini, F Demir, M Fiume, T Zu, M Brudno, B Haibe-Kains,
A Goldenberg (2014) Similarity Network Fusion: a fast and effective method
to aggregate multiple data types on a genome wide scale.
Nature Methods. Online. Jan 26, 2014
}
|