% Generated by roxygen2: do not edit by hand % Please edit documentation in R/importanceADT.R \name{importanceADT} \alias{importanceADT} \title{importanceADT} \usage{ importanceADT( sce, altExp_name = "ADT", exprs_value = "logcounts", method = c("randomForest", "PCA"), group = NULL, subsample = TRUE, times = 10, prop = 0.8, k_pca = 5, remove_first_PC = TRUE, ... ) } \arguments{ \item{sce}{A singlecellexperiment object} \item{altExp_name}{A character indicates which expression matrix is used. by default is none (i.e. RNA).} \item{exprs_value}{A character indicates which expression value in assayNames is used.} \item{method}{A character indicates the method of ADT importance calculation, either randomForest or PCA} \item{group}{A vector indicates the grouping of the data (for random forest)} \item{subsample}{Whether perform subsampling (for random forest)} \item{times}{A numeric indicates the times of subsampling is performed (for random forest)} \item{prop}{A numeric indicates the proportion of cells are subsampled from the whole data (for random forest)} \item{k_pca}{Number of principal component will be used to calculate the loading scores (for PCA)} \item{remove_first_PC}{A logical input indicates whether the first component will be removed from calculation (for PCA).} \item{...}{other arguments to `randomForest()` or `prcomp()` function} } \value{ A SingleCellExperiment object } \description{ A function to calculate the importance score of ADT } \details{ For random forest, the importance scores are based on features importance. For PCA, it implements the method proposed in Levin et al (based on the loading of features). } \examples{ data("sce_control_subset", package = "CiteFuse") sce_control_subset <- importanceADT(sce_control_subset, group = sce_control_subset$SNF_W_louvain, subsample = TRUE) } \references{ Levine, J.H., Simonds, E.F., Bendall, S.C., Davis, K.L., El-ad, D.A., Tadmor, M.D., Litvin, O., Fienberg, H.G., Jager, A., Zunder, E.R. and Finck, R., 2015. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell, 162(1), pp.184-197. }