... | ... |
@@ -391,7 +391,7 @@ doWilcox <- function(exprsMat, cellTypes, |
391 | 391 |
#' |
392 | 392 |
#' @examples |
393 | 393 |
#' library(S4Vectors) |
394 |
-#' data(sce_control_subset) |
|
394 |
+#' data(sce_control_subset, package = "CiteFuse") |
|
395 | 395 |
#' sce_control_subset <- DEgenes(sce_control_subset, |
396 | 396 |
#' altExp_name = "none", |
397 | 397 |
#' group = sce_control_subset$SNF_W_louvain, |
... | ... |
@@ -23,7 +23,7 @@ |
23 | 23 |
#' a preprocessed expression matrix |
24 | 24 |
#' |
25 | 25 |
#' @examples |
26 |
-#' data(CITEseq_example) |
|
26 |
+#' data(CITEseq_example, package = "CiteFuse") |
|
27 | 27 |
#' sce_citeseq <- preprocessing(CITEseq_example) |
28 | 28 |
#' |
29 | 29 |
#' @importFrom SingleCellExperiment SingleCellExperiment altExp |
... | ... |
@@ -312,7 +312,7 @@ readFrom10X <- function(dir, |
312 | 312 |
#' to add when log-transforming expression values. Default is 1 |
313 | 313 |
#' |
314 | 314 |
#' @examples |
315 |
-#' data(CITEseq_example) |
|
315 |
+#' data(CITEseq_example, package = "CiteFuse") |
|
316 | 316 |
#' sce_citeseq <- preprocessing(CITEseq_example) |
317 | 317 |
#' sce_citeseq <- normaliseExprs(sce = sce_citeseq, |
318 | 318 |
#' altExp_name = "ADT", |
... | ... |
@@ -456,7 +456,7 @@ normaliseExprs <- function(sce, |
456 | 456 |
#' @return A SingleCellExperiment Object |
457 | 457 |
#' |
458 | 458 |
#' @examples |
459 |
-#' data(CITEseq_example) |
|
459 |
+#' data(CITEseq_example, package = "CiteFuse") |
|
460 | 460 |
#' sce_citeseq <- preprocessing(CITEseq_example) |
461 | 461 |
#' sce_citeseq <- normaliseExprs(sce = sce_citeseq, |
462 | 462 |
#' altExp_name = "HTO", |
... | ... |
@@ -577,7 +577,7 @@ crossSampleDoublets <- function(sce, |
577 | 577 |
#' @return A plot visualising the HTO expression |
578 | 578 |
#' |
579 | 579 |
#' @examples |
580 |
-#' data(CITEseq_example) |
|
580 |
+#' data(CITEseq_example, package = "CiteFuse") |
|
581 | 581 |
#' sce_citeseq <- preprocessing(CITEseq_example) |
582 | 582 |
#' sce_citeseq <- normaliseExprs(sce = sce_citeseq, |
583 | 583 |
#' altExp_name = "HTO", |
... | ... |
@@ -737,7 +737,7 @@ plotHTOSingle <- function(sce, |
737 | 737 |
#' |
738 | 738 |
#' @examples |
739 | 739 |
#' |
740 |
-#' data(CITEseq_example) |
|
740 |
+#' data(CITEseq_example, package = "CiteFuse") |
|
741 | 741 |
#' sce_citeseq <- preprocessing(CITEseq_example) |
742 | 742 |
#' sce_citeseq <- normaliseExprs(sce = sce_citeseq, |
743 | 743 |
#' altExp_name = "HTO", |
... | ... |
@@ -15,11 +15,10 @@ |
15 | 15 |
#' |
16 | 16 |
#' @examples |
17 | 17 |
#' |
18 |
-#' data(sce_control_subset) |
|
18 |
+#' data(sce_control_subset, package = "CiteFuse") |
|
19 | 19 |
#' sce_control_subset <- CiteFuse(sce_control_subset) |
20 | 20 |
#' SNF_W <- S4Vectors::metadata(sce_control_subset)[["SNF_W"]] |
21 |
-#' SNF_W_clust <- spectralClustering(SNF_W, |
|
22 |
-#' K = 5) |
|
21 |
+#' SNF_W_clust <- spectralClustering(SNF_W, K = 5) |
|
23 | 22 |
#' |
24 | 23 |
#' @importFrom igraph arpack |
25 | 24 |
#' @importFrom methods as |
... | ... |
@@ -209,7 +208,7 @@ spectralClustering <- function(affinity, K = 20, type = 4, |
209 | 208 |
#' @return A SingleCellExperiment object |
210 | 209 |
#' |
211 | 210 |
#' @examples |
212 |
-#' data(sce_control_subset) |
|
211 |
+#' data(sce_control_subset, package = "CiteFuse") |
|
213 | 212 |
#' sce_control_subset <- CiteFuse(sce_control_subset) |
214 | 213 |
#' sce_control_subset <- reducedDimSNF(sce_control_subset, |
215 | 214 |
#' method = "tSNE", |
... | ... |
@@ -296,7 +295,7 @@ reducedDimSNF <- function(sce, |
296 | 295 |
#' @return A ggplot of the reduced dimension visualisation |
297 | 296 |
#' |
298 | 297 |
#' @examples |
299 |
-#' data(sce_control_subset) |
|
298 |
+#' data(sce_control_subset, package = "CiteFuse") |
|
300 | 299 |
#' sce_control_subset <- CiteFuse(sce_control_subset) |
301 | 300 |
#' sce_control_subset <- reducedDimSNF(sce_control_subset, |
302 | 301 |
#' method = "tSNE", |
... | ... |
@@ -529,7 +528,7 @@ visualiseDim <- function(sce, |
529 | 528 |
#' |
530 | 529 |
#' @examples |
531 | 530 |
#' |
532 |
-#' data(sce_control_subset) |
|
531 |
+#' data(sce_control_subset, package = "CiteFuse") |
|
533 | 532 |
#' sce_control_subset <- CiteFuse(sce_control_subset) |
534 | 533 |
#' SNF_W_louvain <- igraphClustering(sce_control_subset, |
535 | 534 |
#' method = "louvain") |
... | ... |
@@ -632,7 +631,7 @@ igraphClustering <- function(sce, |
632 | 631 |
#' @return A igraph plot |
633 | 632 |
#' |
634 | 633 |
#' @examples |
635 |
-#' data(sce_control_subset) |
|
634 |
+#' data(sce_control_subset, package = "CiteFuse") |
|
636 | 635 |
#' sce_control_subset <- CiteFuse(sce_control_subset) |
637 | 636 |
#' SNF_W_louvain <- igraphClustering(sce_control_subset, |
638 | 637 |
#' method = "louvain") |
... | ... |
@@ -42,7 +42,7 @@ |
42 | 42 |
#' @examples |
43 | 43 |
#' library(SingleCellExperiment) |
44 | 44 |
#' set.seed(2020) |
45 |
-#' data(sce_control_subset) |
|
45 |
+#' data(sce_control_subset, package = "CiteFuse") |
|
46 | 46 |
#' RNA_feature_subset <- sample(rownames(sce_control_subset), 50) |
47 | 47 |
#' ADT_feature_subset <- rownames(altExp(sce_control_subset, "ADT")) |
48 | 48 |
#' |
... | ... |
@@ -50,7 +50,7 @@ |
50 | 50 |
#' RNA_feature_subset = RNA_feature_subset, |
51 | 51 |
#' ADT_feature_subset = ADT_feature_subset, |
52 | 52 |
#' cor_method = "pearson", |
53 |
-#' network_layout = igraph::layout_with_fr) |
|
53 |
+#' network_layout = igraph::layout_with_fr) |
|
54 | 54 |
#' |
55 | 55 |
#' @export |
56 | 56 |
|
... | ... |
@@ -24,8 +24,8 @@ |
24 | 24 |
#' @importFrom S4Vectors metadata |
25 | 25 |
#' |
26 | 26 |
#' @examples |
27 |
-#' data(lr_pair_subset) |
|
28 |
-#' data(sce_control_subset) |
|
27 |
+#' data(lr_pair_subset, package = "CiteFuse") |
|
28 |
+#' data(sce_control_subset, package = "CiteFuse") |
|
29 | 29 |
#' |
30 | 30 |
#' sce_control_subset <- normaliseExprs(sce = sce_control_subset, |
31 | 31 |
#' altExp_name = "ADT", |
... | ... |
@@ -304,8 +304,8 @@ ligandReceptorTest <- function(sce, |
304 | 304 |
#' @import ggplot2 |
305 | 305 |
#' |
306 | 306 |
#' @examples |
307 |
-#' data(lr_pair_subset) |
|
308 |
-#' data(sce_control_subset) |
|
307 |
+#' data(lr_pair_subset, package = "CiteFuse") |
|
308 |
+#' data(sce_control_subset, package = "CiteFuse") |
|
309 | 309 |
#' |
310 | 310 |
#' sce_control_subset <- normaliseExprs(sce = sce_control_subset, |
311 | 311 |
#' altExp_name = "ADT", |
... | ... |
@@ -386,8 +386,8 @@ fitMixtures <- function(vec) { |
386 | 386 |
#' @return A ggplot to visualise te features distribution |
387 | 387 |
#' |
388 | 388 |
#' @examples |
389 |
-#' data(sce_control_subset) |
|
390 |
-#' data(sce_ctcl_subset) |
|
389 |
+#' data(sce_control_subset, package = "CiteFuse") |
|
390 |
+#' data(sce_ctcl_subset, package = "CiteFuse") |
|
391 | 391 |
#' visualiseExprsList(sce_list = list(control = sce_control_subset, |
392 | 392 |
#' ctcl = sce_ctcl_subset), |
393 | 393 |
#' plot = "boxplot", |
... | ... |
@@ -18,7 +18,7 @@ the marker for each cluster |
18 | 18 |
} |
19 | 19 |
\examples{ |
20 | 20 |
library(S4Vectors) |
21 |
-data(sce_control_subset) |
|
21 |
+data(sce_control_subset, package = "CiteFuse") |
|
22 | 22 |
sce_control_subset <- DEgenes(sce_control_subset, |
23 | 23 |
altExp_name = "none", |
24 | 24 |
group = sce_control_subset$SNF_W_louvain, |
... | ... |
@@ -24,7 +24,7 @@ A SingleCellExperiment Object |
24 | 24 |
A function that perform normalisation for alternative expression |
25 | 25 |
} |
26 | 26 |
\examples{ |
27 |
-data(CITEseq_example) |
|
27 |
+data(CITEseq_example, package = "CiteFuse") |
|
28 | 28 |
sce_citeseq <- preprocessing(CITEseq_example) |
29 | 29 |
sce_citeseq <- normaliseExprs(sce = sce_citeseq, |
30 | 30 |
altExp_name = "HTO", |
... | ... |
@@ -74,7 +74,7 @@ A function to visualise the features distribtuion |
74 | 74 |
\examples{ |
75 | 75 |
library(SingleCellExperiment) |
76 | 76 |
set.seed(2020) |
77 |
-data(sce_control_subset) |
|
77 |
+data(sce_control_subset, package = "CiteFuse") |
|
78 | 78 |
RNA_feature_subset <- sample(rownames(sce_control_subset), 50) |
79 | 79 |
ADT_feature_subset <- rownames(altExp(sce_control_subset, "ADT")) |
80 | 80 |
|
... | ... |
@@ -31,7 +31,7 @@ A function to perform igraph clustering |
31 | 31 |
} |
32 | 32 |
\examples{ |
33 | 33 |
|
34 |
-data(sce_control_subset) |
|
34 |
+data(sce_control_subset, package = "CiteFuse") |
|
35 | 35 |
sce_control_subset <- CiteFuse(sce_control_subset) |
36 | 36 |
SNF_W_louvain <- igraphClustering(sce_control_subset, |
37 | 37 |
method = "louvain") |
... | ... |
@@ -46,8 +46,8 @@ A SingleCellExperiment object with ligand receptor results |
46 | 46 |
A function to perform ligand receptor analysis |
47 | 47 |
} |
48 | 48 |
\examples{ |
49 |
-data(lr_pair_subset) |
|
50 |
-data(sce_control_subset) |
|
49 |
+data(lr_pair_subset, package = "CiteFuse") |
|
50 |
+data(sce_control_subset, package = "CiteFuse") |
|
51 | 51 |
|
52 | 52 |
sce_control_subset <- normaliseExprs(sce = sce_control_subset, |
53 | 53 |
altExp_name = "ADT", |
... | ... |
@@ -34,7 +34,7 @@ a SingleCellExperiment object |
34 | 34 |
A function that perform normalisation for alternative expression |
35 | 35 |
} |
36 | 36 |
\examples{ |
37 |
-data(CITEseq_example) |
|
37 |
+data(CITEseq_example, package = "CiteFuse") |
|
38 | 38 |
sce_citeseq <- preprocessing(CITEseq_example) |
39 | 39 |
sce_citeseq <- normaliseExprs(sce = sce_citeseq, |
40 | 40 |
altExp_name = "ADT", |
... | ... |
@@ -22,7 +22,7 @@ A plot visualising the HTO expression |
22 | 22 |
A function to plot HTO expression |
23 | 23 |
} |
24 | 24 |
\examples{ |
25 |
-data(CITEseq_example) |
|
25 |
+data(CITEseq_example, package = "CiteFuse") |
|
26 | 26 |
sce_citeseq <- preprocessing(CITEseq_example) |
27 | 27 |
sce_citeseq <- normaliseExprs(sce = sce_citeseq, |
28 | 28 |
altExp_name = "HTO", |
... | ... |
@@ -44,7 +44,7 @@ and filter the features that are all zeros across samples, |
44 | 44 |
and finally construct a \code{SingleCellExperiment} object |
45 | 45 |
} |
46 | 46 |
\examples{ |
47 |
-data(CITEseq_example) |
|
47 |
+data(CITEseq_example, package = "CiteFuse") |
|
48 | 48 |
sce_citeseq <- preprocessing(CITEseq_example) |
49 | 49 |
|
50 | 50 |
} |
... | ... |
@@ -26,7 +26,7 @@ A SingleCellExperiment object |
26 | 26 |
A function to reduce the dimension of the similarity matrix |
27 | 27 |
} |
28 | 28 |
\examples{ |
29 |
-data(sce_control_subset) |
|
29 |
+data(sce_control_subset, package = "CiteFuse") |
|
30 | 30 |
sce_control_subset <- CiteFuse(sce_control_subset) |
31 | 31 |
sce_control_subset <- reducedDimSNF(sce_control_subset, |
32 | 32 |
method = "tSNE", |
... | ... |
@@ -40,7 +40,7 @@ A function to perform spectral clustering |
40 | 40 |
} |
41 | 41 |
\examples{ |
42 | 42 |
|
43 |
-data(sce_control_subset) |
|
43 |
+data(sce_control_subset, package = "CiteFuse") |
|
44 | 44 |
sce_control_subset <- CiteFuse(sce_control_subset) |
45 | 45 |
SNF_W <- S4Vectors::metadata(sce_control_subset)[["SNF_W"]] |
46 | 46 |
SNF_W_clust <- spectralClustering(SNF_W, |
... | ... |
@@ -28,8 +28,8 @@ A plot visualise the ligand receptor results |
28 | 28 |
A function to visualise ligand receptor analysis |
29 | 29 |
} |
30 | 30 |
\examples{ |
31 |
-data(lr_pair_subset) |
|
32 |
-data(sce_control_subset) |
|
31 |
+data(lr_pair_subset, package = "CiteFuse") |
|
32 |
+data(sce_control_subset, package = "CiteFuse") |
|
33 | 33 |
|
34 | 34 |
sce_control_subset <- normaliseExprs(sce = sce_control_subset, |
35 | 35 |
altExp_name = "ADT", |
... | ... |
@@ -46,7 +46,7 @@ A ggplot of the reduced dimension visualisation |
46 | 46 |
A function to visualise the reduced dimension |
47 | 47 |
} |
48 | 48 |
\examples{ |
49 |
-data(sce_control_subset) |
|
49 |
+data(sce_control_subset, package = "CiteFuse") |
|
50 | 50 |
sce_control_subset <- CiteFuse(sce_control_subset) |
51 | 51 |
sce_control_subset <- reducedDimSNF(sce_control_subset, |
52 | 52 |
method = "tSNE", |
... | ... |
@@ -46,8 +46,8 @@ A function to visualise the features distribtuion for |
46 | 46 |
a list of SingleCellExperiment |
47 | 47 |
} |
48 | 48 |
\examples{ |
49 |
-data(sce_control_subset) |
|
50 |
-data(sce_ctcl_subset) |
|
49 |
+data(sce_control_subset, package = "CiteFuse") |
|
50 |
+data(sce_ctcl_subset, package = "CiteFuse") |
|
51 | 51 |
visualiseExprsList(sce_list = list(control = sce_control_subset, |
52 | 52 |
ctcl = sce_ctcl_subset), |
53 | 53 |
plot = "boxplot", |
... | ... |
@@ -20,7 +20,7 @@ A igraph plot |
20 | 20 |
A function to perform louvain clustering |
21 | 21 |
} |
22 | 22 |
\examples{ |
23 |
-data(sce_control_subset) |
|
23 |
+data(sce_control_subset, package = "CiteFuse") |
|
24 | 24 |
sce_control_subset <- CiteFuse(sce_control_subset) |
25 | 25 |
SNF_W_louvain <- igraphClustering(sce_control_subset, |
26 | 26 |
method = "louvain") |
... | ... |
@@ -23,7 +23,7 @@ doublet identification within batch |
23 | 23 |
} |
24 | 24 |
\examples{ |
25 | 25 |
|
26 |
-data(CITEseq_example) |
|
26 |
+data(CITEseq_example, package = "CiteFuse") |
|
27 | 27 |
sce_citeseq <- preprocessing(CITEseq_example) |
28 | 28 |
sce_citeseq <- normaliseExprs(sce = sce_citeseq, |
29 | 29 |
altExp_name = "HTO", |