Browse code

add BiocStyle in suggests

yingxinlin authored on 12/04/2020 16:17:45
Showing 23 changed files

... ...
@@ -1,7 +1,9 @@
1 1
 ^.*\.Rproj$
2 2
 ^\.Rproj\.user$
3
-^docs$
4 3
 ^doc$
4
+^docs$
5 5
 ^_pkgdown\.yml$
6 6
 ^vignettes/webOnly/
7 7
 .travis.yml
8
+^doc/
9
+^docs/
... ...
@@ -50,7 +50,8 @@ Suggests:
50 50
     DT,
51 51
     mclust,
52 52
     scater,
53
-    ExPosition
53
+    ExPosition,
54
+    BiocStyle
54 55
 VignetteBuilder: knitr
55 56
 LazyData: false
56 57
 biocViews: SingleCell, GeneExpression
... ...
@@ -391,7 +391,7 @@ doWilcox <- function(exprsMat, cellTypes,
391 391
 #'
392 392
 #' @examples
393 393
 #' library(S4Vectors)
394
-#' data(sce_control_subset)
394
+#' data(sce_control_subset, package = "CiteFuse")
395 395
 #' sce_control_subset <- DEgenes(sce_control_subset,
396 396
 #' altExp_name = "none",
397 397
 #' group = sce_control_subset$SNF_W_louvain,
... ...
@@ -23,7 +23,7 @@
23 23
 #' a preprocessed expression matrix
24 24
 #'
25 25
 #' @examples
26
-#' data(CITEseq_example)
26
+#' data(CITEseq_example, package = "CiteFuse")
27 27
 #' sce_citeseq <- preprocessing(CITEseq_example)
28 28
 #'
29 29
 #' @importFrom SingleCellExperiment SingleCellExperiment altExp
... ...
@@ -312,7 +312,7 @@ readFrom10X <- function(dir,
312 312
 #' to add when log-transforming expression values. Default is 1
313 313
 #'
314 314
 #' @examples
315
-#' data(CITEseq_example)
315
+#' data(CITEseq_example, package = "CiteFuse")
316 316
 #' sce_citeseq <- preprocessing(CITEseq_example)
317 317
 #' sce_citeseq <- normaliseExprs(sce = sce_citeseq,
318 318
 #' altExp_name = "ADT",
... ...
@@ -456,7 +456,7 @@ normaliseExprs <- function(sce,
456 456
 #' @return A SingleCellExperiment Object
457 457
 #'
458 458
 #' @examples
459
-#' data(CITEseq_example)
459
+#' data(CITEseq_example, package = "CiteFuse")
460 460
 #' sce_citeseq <- preprocessing(CITEseq_example)
461 461
 #' sce_citeseq <- normaliseExprs(sce = sce_citeseq,
462 462
 #' altExp_name = "HTO",
... ...
@@ -577,7 +577,7 @@ crossSampleDoublets <- function(sce,
577 577
 #' @return A plot visualising the HTO expression
578 578
 #'
579 579
 #' @examples
580
-#' data(CITEseq_example)
580
+#' data(CITEseq_example, package = "CiteFuse")
581 581
 #' sce_citeseq <- preprocessing(CITEseq_example)
582 582
 #' sce_citeseq <- normaliseExprs(sce = sce_citeseq,
583 583
 #' altExp_name = "HTO",
... ...
@@ -737,7 +737,7 @@ plotHTOSingle <- function(sce,
737 737
 #'
738 738
 #' @examples
739 739
 #'
740
-#' data(CITEseq_example)
740
+#' data(CITEseq_example, package = "CiteFuse")
741 741
 #' sce_citeseq <- preprocessing(CITEseq_example)
742 742
 #' sce_citeseq <- normaliseExprs(sce = sce_citeseq,
743 743
 #' altExp_name = "HTO",
... ...
@@ -15,11 +15,10 @@
15 15
 #'
16 16
 #' @examples
17 17
 #'
18
-#' data(sce_control_subset)
18
+#' data(sce_control_subset, package = "CiteFuse")
19 19
 #' sce_control_subset <- CiteFuse(sce_control_subset)
20 20
 #' SNF_W <- S4Vectors::metadata(sce_control_subset)[["SNF_W"]]
21
-#' SNF_W_clust <- spectralClustering(SNF_W,
22
-#' K = 5)
21
+#' SNF_W_clust <- spectralClustering(SNF_W, K = 5)
23 22
 #'
24 23
 #' @importFrom igraph arpack
25 24
 #' @importFrom methods as
... ...
@@ -209,7 +208,7 @@ spectralClustering <- function(affinity, K = 20, type = 4,
209 208
 #' @return A SingleCellExperiment object
210 209
 #'
211 210
 #' @examples
212
-#' data(sce_control_subset)
211
+#' data(sce_control_subset, package = "CiteFuse")
213 212
 #' sce_control_subset <- CiteFuse(sce_control_subset)
214 213
 #' sce_control_subset <- reducedDimSNF(sce_control_subset,
215 214
 #' method = "tSNE",
... ...
@@ -296,7 +295,7 @@ reducedDimSNF <- function(sce,
296 295
 #' @return A ggplot of the reduced dimension visualisation
297 296
 #'
298 297
 #' @examples
299
-#' data(sce_control_subset)
298
+#' data(sce_control_subset, package = "CiteFuse")
300 299
 #' sce_control_subset <- CiteFuse(sce_control_subset)
301 300
 #' sce_control_subset <- reducedDimSNF(sce_control_subset,
302 301
 #' method = "tSNE",
... ...
@@ -529,7 +528,7 @@ visualiseDim <- function(sce,
529 528
 #'
530 529
 #' @examples
531 530
 #'
532
-#' data(sce_control_subset)
531
+#' data(sce_control_subset, package = "CiteFuse")
533 532
 #' sce_control_subset <- CiteFuse(sce_control_subset)
534 533
 #' SNF_W_louvain <- igraphClustering(sce_control_subset,
535 534
 #' method = "louvain")
... ...
@@ -632,7 +631,7 @@ igraphClustering <- function(sce,
632 631
 #' @return A igraph plot
633 632
 #'
634 633
 #' @examples
635
-#' data(sce_control_subset)
634
+#' data(sce_control_subset, package = "CiteFuse")
636 635
 #' sce_control_subset <- CiteFuse(sce_control_subset)
637 636
 #' SNF_W_louvain <- igraphClustering(sce_control_subset,
638 637
 #' method = "louvain")
... ...
@@ -42,7 +42,7 @@
42 42
 #' @examples
43 43
 #' library(SingleCellExperiment)
44 44
 #' set.seed(2020)
45
-#' data(sce_control_subset)
45
+#' data(sce_control_subset, package = "CiteFuse")
46 46
 #' RNA_feature_subset <- sample(rownames(sce_control_subset), 50)
47 47
 #' ADT_feature_subset <- rownames(altExp(sce_control_subset, "ADT"))
48 48
 #'
... ...
@@ -50,7 +50,7 @@
50 50
 #'                RNA_feature_subset = RNA_feature_subset,
51 51
 #'                ADT_feature_subset = ADT_feature_subset,
52 52
 #'                cor_method = "pearson",
53
-#'               network_layout = igraph::layout_with_fr)
53
+#'                network_layout = igraph::layout_with_fr)
54 54
 #'
55 55
 #' @export
56 56
 
... ...
@@ -24,8 +24,8 @@
24 24
 #' @importFrom S4Vectors metadata
25 25
 #'
26 26
 #' @examples
27
-#' data(lr_pair_subset)
28
-#' data(sce_control_subset)
27
+#' data(lr_pair_subset, package = "CiteFuse")
28
+#' data(sce_control_subset, package = "CiteFuse")
29 29
 #'
30 30
 #' sce_control_subset <- normaliseExprs(sce = sce_control_subset,
31 31
 #' altExp_name = "ADT",
... ...
@@ -304,8 +304,8 @@ ligandReceptorTest <- function(sce,
304 304
 #' @import ggplot2
305 305
 #'
306 306
 #' @examples
307
-#' data(lr_pair_subset)
308
-#' data(sce_control_subset)
307
+#' data(lr_pair_subset, package = "CiteFuse")
308
+#' data(sce_control_subset, package = "CiteFuse")
309 309
 #'
310 310
 #' sce_control_subset <- normaliseExprs(sce = sce_control_subset,
311 311
 #' altExp_name = "ADT",
... ...
@@ -386,8 +386,8 @@ fitMixtures <- function(vec) {
386 386
 #' @return A ggplot to visualise te features distribution
387 387
 #'
388 388
 #' @examples
389
-#' data(sce_control_subset)
390
-#' data(sce_ctcl_subset)
389
+#' data(sce_control_subset, package = "CiteFuse")
390
+#' data(sce_ctcl_subset, package = "CiteFuse")
391 391
 #' visualiseExprsList(sce_list = list(control = sce_control_subset,
392 392
 #' ctcl = sce_ctcl_subset),
393 393
 #' plot = "boxplot",
... ...
@@ -18,7 +18,7 @@ the marker for each cluster
18 18
 }
19 19
 \examples{
20 20
 library(S4Vectors)
21
-data(sce_control_subset)
21
+data(sce_control_subset, package = "CiteFuse")
22 22
 sce_control_subset <- DEgenes(sce_control_subset,
23 23
 altExp_name = "none",
24 24
 group = sce_control_subset$SNF_W_louvain,
... ...
@@ -24,7 +24,7 @@ A SingleCellExperiment Object
24 24
 A function that perform normalisation for alternative expression
25 25
 }
26 26
 \examples{
27
-data(CITEseq_example)
27
+data(CITEseq_example, package = "CiteFuse")
28 28
 sce_citeseq <- preprocessing(CITEseq_example)
29 29
 sce_citeseq <- normaliseExprs(sce = sce_citeseq,
30 30
 altExp_name = "HTO",
... ...
@@ -74,7 +74,7 @@ A function to visualise the features distribtuion
74 74
 \examples{
75 75
 library(SingleCellExperiment)
76 76
 set.seed(2020)
77
-data(sce_control_subset)
77
+data(sce_control_subset, package = "CiteFuse")
78 78
 RNA_feature_subset <- sample(rownames(sce_control_subset), 50)
79 79
 ADT_feature_subset <- rownames(altExp(sce_control_subset, "ADT"))
80 80
 
... ...
@@ -31,7 +31,7 @@ A function to perform igraph clustering
31 31
 }
32 32
 \examples{
33 33
 
34
-data(sce_control_subset)
34
+data(sce_control_subset, package = "CiteFuse")
35 35
 sce_control_subset <- CiteFuse(sce_control_subset)
36 36
 SNF_W_louvain <- igraphClustering(sce_control_subset,
37 37
 method = "louvain")
... ...
@@ -46,8 +46,8 @@ A SingleCellExperiment object with ligand receptor results
46 46
 A function to perform ligand receptor analysis
47 47
 }
48 48
 \examples{
49
-data(lr_pair_subset)
50
-data(sce_control_subset)
49
+data(lr_pair_subset, package = "CiteFuse")
50
+data(sce_control_subset, package = "CiteFuse")
51 51
 
52 52
 sce_control_subset <- normaliseExprs(sce = sce_control_subset,
53 53
 altExp_name = "ADT",
... ...
@@ -34,7 +34,7 @@ a SingleCellExperiment object
34 34
 A function that perform normalisation for alternative expression
35 35
 }
36 36
 \examples{
37
-data(CITEseq_example)
37
+data(CITEseq_example, package = "CiteFuse")
38 38
 sce_citeseq <- preprocessing(CITEseq_example)
39 39
 sce_citeseq <- normaliseExprs(sce = sce_citeseq,
40 40
 altExp_name = "ADT",
... ...
@@ -22,7 +22,7 @@ A plot visualising the HTO expression
22 22
 A function to plot HTO expression
23 23
 }
24 24
 \examples{
25
-data(CITEseq_example)
25
+data(CITEseq_example, package = "CiteFuse")
26 26
 sce_citeseq <- preprocessing(CITEseq_example)
27 27
 sce_citeseq <- normaliseExprs(sce = sce_citeseq,
28 28
 altExp_name = "HTO",
... ...
@@ -44,7 +44,7 @@ and filter the features that are all zeros across samples,
44 44
 and finally construct a \code{SingleCellExperiment} object
45 45
 }
46 46
 \examples{
47
-data(CITEseq_example)
47
+data(CITEseq_example, package = "CiteFuse")
48 48
 sce_citeseq <- preprocessing(CITEseq_example)
49 49
 
50 50
 }
... ...
@@ -26,7 +26,7 @@ A SingleCellExperiment object
26 26
 A function to reduce the dimension of the similarity matrix
27 27
 }
28 28
 \examples{
29
-data(sce_control_subset)
29
+data(sce_control_subset, package = "CiteFuse")
30 30
 sce_control_subset <- CiteFuse(sce_control_subset)
31 31
 sce_control_subset <- reducedDimSNF(sce_control_subset,
32 32
 method = "tSNE",
... ...
@@ -40,7 +40,7 @@ A function to perform spectral clustering
40 40
 }
41 41
 \examples{
42 42
 
43
-data(sce_control_subset)
43
+data(sce_control_subset, package = "CiteFuse")
44 44
 sce_control_subset <- CiteFuse(sce_control_subset)
45 45
 SNF_W <- S4Vectors::metadata(sce_control_subset)[["SNF_W"]]
46 46
 SNF_W_clust <- spectralClustering(SNF_W,
... ...
@@ -28,8 +28,8 @@ A plot visualise the ligand receptor results
28 28
 A function to visualise ligand receptor analysis
29 29
 }
30 30
 \examples{
31
-data(lr_pair_subset)
32
-data(sce_control_subset)
31
+data(lr_pair_subset, package = "CiteFuse")
32
+data(sce_control_subset, package = "CiteFuse")
33 33
 
34 34
 sce_control_subset <- normaliseExprs(sce = sce_control_subset,
35 35
 altExp_name = "ADT",
... ...
@@ -46,7 +46,7 @@ A ggplot of the reduced dimension visualisation
46 46
 A function to visualise the reduced dimension
47 47
 }
48 48
 \examples{
49
-data(sce_control_subset)
49
+data(sce_control_subset, package = "CiteFuse")
50 50
 sce_control_subset <- CiteFuse(sce_control_subset)
51 51
 sce_control_subset <- reducedDimSNF(sce_control_subset,
52 52
 method = "tSNE",
... ...
@@ -46,8 +46,8 @@ A function to visualise the features distribtuion for
46 46
 a list of SingleCellExperiment
47 47
 }
48 48
 \examples{
49
-data(sce_control_subset)
50
-data(sce_ctcl_subset)
49
+data(sce_control_subset, package = "CiteFuse")
50
+data(sce_ctcl_subset, package = "CiteFuse")
51 51
 visualiseExprsList(sce_list = list(control = sce_control_subset,
52 52
 ctcl = sce_ctcl_subset),
53 53
 plot = "boxplot",
... ...
@@ -20,7 +20,7 @@ A igraph plot
20 20
 A function to perform louvain clustering
21 21
 }
22 22
 \examples{
23
-data(sce_control_subset)
23
+data(sce_control_subset, package = "CiteFuse")
24 24
 sce_control_subset <- CiteFuse(sce_control_subset)
25 25
 SNF_W_louvain <- igraphClustering(sce_control_subset,
26 26
 method = "louvain")
... ...
@@ -23,7 +23,7 @@ doublet identification within batch
23 23
 }
24 24
 \examples{
25 25
 
26
-data(CITEseq_example)
26
+data(CITEseq_example, package = "CiteFuse")
27 27
 sce_citeseq <- preprocessing(CITEseq_example)
28 28
 sce_citeseq <- normaliseExprs(sce = sce_citeseq,
29 29
 altExp_name = "HTO",