% Generated by roxygen2: do not edit by hand % Please edit documentation in R/CytoDx.pred.R \name{CytoDx.pred} \alias{CytoDx.pred} \title{Make prediction using the CytoDx model} \usage{ CytoDx.pred(fit, xNew, xSampleNew) } \arguments{ \item{fit}{The two stage statistical model. Must be the object returned by CytoDx.fit.} \item{xNew}{The marker profile of cells pooled from all new samples. Each row is a cell, each column is a marker.} \item{xSampleNew}{A vector specifying which sample each cell belongs to. Length must equal to nrow(xNew).} } \value{ Returns a list. xNew.Pred1 contains the predicted y for the new data at the cell level. xNew.Pred2 contains the predicted y for the new data at the sample level. } \description{ A function that makes prediction using the CytoDx model. } \examples{ # Find the table containing fcs file names in CytoDx package path <- system.file("extdata",package="CytoDx") # read the table fcs_info <- read.csv(file.path(path,"fcs_info.csv")) # Specify the path to the cytometry files fn <- file.path(path,fcs_info$fcsName) train_data <- fcs2DF(fcsFiles=fn, y=fcs_info$Label, assay="FCM", b=1/150, excludeTransformParameters= c("FSC-A","FSC-W","FSC-H","Time")) # build the model fit <- CytoDx.fit(x=as.matrix(train_data[,1:7]), y=train_data$y, xSample = train_data$xSample, reg=FALSE, family="binomial") # check accuracy for training data pred <- CytoDx.pred(fit, xNew=as.matrix(train_data[,1:7]), xSampleNew=train_data$xSample) boxplot(pred$xNew.Pred.sample$y.Pred.s0~ fcs_info$Label) }