... | ... |
@@ -6,6 +6,8 @@ |
6 | 6 |
#' @param distMat A distance matrix |
7 | 7 |
#' @param minClusterSize The minimum cluster size |
8 | 8 |
#' @param alpha a value between 0 and 1 specifying the desired level of cutoff |
9 |
+#' @return Optimal number of clusters |
|
10 |
+#' |
|
9 | 11 |
#' @importFrom stats kmeans |
10 | 12 |
.runDiscriminant <- function(distMat, minClusterSize, alpha = 0.001) { |
11 | 13 |
|
... | ... |
@@ -8,6 +8,9 @@ |
8 | 8 |
#' instead of the prcomp for computing the principal |
9 | 9 |
#' components when no weights are given (see details) |
10 | 10 |
#' @param ... not used |
11 |
+#' @return A list containing: `prototype`, a matrix containing appropriate |
|
12 |
+#' initial prototypes, and `data.pca` the results of the PCA conducted |
|
13 |
+#' on the data |
|
11 | 14 |
#' |
12 | 15 |
#' @importFrom stats princomp prcomp cov.wt |
13 | 16 |
somInitPca.default <- function(data, somGrid, weights, with.princomp = FALSE, ...) { |
... | ... |
@@ -2,6 +2,8 @@ |
2 | 2 |
#' Function to do percentile normalizaton |
3 | 3 |
#' |
4 | 4 |
#' @param x Matrix to percentile normilse. |
5 |
+#' @return percentile normalized version of `x` |
|
6 |
+#' |
|
5 | 7 |
#' @importFrom stats quantile |
6 | 8 |
.percentileNorm <- function(x) { |
7 | 9 |
x <- as.matrix(x) |
... | ... |
@@ -15,8 +17,10 @@ |
15 | 17 |
|
16 | 18 |
#' Function to do min max normalization |
17 | 19 |
#' |
18 |
-#' @param x Matrix to min max nomalize. |
|
19 | 20 |
#' @importFrom stats quantile |
21 |
+#' |
|
22 |
+#' @param x Matrix to min max nomalize. |
|
23 |
+#' @return Max normalized version of `x` |
|
20 | 24 |
.minmaxNorm <- function(x) { |
21 | 25 |
x <- as.matrix(x) |
22 | 26 |
percentiles <- quantile(x, probs = c(0.01, 0.99)) |
... | ... |
@@ -30,6 +34,7 @@ |
30 | 34 |
#' |
31 | 35 |
#' @param x A numeric or complex vector |
32 | 36 |
#' @param cofactor Cofactor of the vector. Default is 5. |
37 |
+#' @return Arsinh normalized vector. |
|
33 | 38 |
.arsinhNnorm <- function(x, cofactor = 5) { |
34 | 39 |
x <- asinh(x / cofactor) |
35 | 40 |
return(x) |
... | ... |
@@ -39,6 +44,7 @@ |
39 | 44 |
#' this function was obtained from the Stab package |
40 | 45 |
#' |
41 | 46 |
#' @param data A data matrix. |
47 |
+#' @return Uniform random noise with `dim(data)` |
|
42 | 48 |
.uniformData <- function(data) { |
43 | 49 |
|
44 | 50 |
# get dimensions of data |
... | ... |
@@ -56,6 +62,7 @@ |
56 | 62 |
#' A function to compute the elbow point given a set of points |
57 | 63 |
#' |
58 | 64 |
#' @param vals Values to compute the elbow point of. |
65 |
+#' @return A integer indicating the elbow point of `vals`. |
|
59 | 66 |
.computeElbow <- function(vals) { |
60 | 67 |
diffs <- diff(vals) |
61 | 68 |
diffs <- diffs[-1] |