Name Mode Size
..
MSstatsShiny.Rd 100644 2 kb
QC_check.Rd 100644 1 kb
annotation.mine.Rd 100644 0 kb
annotation.mq.Rd 100644 0 kb
annotation.pd.Rd 100644 0 kb
apply_adj.Rd 100644 1 kb
dia_skyline_model.Rd 100644 1 kb
dia_skyline_summarized.Rd 100644 1 kb
evidence.Rd 100644 0 kb
example_dia_skyline.Rd 100644 1 kb
example_skyline_annotation.Rd 100644 0 kb
expdesServer.Rd 100644 1 kb
expdesUI.Rd 100644 0 kb
groupComparisonPlots2.Rd 100644 5 kb
helpUI.Rd 100644 0 kb
homeUI.Rd 100644 1 kb
launch_MSstatsShiny.Rd 100644 1 kb
lf_model.Rd 100644 1 kb
lf_summarization_loop.Rd 100644 2 kb
loadpageServer.Rd 100644 1 kb
loadpageUI.Rd 100644 0 kb
msstatsHelpUI.Rd 100644 0 kb
msstatsTmtHelpUI.Rd 100644 0 kb
proteinGroups.Rd 100644 0 kb
qcServer.Rd 100644 1 kb
qcUI.Rd 100644 0 kb
radioTooltip.Rd 100644 1 kb
raw.mine.Rd 100644 0 kb
raw.om.Rd 100644 0 kb
raw.pd.Rd 100644 0 kb
server.Rd 100644 0 kb
statmodelServer.Rd 100644 1 kb
statmodelUI.Rd 100644 0 kb
tmt_model.Rd 100644 2 kb
tmt_pd_model.Rd 100644 1 kb
tmt_pd_summarized.Rd 100644 1 kb
tmt_summarization_loop.Rd 100644 2 kb
uiObject.Rd 100644 0 kb
xy_str.Rd 100644 0 kb
README.md
# MSstatsShiny This repository contains the code for the R Shiny app MSstatsShiny, which utilizes MSstats, MSstatsTMT, and MSstatsPTM to analyze proteomics experiments. ## Availability The application is available both online and locally, via Bioconductor or Github. ### Online The online application is located at [http://www.msstatsshiny.com/](http://www.msstatsshiny.com/). The online version is constrained to processing only input files smaller than 100 MB. Due to this, we recommend processing large datasets using a local installation. ### Bioconductor To install the application via Bioconductor, please use the following steps. 1. Download [R](https://www.r-project.org/) and [RStudio](https://www.rstudio.com/products/rstudio/download/) - [How to](https://rstudio-education.github.io/hopr/starting.html). **Note R version must be >= 4.3** 2. Intall the package via [Bioconductor](https://bioconductor.org/packages/release/bioc/html/MSstatsShiny.html) ### Github To install the application via Github, please use the following steps. 1. Download [R](https://www.r-project.org/) and [RStudio](https://www.rstudio.com/products/rstudio/download/) - [How to](https://rstudio-education.github.io/hopr/starting.html). **Note R version must be >= 4.3** 2. Install the package by executing `devtools::install_github("Vitek-Lab/MSstatsShiny")` in the console. 3. Run the application by executing `library(MSstatsShiny)` and `launch_MSstatsShiny()` or `MSstatsShiny::launch_MSstatsShiny()` in the console. ## Citation To cite this application please use the corresponding publicaiton in the journal of proteome research. **MSstatsShiny: A GUI for Versatile, Scalable, and Reproducible Statistical Analyses of Quantitative Proteomic Experiments** Devon Kohler, Maanasa Kaza, Cristina Pasi, Ting Huang, Mateusz Staniak, Dhaval Mohandas, Eduard Sabido, Meena Choi, and Olga Vitek. Journal of Proteome Research 2023 22 (2), 551-556 DOI: 10.1021/acs.jproteome.2c00603