# karyogram <- function(nmr, chr_info) { # assert_has_columns(chr_info, c("chr", "length")) # # n_chr <- nrow(chr_info) # plots <- list() # # widest <- max(chr_info$length) # # for (i in 1:n_chr) { # m <- query_methy(nmr, chr_info$chr[i], 1, chr_info$length[i]) # # bins <- round(seq(1, chr_info$length[i], length.out = 2^10)) # # bin_means <- binMeans(m$statistic > 0, x = m$pos, bx = bins) # # df <- tibble( # pos = bins[-length(bins)], # methy_prop = as.numeric(bin_means), # count = attr(bin_means, "count") # ) # # plots[[i]] <- ggplot(df, aes(x = pos, y = 1, fill = methy_prop)) + # geom_tile() + # scico::scale_colour_scico(palette = 'imola', direction = -1) + # theme_void() + # theme(plot.margin = margin(0, 2, 0, 0)) + # ggtitle(chr_info$chr[i]) + # xlim(1, widest) # } # # patchwork::wrap_plots(plots, ncol = 1, guides = "collect") # } #