plot_region_impl <- function( x, chr, start, end, anno_regions = NULL, binary_threshold = NULL, avg_method = c("mean", "median"), spaghetti = FALSE, heatmap = TRUE, heatmap_subsample = 50, smoothing_window = 2000, gene_anno = TRUE, window_prop = 0, palette = ggplot2::scale_colour_brewer(palette = "Set1"), line_size = 1, mod_scale = c(0, 1), span = NULL ) { sample_anno <- samples(x) chr <- as.character(chr) start <- as.numeric(start) end <- as.numeric(end) if (length(window_prop) == 1) { window_prop <- c(window_prop, window_prop) } feature_width <- end - start window_left <- feature_width * window_prop[1] window_right <- feature_width * window_prop[2] # query data methy_data <- query_methy( x, chr, floor(start - window_left * 1.1), ceiling(end + window_right * 1.1), simplify = TRUE ) if (nrow(methy_data) == 0) { warning("no methylation data in region, returning empty plot") return(ggplot() + theme_void()) } methy_data <- methy_data %>% dplyr::select(-"strand") %>% tibble::as_tibble() # setup base plot title <- glue::glue("{chr}:{start}-{end}") xlim <- round(c(start - window_left, end + window_right)) p1 <- plot_methylation_data( methy_data = methy_data, start = start, end = end, chr = chr, title = title, anno_regions = anno_regions, binary_threshold = binary_threshold, avg_method = avg_method, spaghetti = spaghetti, sample_anno = sample_anno, smoothing_window = smoothing_window, palette_col = palette, line_size = line_size, mod_scale = mod_scale ) + ggplot2::coord_cartesian(xlim = xlim, expand = FALSE) + ggplot2::labs(x = "Position", y = "Mean Modification Probability") p_out <- p1 # if exon anno exists, append it to plot if (gene_anno && nrow(exons(x)) != 0) { exons_anno <- query_exons_region(x, chr = chr, start = start, end = end) p2 <- plot_gene_annotation(exons_anno, xlim[1], xlim[2]) + ggplot2::coord_cartesian(xlim = xlim, expand = FALSE) + ggplot2::scale_x_continuous(labels = scales::label_number(scale_cut = scales::cut_si("b"))) anno_height <- attr(p2, "plot_height") heights <- c(1, 0.075 * anno_height) p_out <- p1 / p2 + patchwork::plot_layout(heights = heights) } # if heatmap requested, append it to plot if (heatmap) { p_heatmap <- plot_region_heatmap(x, chr, start, end, window_prop = window_prop, subsample = heatmap_subsample) + ggplot2::coord_cartesian( xlim = xlim ) p_out <- stack_plots(p_out, ggrastr::rasterise(p_heatmap, dpi = 300)) } p_out } #' @rdname plot_region #' #' @param anno_regions the data.frame of regions to be annotated. #' @param binary_threshold the modification probability such that calls with #' modification probability above the threshold are set to 1 and probabilities #' equal to or below the threshold are set to 0. #' @param avg_method the average method for pre-smoothing at each genomic position. #' Data is pre-smoothed at each genomic position before the smoothed aggregate line #' is generated for performance reasons. The default is "mean" which corresponds #' to the average methylation fraction. The alternative "median" option is #' closer to an average within the more common methylation state. #' @param spaghetti whether or not individual reads should be shown. #' @param heatmap whether or not read-methylation heatmap should be shown. #' @param heatmap_subsample how many packed rows of reads to subsample to. #' @param smoothing_window the window size for smoothing the trend line. #' @param gene_anno whether to show gene annotation. #' @param window_prop the size of flanking region to plot. Can be a vector of two #' values for left and right window size. Values indicate proportion of gene #' length. #' @param palette the ggplot colour palette used for groups. #' @param line_size the size of the lines. #' @param mod_scale the scale range for modification probabilities. Default c(0, 1), set to "auto" for automatic #' limits. #' @param span DEPRECATED, use smoothing_window instead. Will be removed in next version. #' #' @details #' This function plots the methylation data for a given region. The main trendline plot shows the average methylation #' probability across the region. The heatmap plot shows the methylation probability for each read across the region. #' The gene annotation plot shows the exons of the region. In the heatmap, each row represents one or more #' non-overlapping reads where the coloured segments represent the methylation probability at each position. Data along #' a read is connected by a grey line. The gene annotation plot shows the isoforms and exons of genes within the region, #' with arrows indicating the direction of transcription. #' #' Since V3.0.0 NanoMethViz has changed the smoothing strategy from a loess smoothing to a weighted moving average. This #' is because the loess smoothing was too computationally expensive for large datasets and had a span parameter that was #' difficult to tune. The new smoothing strategy is controlled by the smoothing_window argument. #' #' @examples #' nmr <- load_example_nanomethresult() #' plot_region(nmr, "chr7", 6703892, 6730431) #' #' @export setMethod("plot_region", signature(x = "NanoMethResult", chr = "character", start = "numeric", end = "numeric"), plot_region_impl ) #' @rdname plot_region #' @export setMethod("plot_region", signature(x = "ModBamResult", chr = "character", start = "numeric", end = "numeric"), plot_region_impl ) #' @rdname plot_region #' @export setMethod("plot_region", signature(x = "NanoMethResult", chr = "factor", start = "numeric", end = "numeric"), plot_region_impl ) #' @rdname plot_region #' @export setMethod("plot_region", signature(x = "ModBamResult", chr = "factor", start = "numeric", end = "numeric"), plot_region_impl )