... | ... |
@@ -28,7 +28,7 @@ cluster_reads <- function(x, chr, start, end, min_pts = 5) { |
28 | 28 |
} |
29 | 29 |
|
30 | 30 |
methy_data <- methy_data %>% |
31 |
- dplyr::filter(pos >= start & pos < end) |
|
31 |
+ dplyr::filter(.data$pos >= .data$start & .data$pos < .data$end) |
|
32 | 32 |
|
33 | 33 |
read_stats <- get_read_stats(methy_data) |
34 | 34 |
|
... | ... |
@@ -37,13 +37,13 @@ cluster_reads <- function(x, chr, start, end, min_pts = 5) { |
37 | 37 |
max_span <- max(read_stats$span) |
38 | 38 |
keep_reads <- read_stats$read_name[read_stats$span > 0.9 * max_span] |
39 | 39 |
methy_data <- methy_data %>% |
40 |
- dplyr::filter(read_name %in% keep_reads) |
|
40 |
+ dplyr::filter(.data$read_name %in% keep_reads) |
|
41 | 41 |
|
42 | 42 |
# convert methylation data into a matrix with one row for each read name |
43 | 43 |
mod_mat <- methy_data %>% |
44 |
- dplyr::select(read_name, pos, mod_prob) %>% |
|
45 |
- dplyr::arrange(pos) %>% |
|
46 |
- tidyr::pivot_wider(names_from = pos, values_from = mod_prob) %>% |
|
44 |
+ dplyr::select("read_name", "pos", "mod_prob") %>% |
|
45 |
+ dplyr::arrange(.data$pos) %>% |
|
46 |
+ tidyr::pivot_wider(names_from = "pos", values_from = "mod_prob") %>% |
|
47 | 47 |
df_to_matrix() |
48 | 48 |
|
49 | 49 |
# pre-check before filtering |
... | ... |
@@ -75,26 +75,26 @@ cluster_reads <- function(x, chr, start, end, min_pts = 5) { |
75 | 75 |
# merge and process results of cluster analysis and read statistics |
76 | 76 |
clust_df %>% |
77 | 77 |
dplyr::left_join(read_stats, by = "read_name") %>% |
78 |
- dplyr::arrange(cluster_id) %>% |
|
78 |
+ dplyr::arrange(.data$cluster_id) %>% |
|
79 | 79 |
dplyr::mutate( |
80 |
- cluster_id = as.factor(cluster_id), |
|
81 |
- start = as.integer(start), |
|
82 |
- end = as.integer(end), |
|
83 |
- span = as.integer(span) |
|
80 |
+ cluster_id = as.factor(.data$cluster_id), |
|
81 |
+ start = as.integer(.data$start), |
|
82 |
+ end = as.integer(.data$end), |
|
83 |
+ span = as.integer(.data$span) |
|
84 | 84 |
) |
85 | 85 |
} |
86 | 86 |
|
87 | 87 |
# summarize read statistics (start, end, strand) based on same read name |
88 | 88 |
get_read_stats <- function(methy_data) { |
89 | 89 |
methy_data %>% |
90 |
- group_by(read_name) %>% |
|
90 |
+ group_by(.data$read_name) %>% |
|
91 | 91 |
summarise( |
92 |
- start = min(pos), |
|
93 |
- end = max(pos), |
|
94 |
- mean = mean(mod_prob, na.rm = TRUE), |
|
95 |
- span = end - start, |
|
96 |
- strand = unique(strand) |
|
92 |
+ start = min(.data$pos), |
|
93 |
+ end = max(.data$pos), |
|
94 |
+ mean = mean(.data$mod_prob, na.rm = TRUE), |
|
95 |
+ span = .data$end - .data$start, |
|
96 |
+ strand = unique(.data$strand) |
|
97 | 97 |
) %>% |
98 |
- arrange(strand) |
|
98 |
+ arrange(.data$strand) |
|
99 | 99 |
} |
100 | 100 |
|