Browse code

Addressed RMD Check notes

Shians authored on 22/05/2023 06:16:37
Showing 2 changed files

... ...
@@ -28,7 +28,7 @@ cluster_reads <- function(x, chr, start, end, min_pts = 5) {
28 28
     }
29 29
 
30 30
     methy_data <- methy_data %>%
31
-        dplyr::filter(pos >= start & pos < end)
31
+        dplyr::filter(.data$pos >= .data$start & .data$pos < .data$end)
32 32
 
33 33
     read_stats <- get_read_stats(methy_data)
34 34
 
... ...
@@ -37,13 +37,13 @@ cluster_reads <- function(x, chr, start, end, min_pts = 5) {
37 37
     max_span <- max(read_stats$span)
38 38
     keep_reads <- read_stats$read_name[read_stats$span > 0.9 * max_span]
39 39
     methy_data <- methy_data %>%
40
-        dplyr::filter(read_name %in% keep_reads)
40
+        dplyr::filter(.data$read_name %in% keep_reads)
41 41
 
42 42
     # convert methylation data into a matrix with one row for each read name
43 43
     mod_mat <- methy_data %>%
44
-        dplyr::select(read_name, pos, mod_prob) %>%
45
-        dplyr::arrange(pos) %>%
46
-        tidyr::pivot_wider(names_from = pos, values_from = mod_prob) %>%
44
+        dplyr::select("read_name", "pos", "mod_prob") %>%
45
+        dplyr::arrange(.data$pos) %>%
46
+        tidyr::pivot_wider(names_from = "pos", values_from = "mod_prob") %>%
47 47
         df_to_matrix()
48 48
 
49 49
     # pre-check before filtering
... ...
@@ -75,26 +75,26 @@ cluster_reads <- function(x, chr, start, end, min_pts = 5) {
75 75
     # merge and process results of cluster analysis and read statistics
76 76
     clust_df %>%
77 77
         dplyr::left_join(read_stats, by = "read_name") %>%
78
-        dplyr::arrange(cluster_id) %>%
78
+        dplyr::arrange(.data$cluster_id) %>%
79 79
         dplyr::mutate(
80
-            cluster_id = as.factor(cluster_id),
81
-            start = as.integer(start),
82
-            end = as.integer(end),
83
-            span = as.integer(span)
80
+            cluster_id = as.factor(.data$cluster_id),
81
+            start = as.integer(.data$start),
82
+            end = as.integer(.data$end),
83
+            span = as.integer(.data$span)
84 84
         )
85 85
 }
86 86
 
87 87
 # summarize read statistics (start, end, strand) based on same read name
88 88
 get_read_stats <- function(methy_data) {
89 89
     methy_data %>%
90
-        group_by(read_name) %>%
90
+        group_by(.data$read_name) %>%
91 91
         summarise(
92
-            start = min(pos),
93
-            end = max(pos),
94
-            mean = mean(mod_prob, na.rm = TRUE),
95
-            span = end - start,
96
-            strand = unique(strand)
92
+            start = min(.data$pos),
93
+            end = max(.data$pos),
94
+            mean = mean(.data$mod_prob, na.rm = TRUE),
95
+            span = .data$end - .data$start,
96
+            strand = unique(.data$strand)
97 97
         ) %>%
98
-        arrange(strand)
98
+        arrange(.data$strand)
99 99
 }
100 100
 
... ...
@@ -83,7 +83,7 @@ plot_methylation_internal <- function(
83 83
     # add points
84 84
     if (points) {
85 85
         p <- p +
86
-            geom_point(
86
+            ggplot2::geom_point(
87 87
                 aes(y = .data$mod_prob),
88 88
                 alpha = 0.75
89 89
             )