... | ... |
@@ -84,7 +84,7 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
84 | 84 |
} |
85 | 85 |
p <- p + |
86 | 86 |
ggplot2::geom_point(aes(colour = .data$group)) + |
87 |
- ggplot2::scale_color_continuous(name = legend_name) |
|
87 |
+ ggplot2::scale_color_continuous(name = legend_name) |
|
88 | 88 |
} else { |
89 | 89 |
# discrete colour palette |
90 | 90 |
if (is.null(labels)) { |
... | ... |
@@ -90,7 +90,7 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
90 | 90 |
if (is.null(labels)) { |
91 | 91 |
# no labels, but groups |
92 | 92 |
p <- p + ggplot2::geom_point(aes(colour = .data$group)) + |
93 |
- guides(color = guide_legend(title = legend_name)) |
|
93 |
+ ggplot2::guides(color = ggplot2::guide_legend(title = legend_name)) |
|
94 | 94 |
} else { |
95 | 95 |
# labels and groups |
96 | 96 |
# key_glyph causes the legend to display points |
... | ... |
@@ -79,7 +79,9 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
79 | 79 |
} else { |
80 | 80 |
if (is.numeric(groups)) { |
81 | 81 |
# continuous colour palette ignores labels |
82 |
- message("Ignoring labels as groups is numeric") |
|
82 |
+ if (!is.null(labels)) { |
|
83 |
+ message("Ignoring labels as groups is numeric. Set `labels=NULL` to suppress this message.") |
|
84 |
+ } |
|
83 | 85 |
p <- p + |
84 | 86 |
ggplot2::geom_point(aes(colour = .data$group)) + |
85 | 87 |
ggplot2::scale_color_continuous(name = legend_name) |
... | ... |
@@ -10,7 +10,10 @@ |
10 | 10 |
#' column names of x, set to NULL to plot points. |
11 | 11 |
#' @param groups the character vector of groups the data points will be coloured |
12 | 12 |
#' by. Colour palette can be adjusted using scale_colour_*() functions from |
13 |
-#' ggplot2. |
|
13 |
+#' ggplot2. If groups is numeric, the points will be coloured by a continuous |
|
14 |
+#' colour palette. By default, groups is NULL and the points will not be |
|
15 |
+#' coloured. |
|
16 |
+#' @param legend_name the name for the legend. |
|
14 | 17 |
#' |
15 | 18 |
#' @return ggplot object of the MDS plot. |
16 | 19 |
#' |
... | ... |
@@ -23,7 +26,7 @@ |
23 | 26 |
#' @importFrom limma plotMDS |
24 | 27 |
#' @importFrom ggplot2 draw_key_point |
25 | 28 |
#' @export |
26 |
-plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), groups = NULL) { |
|
29 |
+plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), groups = NULL, legend_name = "group") { |
|
27 | 30 |
if (!is.null(labels)) { |
28 | 31 |
assertthat::assert_that(ncol(x) == length(labels)) |
29 | 32 |
} |
... | ... |
@@ -58,19 +61,43 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
58 | 61 |
} |
59 | 62 |
|
60 | 63 |
plot_data$labels <- labels |
61 |
- plot_data$groups <- groups |
|
64 |
+ plot_data$group <- groups |
|
62 | 65 |
|
66 |
+ p <- ggplot2::ggplot( |
|
67 |
+ plot_data, |
|
68 |
+ ggplot2::aes(x = .data$dim1, y = .data$dim2) |
|
69 |
+ ) |
|
63 | 70 |
|
64 |
- if (!is.null(groups)) { |
|
65 |
- p <- ggplot2::ggplot(plot_data, ggplot2::aes(x = .data$dim1, y = .data$dim2, col = .data$groups)) |
|
66 |
- } else { |
|
67 |
- p <- ggplot2::ggplot(plot_data, ggplot2::aes(x = .data$dim1, y = .data$dim2)) |
|
68 |
- } |
|
69 |
- |
|
70 |
- if (!is.null(labels)) { |
|
71 |
- p <- p + ggplot2::geom_label(aes(label = labels), key_glyph = ggplot2::draw_key_point) |
|
71 |
+ if (is.null(groups)) { |
|
72 |
+ if (is.null(labels)) { |
|
73 |
+ # no labels or groups |
|
74 |
+ p <- p + ggplot2::geom_point() |
|
75 |
+ } else { |
|
76 |
+ # no groups, but labels |
|
77 |
+ p <- p + ggplot2::geom_label(aes(label = labels)) |
|
78 |
+ } |
|
72 | 79 |
} else { |
73 |
- p <- p + ggplot2::geom_point() |
|
80 |
+ if (is.numeric(groups)) { |
|
81 |
+ # continuous colour palette ignores labels |
|
82 |
+ message("Ignoring labels as groups is numeric") |
|
83 |
+ p <- p + |
|
84 |
+ ggplot2::geom_point(aes(colour = .data$group)) + |
|
85 |
+ ggplot2::scale_color_continuous(name = legend_name) |
|
86 |
+ } else { |
|
87 |
+ # discrete colour palette |
|
88 |
+ if (is.null(labels)) { |
|
89 |
+ # no labels, but groups |
|
90 |
+ p <- p + ggplot2::geom_point(aes(colour = .data$group)) + |
|
91 |
+ guides(color = guide_legend(title = legend_name)) |
|
92 |
+ } else { |
|
93 |
+ # labels and groups |
|
94 |
+ # key_glyph causes the legend to display points |
|
95 |
+ p <- p + ggplot2::geom_label( |
|
96 |
+ aes(label = labels, colour = .data$group), |
|
97 |
+ key_glyph = ggplot2::draw_key_point |
|
98 |
+ ) |
|
99 |
+ } |
|
100 |
+ } |
|
74 | 101 |
} |
75 | 102 |
|
76 | 103 |
p + |
... | ... |
@@ -62,7 +62,7 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
62 | 62 |
|
63 | 63 |
|
64 | 64 |
if (!is.null(groups)) { |
65 |
- p <- ggplot2::ggplot(plot_data, ggplot2::aes(x = .data$dim1, y = .data$dim2, col = "groups")) |
|
65 |
+ p <- ggplot2::ggplot(plot_data, ggplot2::aes(x = .data$dim1, y = .data$dim2, col = .data$groups)) |
|
66 | 66 |
} else { |
67 | 67 |
p <- ggplot2::ggplot(plot_data, ggplot2::aes(x = .data$dim1, y = .data$dim2)) |
68 | 68 |
} |
... | ... |
@@ -62,9 +62,9 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
62 | 62 |
|
63 | 63 |
|
64 | 64 |
if (!is.null(groups)) { |
65 |
- p <- ggplot2::ggplot(plot_data, ggplot2::aes_string(x = "dim1", y = "dim2", col = "groups")) |
|
65 |
+ p <- ggplot2::ggplot(plot_data, ggplot2::aes(x = .data$dim1, y = .data$dim2, col = "groups")) |
|
66 | 66 |
} else { |
67 |
- p <- ggplot2::ggplot(plot_data, ggplot2::aes_string(x = "dim1", y = "dim2")) |
|
67 |
+ p <- ggplot2::ggplot(plot_data, ggplot2::aes(x = .data$dim1, y = .data$dim2)) |
|
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
if (!is.null(labels)) { |
... | ... |
@@ -21,6 +21,7 @@ |
21 | 21 |
#' plot_mds(lmr) |
22 | 22 |
#' |
23 | 23 |
#' @importFrom limma plotMDS |
24 |
+#' @importFrom ggplot2 draw_key_point |
|
24 | 25 |
#' @export |
25 | 26 |
plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), groups = NULL) { |
26 | 27 |
if (!is.null(labels)) { |
... | ... |
@@ -67,7 +68,7 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
67 | 68 |
} |
68 | 69 |
|
69 | 70 |
if (!is.null(labels)) { |
70 |
- p <- p + ggplot2::geom_label(aes(label = labels), key_glyph = draw_key_point) |
|
71 |
+ p <- p + ggplot2::geom_label(aes(label = labels), key_glyph = ggplot2::draw_key_point) |
|
71 | 72 |
} else { |
72 | 73 |
p <- p + ggplot2::geom_point() |
73 | 74 |
} |
... | ... |
@@ -6,9 +6,11 @@ |
6 | 6 |
#' @param x the log-methylation-ratio matrix. |
7 | 7 |
#' @param top the number of top genes used to calculate pairwise distances. |
8 | 8 |
#' @param plot_dims the numeric vector of the two dimensions to be plotted. |
9 |
-#' @param labels the character vector of labels for data points. By default uses column names of x, set to NULL to plot |
|
10 |
-#' points. |
|
11 |
-#' @param groups the character vector of groups the data points will be coloured by. |
|
9 |
+#' @param labels the character vector of labels for data points. By default uses |
|
10 |
+#' column names of x, set to NULL to plot points. |
|
11 |
+#' @param groups the character vector of groups the data points will be coloured |
|
12 |
+#' by. Colour palette can be adjusted using scale_colour_*() functions from |
|
13 |
+#' ggplot2. |
|
12 | 14 |
#' |
13 | 15 |
#' @return ggplot object of the MDS plot. |
14 | 16 |
#' |
... | ... |
@@ -65,10 +65,9 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
65 | 65 |
} |
66 | 66 |
|
67 | 67 |
if (!is.null(labels)) { |
68 |
- p <- p + ggplot2::geom_label(aes(label = labels)) |
|
68 |
+ p <- p + ggplot2::geom_label(aes(label = labels), key_glyph = draw_key_point) |
|
69 | 69 |
} else { |
70 | 70 |
p <- p + ggplot2::geom_point() |
71 |
- |
|
72 | 71 |
} |
73 | 72 |
|
74 | 73 |
p + |
... | ... |
@@ -72,7 +72,7 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
72 | 72 |
} |
73 | 73 |
|
74 | 74 |
p + |
75 |
- ggplot2::theme_minimal() + |
|
75 |
+ ggplot2::theme_bw() + |
|
76 | 76 |
ggplot2::xlab(xlabel) + |
77 | 77 |
ggplot2::ylab(ylabel) + |
78 | 78 |
ggplot2::scale_x_continuous(expand = c(.1, .1)) |
... | ... |
@@ -38,16 +38,25 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
38 | 38 |
var_exp1 <- round(100 * mds_res$var.explained[plot_dims[1]]) |
39 | 39 |
var_exp2 <- round(100 * mds_res$var.explained[plot_dims[2]]) |
40 | 40 |
|
41 |
- plot_data <- data.frame( |
|
42 |
- dim1 = mds_res$eigen.vectors[, plot_dims[1]], |
|
43 |
- dim2 = mds_res$eigen.vectors[, plot_dims[2]] |
|
44 |
- ) |
|
41 |
+ if ("eigen.vectors" %in% names(mds_res)) { |
|
42 |
+ plot_data <- data.frame( |
|
43 |
+ dim1 = mds_res$eigen.vectors[, plot_dims[1]], |
|
44 |
+ dim2 = mds_res$eigen.vectors[, plot_dims[2]] |
|
45 |
+ ) |
|
46 |
+ xlabel <- glue::glue("Leading logFC Dim {plot_dims[1]} ({var_exp1}%)") |
|
47 |
+ ylabel <- glue::glue("Leading logFC Dim {plot_dims[2]} ({var_exp2}%)") |
|
48 |
+ } else { |
|
49 |
+ plot_data <- data.frame( |
|
50 |
+ dim1 = mds_res$cmdscale.out[, plot_dims[1]], |
|
51 |
+ dim2 = mds_res$cmdscale.out[, plot_dims[2]] |
|
52 |
+ ) |
|
53 |
+ xlabel <- glue::glue("Leading logFC Dim {plot_dims[1]}") |
|
54 |
+ ylabel <- glue::glue("Leading logFC Dim {plot_dims[2]}") |
|
55 |
+ } |
|
45 | 56 |
|
46 | 57 |
plot_data$labels <- labels |
47 | 58 |
plot_data$groups <- groups |
48 | 59 |
|
49 |
- xlabel <- glue::glue("Leading logFC Dim {plot_dims[1]} ({var_exp1}%)") |
|
50 |
- ylabel <- glue::glue("Leading logFC Dim {plot_dims[2]} ({var_exp2}%)") |
|
51 | 60 |
|
52 | 61 |
if (!is.null(groups)) { |
53 | 62 |
p <- ggplot2::ggplot(plot_data, ggplot2::aes_string(x = "dim1", y = "dim2", col = "groups")) |
... | ... |
@@ -1,7 +1,7 @@ |
1 | 1 |
#' Plot MDS |
2 | 2 |
#' |
3 | 3 |
#' Plot multi-dimensional scaling plot using algorithm of limma::plotMDS(). It is recommended this be done with the |
4 |
-#' log-methylation-ratio matrix. |
|
4 |
+#' log-methylation-ratio matrix generated by bsseq_to_log_methy_ratio(). |
|
5 | 5 |
#' |
6 | 6 |
#' @param x the log-methylation-ratio matrix. |
7 | 7 |
#' @param top the number of top genes used to calculate pairwise distances. |
... | ... |
@@ -30,7 +30,7 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
30 | 30 |
} |
31 | 31 |
|
32 | 32 |
mds_res <- limma::plotMDS( |
33 |
- lmr, |
|
33 |
+ x, |
|
34 | 34 |
top = top, |
35 | 35 |
plot = FALSE |
36 | 36 |
) |
... | ... |
@@ -50,21 +50,21 @@ plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), gr |
50 | 50 |
ylabel <- glue::glue("Leading logFC Dim {plot_dims[2]} ({var_exp2}%)") |
51 | 51 |
|
52 | 52 |
if (!is.null(groups)) { |
53 |
- p <- ggplot2::ggplot(plot_data, aes(x = dim1, y = dim2, col = groups)) |
|
53 |
+ p <- ggplot2::ggplot(plot_data, ggplot2::aes_string(x = "dim1", y = "dim2", col = "groups")) |
|
54 | 54 |
} else { |
55 |
- p <- ggplot2::ggplot(plot_data, aes(x = dim1, y = dim2)) |
|
55 |
+ p <- ggplot2::ggplot(plot_data, ggplot2::aes_string(x = "dim1", y = "dim2")) |
|
56 | 56 |
} |
57 | 57 |
|
58 | 58 |
if (!is.null(labels)) { |
59 |
- p <- p + geom_label(aes(label = labels)) |
|
59 |
+ p <- p + ggplot2::geom_label(aes(label = labels)) |
|
60 | 60 |
} else { |
61 |
- p <- p + geom_point() |
|
61 |
+ p <- p + ggplot2::geom_point() |
|
62 | 62 |
|
63 | 63 |
} |
64 | 64 |
|
65 | 65 |
p + |
66 |
- theme_minimal() + |
|
67 |
- xlab(xlabel) + |
|
68 |
- ylab(ylabel) + |
|
69 |
- scale_x_continuous(expand = c(.1, .1)) |
|
66 |
+ ggplot2::theme_minimal() + |
|
67 |
+ ggplot2::xlab(xlabel) + |
|
68 |
+ ggplot2::ylab(ylabel) + |
|
69 |
+ ggplot2::scale_x_continuous(expand = c(.1, .1)) |
|
70 | 70 |
} |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,70 @@ |
1 |
+#' Plot MDS |
|
2 |
+#' |
|
3 |
+#' Plot multi-dimensional scaling plot using algorithm of limma::plotMDS(). It is recommended this be done with the |
|
4 |
+#' log-methylation-ratio matrix. |
|
5 |
+#' |
|
6 |
+#' @param x the log-methylation-ratio matrix. |
|
7 |
+#' @param top the number of top genes used to calculate pairwise distances. |
|
8 |
+#' @param plot_dims the numeric vector of the two dimensions to be plotted. |
|
9 |
+#' @param labels the character vector of labels for data points. By default uses column names of x, set to NULL to plot |
|
10 |
+#' points. |
|
11 |
+#' @param groups the character vector of groups the data points will be coloured by. |
|
12 |
+#' |
|
13 |
+#' @return ggplot object of the MDS plot. |
|
14 |
+#' |
|
15 |
+#' @examples |
|
16 |
+#' nmr <- load_example_nanomethresult() |
|
17 |
+#' bss <- methy_to_bsseq(nmr) |
|
18 |
+#' lmr <- bsseq_to_log_methy_ratio(bss) |
|
19 |
+#' plot_mds(lmr) |
|
20 |
+#' |
|
21 |
+#' @importFrom limma plotMDS |
|
22 |
+#' @export |
|
23 |
+plot_mds <- function(x, top = 500, plot_dims = c(1, 2), labels = colnames(x), groups = NULL) { |
|
24 |
+ if (!is.null(labels)) { |
|
25 |
+ assertthat::assert_that(ncol(x) == length(labels)) |
|
26 |
+ } |
|
27 |
+ |
|
28 |
+ if (!is.null(groups)) { |
|
29 |
+ assertthat::assert_that(ncol(x) == length(groups)) |
|
30 |
+ } |
|
31 |
+ |
|
32 |
+ mds_res <- limma::plotMDS( |
|
33 |
+ lmr, |
|
34 |
+ top = top, |
|
35 |
+ plot = FALSE |
|
36 |
+ ) |
|
37 |
+ |
|
38 |
+ var_exp1 <- round(100 * mds_res$var.explained[plot_dims[1]]) |
|
39 |
+ var_exp2 <- round(100 * mds_res$var.explained[plot_dims[2]]) |
|
40 |
+ |
|
41 |
+ plot_data <- data.frame( |
|
42 |
+ dim1 = mds_res$eigen.vectors[, plot_dims[1]], |
|
43 |
+ dim2 = mds_res$eigen.vectors[, plot_dims[2]] |
|
44 |
+ ) |
|
45 |
+ |
|
46 |
+ plot_data$labels <- labels |
|
47 |
+ plot_data$groups <- groups |
|
48 |
+ |
|
49 |
+ xlabel <- glue::glue("Leading logFC Dim {plot_dims[1]} ({var_exp1}%)") |
|
50 |
+ ylabel <- glue::glue("Leading logFC Dim {plot_dims[2]} ({var_exp2}%)") |
|
51 |
+ |
|
52 |
+ if (!is.null(groups)) { |
|
53 |
+ p <- ggplot2::ggplot(plot_data, aes(x = dim1, y = dim2, col = groups)) |
|
54 |
+ } else { |
|
55 |
+ p <- ggplot2::ggplot(plot_data, aes(x = dim1, y = dim2)) |
|
56 |
+ } |
|
57 |
+ |
|
58 |
+ if (!is.null(labels)) { |
|
59 |
+ p <- p + geom_label(aes(label = labels)) |
|
60 |
+ } else { |
|
61 |
+ p <- p + geom_point() |
|
62 |
+ |
|
63 |
+ } |
|
64 |
+ |
|
65 |
+ p + |
|
66 |
+ theme_minimal() + |
|
67 |
+ xlab(xlabel) + |
|
68 |
+ ylab(ylabel) + |
|
69 |
+ scale_x_continuous(expand = c(.1, .1)) |
|
70 |
+} |