Package: NetActivity Type: Package Title: Compute gene set scores from a deep learning framework Version: 1.10.0 Authors@R: c(person("Carlos", "Ruiz-Arenas", , "[email protected]", role = c("aut", "cre"))) Description: #' NetActivity enables to compute gene set scores from previously trained sparsely-connected autoencoders. The package contains a function to prepare the data (`prepareSummarizedExperiment`) and a function to compute the gene set scores (`computeGeneSetScores`). The package `NetActivityData` contains different pre-trained models to be directly applied to the data. Alternatively, the users might use the package to compute gene set scores using custom models. License: MIT + file LICENSE Encoding: UTF-8 LazyData: false Depends: R (>= 4.1.0) Suggests: AnnotationDbi, BiocStyle, Fletcher2013a, knitr, org.Hs.eg.db, rmarkdown, testthat (>= 3.0.0), tidyverse Config/testthat/edition: 3 biocViews: RNASeq, Microarray, Transcription, FunctionalGenomics, GO, GeneExpression, Pathways, Software RoxygenNote: 7.2.1 Imports: airway, DelayedArray, DelayedMatrixStats, DESeq2, methods, methods, NetActivityData, SummarizedExperiment, utils VignetteBuilder: knitr