% Generated by roxygen2: do not edit by hand % Please edit documentation in R/batch_detection.R \name{Scatter_Density} \alias{Scatter_Density} \title{Principal Component Analysis (PCA) with Density Plots per Component} \usage{ Scatter_Density( object, batch = NULL, trt = NULL, xlim = NULL, ylim = NULL, color.set = NULL, batch.legend.title = "Batch", trt.legend.title = "Treatment", density.lwd = 0.2, title = NULL, title.cex = 1.5, legend.cex = 0.7, legend.title.cex = 0.75 ) } \arguments{ \item{object}{The object of class PCA.} \item{batch}{A factor or a class vector for the batch grouping information (categorical outcome variable).} \item{trt}{A factor or a class vector for the treatment grouping information (categorical outcome variable).} \item{xlim}{A numeric vector of length 2, indicating the x coordinate ranges.} \item{ylim}{A numeric vector of length 2, indicating the y coordinate ranges.} \item{color.set}{A vector of character, indicating the set of colors to use. The colors are represented by hexadecimal color code.} \item{batch.legend.title}{Character, the legend title of batches.} \item{trt.legend.title}{Character, the legend title of treatments.} \item{density.lwd}{Numeric, the thickness of density lines.} \item{title}{Character, the plot title.} \item{title.cex}{Numeric, the size of plot title.} \item{legend.cex}{Numeric, the size of legends.} \item{legend.title.cex}{Numeric, the size of legend title.} } \value{ None. } \description{ This function draws a PCA sample plot with density plots per principal component. } \examples{ # The first example library(mixOmics) # for function pca() library(TreeSummarizedExperiment) # for functions assays(),rowData() data('AD_data') # centered log ratio transformed data ad.clr <- assays(AD_data$EgData)$Clr_value ad.pca.before <- pca(ad.clr, ncomp = 3, scale = TRUE) ad.batch <- rowData(AD_data$EgData)$Y.bat # batch information ad.trt <- rowData(AD_data$EgData)$Y.trt # treatment information names(ad.batch) <- names(ad.trt) <- rownames(AD_data$EgData) Scatter_Density(object = ad.pca.before, batch = ad.batch, trt = ad.trt) # The second example colorlist <- rainbow(10) Scatter_Density(object = ad.pca.before, batch = ad.batch, trt = ad.trt, color.set = colorlist) } \seealso{ \code{\link{box_plot}}, \code{\link{density_plot}}, \code{\link{alignment_score}} and \code{\link{partVar_plot}} as the other methods for batch effect detection and batch effect removal assessment. } \author{ Yiwen Wang, Kim-Anh Lê Cao }