... | ... |
@@ -46,16 +46,19 @@ |
46 | 46 |
#' betas <- matrix(rnorm(nStates * nQTL), ncol=nStates) |
47 | 47 |
#' error <- matrix(abs(rnorm(nStates * nQTL)), ncol=nStates) |
48 | 48 |
#' |
49 |
-#' qtle <- QTLExperiment(assays=list(betas=betas, errors=error), |
|
50 |
-#' feature_id=sample(1:10, nQTL, replace=TRUE), |
|
51 |
-#' variant_id=sample(seq(1e3:1e5), nQTL), |
|
52 |
-#' state_id=LETTERS[1:nStates]) |
|
49 |
+#' qtle <- QTLExperiment( |
|
50 |
+#' assays=list(betas=betas, errors=error), |
|
51 |
+#' feature_id=sample(1:10, nQTL, replace=TRUE), |
|
52 |
+#' variant_id=sample(seq(1e3:1e5), nQTL), |
|
53 |
+#' state_id=LETTERS[1:nStates]) |
|
53 | 54 |
#' qtle |
54 | 55 |
#' |
55 | 56 |
#' ## coercion from SummarizedExperiment |
56 | 57 |
#' mock_sumstats <- mockSummaryStats(nStates=10, nQTL=100) |
57 |
-#' se <- SummarizedExperiment(assays=list(betas=mock_sumstats$betas, |
|
58 |
-#' errors=mock_sumstats$errors)) |
|
58 |
+#' se <- SummarizedExperiment( |
|
59 |
+#' assays=list( |
|
60 |
+#' betas=mock_sumstats$betas, |
|
61 |
+#' errors=mock_sumstats$errors)) |
|
59 | 62 |
#' as(se, "QTLExperiment") |
60 | 63 |
#' |
61 | 64 |
#' @docType class |
... | ... |
@@ -21,8 +21,9 @@ |
21 | 21 |
#' |
22 | 22 |
#' qtle2 <- mash2qtle( |
23 | 23 |
#' mashr_sim, |
24 |
-#' rowData=DataFrame(feature_id=row.names(mashr_sim$Bhat), |
|
25 |
-#' variant_id=sample(seq_len(nQTL)))) |
|
24 |
+#' rowData=DataFrame( |
|
25 |
+#' feature_id=row.names(mashr_sim$Bhat), |
|
26 |
+#' variant_id=sample(seq_len(nQTL)))) |
|
26 | 27 |
#' dim(qtle2) |
27 | 28 |
#' |
28 | 29 |
#' |
... | ... |
@@ -76,11 +76,11 @@ sumstats2qtle <- function( |
76 | 76 |
fmutate(id=paste0(feature_id, "|", variant_id)) |
77 | 77 |
|
78 | 78 |
betas <- data %>% |
79 |
- pivot_wider(names_from=state, values_from=betas, id_cols=id) %>% |
|
79 |
+ pivot_wider(names_from=state, values_from=betas, values_fn=mean, id_cols=id) %>% |
|
80 | 80 |
tibble::column_to_rownames(var="id") %>% qDF() |
81 | 81 |
|
82 | 82 |
errors <- data %>% |
83 |
- pivot_wider(names_from=state, values_from=errors, id_cols=id) %>% |
|
83 |
+ pivot_wider(names_from=state, values_from=errors, values_fn=mean, id_cols=id) %>% |
|
84 | 84 |
tibble::column_to_rownames(var="id") %>% qDF() |
85 | 85 |
|
86 | 86 |
object <- QTLExperiment( |
... | ... |
@@ -94,7 +94,7 @@ sumstats2qtle <- function( |
94 | 94 |
|
95 | 95 |
if(!is.null(pvalues)){ |
96 | 96 |
pvalues <- data %>% |
97 |
- pivot_wider(names_from=state, values_from=pvalues, id_cols=id) %>% |
|
97 |
+ pivot_wider(names_from=state, values_from=pvalues, values_fn=mean, id_cols=id) %>% |
|
98 | 98 |
tibble::column_to_rownames(var="id") %>% qDF() |
99 | 99 |
|
100 | 100 |
assay(object, "pvalues") <- pvalues |
... | ... |
@@ -24,7 +24,7 @@ |
24 | 24 |
#' |
25 | 25 |
#' \describe{ |
26 | 26 |
#' \item{\code{x[i, j, ...] <- value}:}{Replaces all data for rows \code{i} and |
27 |
-#' columns {j} with the corresponding fields in a QTLExperiment |
|
27 |
+#' columns \code{j} with the corresponding fields in a QTLExperiment |
|
28 | 28 |
#' \code{value}, where \code{i} and \code{j} can be a logical, integer, or |
29 | 29 |
#' character vector of subscripts, indicating the rows and columns, |
30 | 30 |
#' respectively, to retain. If either \code{i} or \code{j} is missing, than |
... | ... |
@@ -64,16 +64,19 @@ nQTL <- 100 |
64 | 64 |
betas <- matrix(rnorm(nStates * nQTL), ncol=nStates) |
65 | 65 |
error <- matrix(abs(rnorm(nStates * nQTL)), ncol=nStates) |
66 | 66 |
|
67 |
-qtle <- QTLExperiment(assays=list(betas=betas, errors=error), |
|
68 |
- feature_id=sample(1:10, nQTL, replace=TRUE), |
|
69 |
- variant_id=sample(seq(1e3:1e5), nQTL), |
|
70 |
- state_id=LETTERS[1:nStates]) |
|
67 |
+qtle <- QTLExperiment( |
|
68 |
+ assays=list(betas=betas, errors=error), |
|
69 |
+ feature_id=sample(1:10, nQTL, replace=TRUE), |
|
70 |
+ variant_id=sample(seq(1e3:1e5), nQTL), |
|
71 |
+ state_id=LETTERS[1:nStates]) |
|
71 | 72 |
qtle |
72 | 73 |
|
73 | 74 |
## coercion from SummarizedExperiment |
74 | 75 |
mock_sumstats <- mockSummaryStats(nStates=10, nQTL=100) |
75 |
-se <- SummarizedExperiment(assays=list(betas=mock_sumstats$betas, |
|
76 |
- errors=mock_sumstats$errors)) |
|
76 |
+se <- SummarizedExperiment( |
|
77 |
+ assays=list( |
|
78 |
+ betas=mock_sumstats$betas, |
|
79 |
+ errors=mock_sumstats$errors)) |
|
77 | 80 |
as(se, "QTLExperiment") |
78 | 81 |
|
79 | 82 |
} |
... | ... |
@@ -36,8 +36,9 @@ mashr_sim <- mockMASHR(nStates, nQTL) |
36 | 36 |
|
37 | 37 |
qtle2 <- mash2qtle( |
38 | 38 |
mashr_sim, |
39 |
- rowData=DataFrame(feature_id=row.names(mashr_sim$Bhat), |
|
40 |
- variant_id=sample(seq_len(nQTL)))) |
|
39 |
+ rowData=DataFrame( |
|
40 |
+ feature_id=row.names(mashr_sim$Bhat), |
|
41 |
+ variant_id=sample(seq_len(nQTL)))) |
|
41 | 42 |
dim(qtle2) |
42 | 43 |
|
43 | 44 |
|
... | ... |
@@ -38,7 +38,7 @@ In the following, \code{x} is a \linkS4class{QTLExperiment} object. |
38 | 38 |
|
39 | 39 |
\describe{ |
40 | 40 |
\item{\code{x[i, j, ...] <- value}:}{Replaces all data for rows \code{i} and |
41 |
-columns {j} with the corresponding fields in a QTLExperiment |
|
41 |
+columns \code{j} with the corresponding fields in a QTLExperiment |
|
42 | 42 |
\code{value}, where \code{i} and \code{j} can be a logical, integer, or |
43 | 43 |
character vector of subscripts, indicating the rows and columns, |
44 | 44 |
respectively, to retain. If either \code{i} or \code{j} is missing, than |