########################################### ########### EXAMPLE OF THE OMICSCLUSTERING ########################################### require(STATegRa) ############################################# ## PART 1: CREATING a bioMap CLASS ############################################# ####### This part creates or reads the map between features. ####### In the present example the map is downloaded from a resource. ####### then the class is created. #load("../data/STATegRa_S2.rda") data(STATegRa_S2) MAP.SYMBOL<-bioMap(name = "Symbol-miRNA", metadata = list(type_v1="Gene",type_v2="miRNA", source_database="targetscan.Hs.eg.db", data_extraction="July2014"), map=mapdata) ############################################# ## PART 2: CREATING a bioDist CLASS ############################################# ##### In the second part given a set of main features and surrogate feautres, ##### the profile of the main features is computed through the surrogate features. # Load Data data(STATegRa_S1) #load("../data/STATegRa.S1.Rdata") ## Create ExpressionSets # source("../R/STATegRa_omicsPCA_classes_and_methods.R") # Block1 - Expression data mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname")) # Block2 - miRNA expression data miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname")) # Create Gene-gene distance computed through miRNA data bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1), reference = "Var1", mapping = MAP.SYMBOL, surrogateData = miRNA.ds, ### miRNA data referenceData = mRNA.ds, ### mRNA data maxitems=2, selectionRule="sd", expfac=NULL, aggregation = "sum", distance = "spearman", noMappingDist = 0, filtering = NULL, name = "mRNAbymiRNA") require(Biobase) # Create Gene-gene distance through mRNA data bioDistmRNA<-bioDistclass(name = "mRNAbymRNA", distance = cor(t(exprs(mRNA.ds)),method="spearman"), map.name = "id", map.metadata = list(), params = list()) ############################################# ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList ############################################# bioDistList<-list(bioDistmRNA,bioDistmiRNA) weights<-matrix(0,4,2) weights[,1]<-c(0,0.33,0.67,1) weights[,2]<-c(1,0.67,0.33,0)# bioDistWList<-bioDistW(referenceFeatures = rownames(Block1), bioDistList = bioDistList, weights=weights) length(bioDistWList) ############################################# ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL ############################################# bioDistWPlot(referenceFeatures = rownames(Block1) , listDistW = bioDistWList, method.cor="spearman") ############################################# ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE ############################################# ## IDH1 IDH1.F<-bioDistFeature(Feature = "IDH1" , listDistW = bioDistWList, threshold.cor=0.7) bioDistFeaturePlot(data=IDH1.F) ## PDGFRA #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" , # listDistW = bioDistWList, # threshold.cor=0.7) #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png") ## EGFR #EGFR.F<-bioDistFeature(Feature = "EGFR" , # listDistW = bioDistWList, # threshold.cor=0.7) #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png") ## MGMT #MGMT.F<-bioDistFeature(Feature = "MGMT" , # listDistW = bioDistWList, # threshold.cor=0.5) #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")