... | ... |
@@ -37,12 +37,12 @@ Select features for a tensor generated from two matrices that |
37 | 37 |
share samples. |
38 | 38 |
} |
39 | 39 |
\examples{ |
40 |
-require(TDbasedUFE) |
|
40 |
+library(TDbasedUFE) |
|
41 | 41 |
set.seed(0) |
42 | 42 |
matrix1 <- matrix(runif(1000),20) #row features, column samples |
43 | 43 |
matrix2 <- matrix(runif(2000),40) #row features, column samples |
44 | 44 |
Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2)) |
45 |
-Z <- prepareSummarizedExperimentTensorRect(sample=as.character(seq_len(50)), |
|
45 |
+Z <- prepareTensorRect(sample=as.character(seq_len(50)), |
|
46 | 46 |
feature=list(as.character(seq_len(20)),as.character(seq_len(40))), |
47 | 47 |
sampleData=list(rep(seq_len(2),each=25)),value=Z) |
48 | 48 |
HOSVD <- computeHosvd(Z) |
... | ... |
@@ -38,13 +38,15 @@ Select features for a tensor generated from two matrices that |
38 | 38 |
} |
39 | 39 |
\examples{ |
40 | 40 |
require(TDbasedUFE) |
41 |
-matrix1 <- matrix(runif(10000),200) #row features, column samples |
|
42 |
-matrix2 <- matrix(runif(20000),400) #row features, column samples |
|
41 |
+set.seed(0) |
|
42 |
+matrix1 <- matrix(runif(1000),20) #row features, column samples |
|
43 |
+matrix2 <- matrix(runif(2000),40) #row features, column samples |
|
43 | 44 |
Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2)) |
44 | 45 |
Z <- prepareSummarizedExperimentTensorRect(sample=as.character(seq_len(50)), |
45 |
-feature=list(as.character(seq_len(200)),as.character(seq_len(400))), |
|
46 |
+feature=list(as.character(seq_len(20)),as.character(seq_len(40))), |
|
46 | 47 |
sampleData=list(rep(seq_len(2),each=25)),value=Z) |
47 | 48 |
HOSVD <- computeHosvd(Z) |
48 | 49 |
cond <- list(attr(Z,"sampleData")[[1]],NULL,NULL) |
49 |
-index_all <- selectFeatureTransRect(HOSVD,cond,de=c(0.01,0.01),input_all=2) |
|
50 |
+index_all <- selectFeatureTransRect(HOSVD,cond,de=c(0.1,0.1), |
|
51 |
+input_all=2,p0=1e-10) |
|
50 | 52 |
} |
... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/selectFeatureTransRect.R |
3 | 3 |
\name{selectFeatureTransRect} |
4 | 4 |
\alias{selectFeatureTransRect} |
5 |
-\title{Title Select features for a tensor generated from two matrices that |
|
5 |
+\title{Select features for a tensor generated from two matrices that |
|
6 | 6 |
share samples.} |
7 | 7 |
\usage{ |
8 | 8 |
selectFeatureTransRect( |
... | ... |
@@ -10,7 +10,7 @@ selectFeatureTransRect( |
10 | 10 |
cond, |
11 | 11 |
de = rep(1e-04, 2), |
12 | 12 |
p0 = 0.01, |
13 |
- breaks = 100, |
|
13 |
+ breaks = as.integer(100), |
|
14 | 14 |
input_all = NULL |
15 | 15 |
) |
16 | 16 |
} |
... | ... |
@@ -33,7 +33,7 @@ list of logical vector that represent if the individual features |
33 | 33 |
are selected and P-values. |
34 | 34 |
} |
35 | 35 |
\description{ |
36 |
-Title Select features for a tensor generated from two matrices that |
|
36 |
+Select features for a tensor generated from two matrices that |
|
37 | 37 |
share samples. |
38 | 38 |
} |
39 | 39 |
\examples{ |
... | ... |
@@ -41,7 +41,7 @@ require(TDbasedUFE) |
41 | 41 |
matrix1 <- matrix(runif(10000),200) #row features, column samples |
42 | 42 |
matrix2 <- matrix(runif(20000),400) #row features, column samples |
43 | 43 |
Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2)) |
44 |
-Z <- PrepareSummarizedExperimentTensorRect(sample=as.character(seq_len(50)), |
|
44 |
+Z <- prepareSummarizedExperimentTensorRect(sample=as.character(seq_len(50)), |
|
45 | 45 |
feature=list(as.character(seq_len(200)),as.character(seq_len(400))), |
46 | 46 |
sampleData=list(rep(seq_len(2),each=25)),value=Z) |
47 | 47 |
HOSVD <- computeHosvd(Z) |
... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/selectFeatureTransRect.R |
3 | 3 |
\name{selectFeatureTransRect} |
4 | 4 |
\alias{selectFeatureTransRect} |
5 |
-\title{Title Select features for a tensor generated from two matricies that |
|
5 |
+\title{Title Select features for a tensor generated from two matrices that |
|
6 | 6 |
share samples.} |
7 | 7 |
\usage{ |
8 | 8 |
selectFeatureTransRect( |
... | ... |
@@ -23,7 +23,7 @@ selectFeatureTransRect( |
23 | 23 |
|
24 | 24 |
\item{p0}{threshold value for the significance} |
25 | 25 |
|
26 |
-\item{breaks}{number of bins of the histgram of P-values} |
|
26 |
+\item{breaks}{number of bins of the histogram of P-values} |
|
27 | 27 |
|
28 | 28 |
\item{input_all}{The selected singular value vectors attributed to samples. |
29 | 29 |
if NULL, interactive mode} |
... | ... |
@@ -33,7 +33,7 @@ list of logical vector that represent if the individual features |
33 | 33 |
are selected and P-values. |
34 | 34 |
} |
35 | 35 |
\description{ |
36 |
-Title Select features for a tensor generated from two matricies that |
|
36 |
+Title Select features for a tensor generated from two matrices that |
|
37 | 37 |
share samples. |
38 | 38 |
} |
39 | 39 |
\examples{ |
... | ... |
@@ -41,9 +41,9 @@ require(TDbasedUFE) |
41 | 41 |
matrix1 <- matrix(runif(10000),200) #row features, column samples |
42 | 42 |
matrix2 <- matrix(runif(20000),400) #row features, column samples |
43 | 43 |
Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2)) |
44 |
-Z <- PrepareSummarizedExperimentTensorRect(sample=as.character(1:50), |
|
45 |
-feature=list(as.character(1:200),as.character(1:400)), |
|
46 |
-sampleData=list(rep(1:2,each=25)),value=Z) |
|
44 |
+Z <- PrepareSummarizedExperimentTensorRect(sample=as.character(seq_len(50)), |
|
45 |
+feature=list(as.character(seq_len(200)),as.character(seq_len(400))), |
|
46 |
+sampleData=list(rep(seq_len(2),each=25)),value=Z) |
|
47 | 47 |
HOSVD <- computeHosvd(Z) |
48 | 48 |
cond <- list(attr(Z,"sampleData")[[1]],NULL,NULL) |
49 | 49 |
index_all <- selectFeatureTransRect(HOSVD,cond,de=c(0.01,0.01),input_all=2) |
... | ... |
@@ -37,6 +37,7 @@ Title Select features for a tensor generated from two matricies that |
37 | 37 |
share samples. |
38 | 38 |
} |
39 | 39 |
\examples{ |
40 |
+require(TDbasedUFE) |
|
40 | 41 |
matrix1 <- matrix(runif(10000),200) #row features, column samples |
41 | 42 |
matrix2 <- matrix(runif(20000),400) #row features, column samples |
42 | 43 |
Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2)) |
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,49 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/selectFeatureTransRect.R |
|
3 |
+\name{selectFeatureTransRect} |
|
4 |
+\alias{selectFeatureTransRect} |
|
5 |
+\title{Title Select features for a tensor generated from two matricies that |
|
6 |
+ share samples.} |
|
7 |
+\usage{ |
|
8 |
+selectFeatureTransRect( |
|
9 |
+ HOSVD, |
|
10 |
+ cond, |
|
11 |
+ de = rep(1e-04, 2), |
|
12 |
+ p0 = 0.01, |
|
13 |
+ breaks = 100, |
|
14 |
+ input_all = NULL |
|
15 |
+) |
|
16 |
+} |
|
17 |
+\arguments{ |
|
18 |
+\item{HOSVD}{HOSVD} |
|
19 |
+ |
|
20 |
+\item{cond}{list of conditions} |
|
21 |
+ |
|
22 |
+\item{de}{initial values for optimization of standard deviation} |
|
23 |
+ |
|
24 |
+\item{p0}{threshold value for the significance} |
|
25 |
+ |
|
26 |
+\item{breaks}{number of bins of the histgram of P-values} |
|
27 |
+ |
|
28 |
+\item{input_all}{The selected singular value vectors attributed to samples. |
|
29 |
+if NULL, interactive mode} |
|
30 |
+} |
|
31 |
+\value{ |
|
32 |
+list of logical vector that represent if the individual features |
|
33 |
+are selected and P-values. |
|
34 |
+} |
|
35 |
+\description{ |
|
36 |
+Title Select features for a tensor generated from two matricies that |
|
37 |
+ share samples. |
|
38 |
+} |
|
39 |
+\examples{ |
|
40 |
+matrix1 <- matrix(runif(10000),200) #row features, column samples |
|
41 |
+matrix2 <- matrix(runif(20000),400) #row features, column samples |
|
42 |
+Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2)) |
|
43 |
+Z <- PrepareSummarizedExperimentTensorRect(sample=as.character(1:50), |
|
44 |
+feature=list(as.character(1:200),as.character(1:400)), |
|
45 |
+sampleData=list(rep(1:2,each=25)),value=Z) |
|
46 |
+HOSVD <- computeHosvd(Z) |
|
47 |
+cond <- list(attr(Z,"sampleData")[[1]],NULL,NULL) |
|
48 |
+index_all <- selectFeatureTransRect(HOSVD,cond,de=c(0.01,0.01),input_all=2) |
|
49 |
+} |