Browse code

v-0.99.17

tagtag authored on 24/03/2023 16:44:34
Showing 1 changed files
... ...
@@ -10,7 +10,7 @@ selectFeatureTransRect(
10 10
   cond,
11 11
   de = rep(1e-04, 2),
12 12
   p0 = 0.01,
13
-  breaks = as.integer(100),
13
+  breaks = 100L,
14 14
   input_all = NULL
15 15
 )
16 16
 }
Browse code

v-0.99.16

tagtag authored on 22/03/2023 15:27:20
Showing 1 changed files
... ...
@@ -37,12 +37,12 @@ Select features for a tensor generated from two matrices that
37 37
  share samples.
38 38
 }
39 39
 \examples{
40
-require(TDbasedUFE)
40
+library(TDbasedUFE)
41 41
 set.seed(0)
42 42
 matrix1 <- matrix(runif(1000),20) #row features, column samples
43 43
 matrix2 <- matrix(runif(2000),40) #row features, column samples
44 44
 Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2))
45
-Z <- prepareSummarizedExperimentTensorRect(sample=as.character(seq_len(50)),
45
+Z <- prepareTensorRect(sample=as.character(seq_len(50)),
46 46
 feature=list(as.character(seq_len(20)),as.character(seq_len(40))),
47 47
 sampleData=list(rep(seq_len(2),each=25)),value=Z)
48 48
 HOSVD <- computeHosvd(Z)
Browse code

v-0.99.14

tagtag authored on 21/03/2023 10:32:47
Showing 1 changed files
... ...
@@ -38,13 +38,15 @@ Select features for a tensor generated from two matrices that
38 38
 }
39 39
 \examples{
40 40
 require(TDbasedUFE)
41
-matrix1 <- matrix(runif(10000),200) #row features, column samples
42
-matrix2 <- matrix(runif(20000),400) #row features, column samples
41
+set.seed(0)
42
+matrix1 <- matrix(runif(1000),20) #row features, column samples
43
+matrix2 <- matrix(runif(2000),40) #row features, column samples
43 44
 Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2))
44 45
 Z <- prepareSummarizedExperimentTensorRect(sample=as.character(seq_len(50)),
45
-feature=list(as.character(seq_len(200)),as.character(seq_len(400))),
46
+feature=list(as.character(seq_len(20)),as.character(seq_len(40))),
46 47
 sampleData=list(rep(seq_len(2),each=25)),value=Z)
47 48
 HOSVD <- computeHosvd(Z)
48 49
 cond <- list(attr(Z,"sampleData")[[1]],NULL,NULL)
49
-index_all <- selectFeatureTransRect(HOSVD,cond,de=c(0.01,0.01),input_all=2)
50
+index_all <- selectFeatureTransRect(HOSVD,cond,de=c(0.1,0.1),
51
+input_all=2,p0=1e-10)
50 52
 }
Browse code

v-0.99.9

tagtag authored on 20/03/2023 13:52:28
Showing 1 changed files
... ...
@@ -2,7 +2,7 @@
2 2
 % Please edit documentation in R/selectFeatureTransRect.R
3 3
 \name{selectFeatureTransRect}
4 4
 \alias{selectFeatureTransRect}
5
-\title{Title Select features for a tensor generated from two matrices that
5
+\title{Select features for a tensor generated from two matrices that
6 6
  share samples.}
7 7
 \usage{
8 8
 selectFeatureTransRect(
... ...
@@ -10,7 +10,7 @@ selectFeatureTransRect(
10 10
   cond,
11 11
   de = rep(1e-04, 2),
12 12
   p0 = 0.01,
13
-  breaks = 100,
13
+  breaks = as.integer(100),
14 14
   input_all = NULL
15 15
 )
16 16
 }
... ...
@@ -33,7 +33,7 @@ list of logical vector that represent if the individual features
33 33
 are selected and P-values.
34 34
 }
35 35
 \description{
36
-Title Select features for a tensor generated from two matrices that
36
+Select features for a tensor generated from two matrices that
37 37
  share samples.
38 38
 }
39 39
 \examples{
... ...
@@ -41,7 +41,7 @@ require(TDbasedUFE)
41 41
 matrix1 <- matrix(runif(10000),200) #row features, column samples
42 42
 matrix2 <- matrix(runif(20000),400) #row features, column samples
43 43
 Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2))
44
-Z <- PrepareSummarizedExperimentTensorRect(sample=as.character(seq_len(50)),
44
+Z <- prepareSummarizedExperimentTensorRect(sample=as.character(seq_len(50)),
45 45
 feature=list(as.character(seq_len(200)),as.character(seq_len(400))),
46 46
 sampleData=list(rep(seq_len(2),each=25)),value=Z)
47 47
 HOSVD <- computeHosvd(Z)
Browse code

v-0.99.3

tagtag authored on 07/03/2023 15:02:58
Showing 1 changed files
... ...
@@ -2,7 +2,7 @@
2 2
 % Please edit documentation in R/selectFeatureTransRect.R
3 3
 \name{selectFeatureTransRect}
4 4
 \alias{selectFeatureTransRect}
5
-\title{Title Select features for a tensor generated from two matricies that
5
+\title{Title Select features for a tensor generated from two matrices that
6 6
  share samples.}
7 7
 \usage{
8 8
 selectFeatureTransRect(
... ...
@@ -23,7 +23,7 @@ selectFeatureTransRect(
23 23
 
24 24
 \item{p0}{threshold value for the significance}
25 25
 
26
-\item{breaks}{number of bins of the histgram of P-values}
26
+\item{breaks}{number of bins of the histogram of P-values}
27 27
 
28 28
 \item{input_all}{The selected singular value vectors attributed to samples.
29 29
 if NULL, interactive mode}
... ...
@@ -33,7 +33,7 @@ list of logical vector that represent if the individual features
33 33
 are selected and P-values.
34 34
 }
35 35
 \description{
36
-Title Select features for a tensor generated from two matricies that
36
+Title Select features for a tensor generated from two matrices that
37 37
  share samples.
38 38
 }
39 39
 \examples{
Browse code

Futher addition after devtools:check() and BiocCheck

tagtag authored on 30/01/2023 13:07:17
Showing 1 changed files
... ...
@@ -41,9 +41,9 @@ require(TDbasedUFE)
41 41
 matrix1 <- matrix(runif(10000),200) #row features, column samples
42 42
 matrix2 <- matrix(runif(20000),400) #row features, column samples
43 43
 Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2))
44
-Z <- PrepareSummarizedExperimentTensorRect(sample=as.character(1:50),
45
-feature=list(as.character(1:200),as.character(1:400)),
46
-sampleData=list(rep(1:2,each=25)),value=Z)
44
+Z <- PrepareSummarizedExperimentTensorRect(sample=as.character(seq_len(50)),
45
+feature=list(as.character(seq_len(200)),as.character(seq_len(400))),
46
+sampleData=list(rep(seq_len(2),each=25)),value=Z)
47 47
 HOSVD <- computeHosvd(Z)
48 48
 cond <- list(attr(Z,"sampleData")[[1]],NULL,NULL)
49 49
 index_all <- selectFeatureTransRect(HOSVD,cond,de=c(0.01,0.01),input_all=2)
Browse code

Correction based upon devttools::check()

tagtag authored on 29/01/2023 14:36:29
Showing 1 changed files
... ...
@@ -37,6 +37,7 @@ Title Select features for a tensor generated from two matricies that
37 37
  share samples.
38 38
 }
39 39
 \examples{
40
+require(TDbasedUFE)
40 41
 matrix1 <- matrix(runif(10000),200) #row features, column samples
41 42
 matrix2 <- matrix(runif(20000),400) #row features, column samples
42 43
 Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2))
Browse code

Tensor from matiricies that share samples

tagtag authored on 29/01/2023 13:11:31
Showing 1 changed files
1 1
new file mode 100644
... ...
@@ -0,0 +1,49 @@
1
+% Generated by roxygen2: do not edit by hand
2
+% Please edit documentation in R/selectFeatureTransRect.R
3
+\name{selectFeatureTransRect}
4
+\alias{selectFeatureTransRect}
5
+\title{Title Select features for a tensor generated from two matricies that
6
+ share samples.}
7
+\usage{
8
+selectFeatureTransRect(
9
+  HOSVD,
10
+  cond,
11
+  de = rep(1e-04, 2),
12
+  p0 = 0.01,
13
+  breaks = 100,
14
+  input_all = NULL
15
+)
16
+}
17
+\arguments{
18
+\item{HOSVD}{HOSVD}
19
+
20
+\item{cond}{list of conditions}
21
+
22
+\item{de}{initial values for optimization of standard deviation}
23
+
24
+\item{p0}{threshold value for the significance}
25
+
26
+\item{breaks}{number of bins of the histgram of P-values}
27
+
28
+\item{input_all}{The selected singular value vectors attributed to samples.
29
+if NULL, interactive mode}
30
+}
31
+\value{
32
+list of logical vector that represent if the individual features
33
+are selected and P-values.
34
+}
35
+\description{
36
+Title Select features for a tensor generated from two matricies that
37
+ share samples.
38
+}
39
+\examples{
40
+matrix1 <- matrix(runif(10000),200) #row features, column samples
41
+matrix2 <- matrix(runif(20000),400) #row features, column samples
42
+Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2))
43
+Z <- PrepareSummarizedExperimentTensorRect(sample=as.character(1:50),
44
+feature=list(as.character(1:200),as.character(1:400)),
45
+sampleData=list(rep(1:2,each=25)),value=Z)
46
+HOSVD <- computeHosvd(Z)
47
+cond <- list(attr(Z,"sampleData")[[1]],NULL,NULL)
48
+index_all <- selectFeatureTransRect(HOSVD,cond,de=c(0.01,0.01),input_all=2)
49
+}