## Simulate toy data, n = 300 observations set.seed(12345) countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4) countmat <- countmat[which(rowSums(countmat) > 0),] profiles <- transformRNAseq(countmat, norm="none", transformation="arcsin")$tcounts conds <- rep(c("A","B","C","D"), each=2) ## Run the Normal mixture model for K = 2,3 ## Object of class coseqResults run <- NormMixClus(y=profiles, K=2:3, iter=5) run ## Run the Normal mixture model for K=2 ## Object of class SummarizedExperiment0 run2 <- NormMixClusK(y=profiles, K=2, iter=5) ## Summary of results summary(run) ## Re-estimate mixture parameters for the model with K=2 clusters param <- NormMixParam(run, y_profiles=profiles)